JPS6340744A - Optical fiber - Google Patents
Optical fiberInfo
- Publication number
- JPS6340744A JPS6340744A JP61185642A JP18564286A JPS6340744A JP S6340744 A JPS6340744 A JP S6340744A JP 61185642 A JP61185642 A JP 61185642A JP 18564286 A JP18564286 A JP 18564286A JP S6340744 A JPS6340744 A JP S6340744A
- Authority
- JP
- Japan
- Prior art keywords
- core
- hydrogen
- optical fiber
- preform
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 40
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 13
- 150000001342 alkaline earth metals Chemical class 0.000 claims abstract description 12
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 11
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 11
- 239000011521 glass Substances 0.000 claims abstract description 9
- 239000001257 hydrogen Substances 0.000 abstract description 41
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 41
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 38
- 239000003795 chemical substances by application Substances 0.000 abstract description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 11
- 230000005540 biological transmission Effects 0.000 abstract description 10
- 239000000835 fiber Substances 0.000 abstract description 7
- 239000002019 doping agent Substances 0.000 abstract description 5
- 229910052751 metal Inorganic materials 0.000 abstract description 5
- 239000002184 metal Substances 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 4
- 229910052708 sodium Inorganic materials 0.000 abstract description 4
- 239000004071 soot Substances 0.000 abstract description 4
- 239000002585 base Substances 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 229910052749 magnesium Inorganic materials 0.000 abstract description 3
- 239000002994 raw material Substances 0.000 abstract description 3
- 229910052792 caesium Inorganic materials 0.000 abstract description 2
- 229910052791 calcium Inorganic materials 0.000 abstract description 2
- 238000000151 deposition Methods 0.000 abstract description 2
- 229910052701 rubidium Inorganic materials 0.000 abstract description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 abstract 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 abstract 2
- 229910015845 BBr3 Inorganic materials 0.000 abstract 1
- 229910006113 GeCl4 Inorganic materials 0.000 abstract 1
- 229910019213 POCl3 Inorganic materials 0.000 abstract 1
- 229910003910 SiCl4 Inorganic materials 0.000 abstract 1
- 239000010419 fine particle Substances 0.000 abstract 1
- 229910052744 lithium Inorganic materials 0.000 abstract 1
- 229910052700 potassium Inorganic materials 0.000 abstract 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 abstract 1
- 229910052712 strontium Inorganic materials 0.000 abstract 1
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 abstract 1
- 238000005253 cladding Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 9
- 239000005373 porous glass Substances 0.000 description 9
- 239000007789 gas Substances 0.000 description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- -1 hydroxide ions Chemical class 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000012756 surface treatment agent Substances 0.000 description 2
- 241000251730 Chondrichthyes Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007496 glass forming Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
- C03C13/04—Fibre optics, e.g. core and clad fibre compositions
- C03C13/045—Silica-containing oxide glass compositions
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Glass Compositions (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
この発明は、水素雰囲気で長期間に亙って安定な伝送特
性を維持できる光ファイバに関する。DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to an optical fiber that can maintain stable transmission characteristics over a long period of time in a hydrogen atmosphere.
「従来技術とその問題点」
石英ガラスなどからなる光ファイバは、低損失な先導波
路であることから、現在例えば光通信用線路などとして
用いられている。"Prior Art and Its Problems" Optical fibers made of quartz glass or the like are currently used as optical communication lines, for example, because they are low-loss leading waveguides.
近時、このような光通信用線路は、光通信網の整備や拡
大に伴い、線路を長尺化する傾向にあり、そのためこの
線路に用いられる光ファイバには、さらに高い低損失性
が要求されつつある。In recent years, as optical communication networks have been developed and expanded, there has been a trend toward longer optical communication lines, and as a result, the optical fibers used in these lines are required to have even higher levels of low loss. It is being done.
そこで、従来の光ファイバにあっては、この光ファイバ
を形成する材料の石英ガラスから極力金属イオンや水酸
イオン等の不純物を除去して石英ガラスの高純度化を図
ることにより低損失化を図るようにしている。Therefore, in the case of conventional optical fibers, loss can be reduced by removing impurities such as metal ions and hydroxide ions as much as possible from the quartz glass, which is the material forming the optical fiber, to increase the purity of the silica glass. I'm trying to figure it out.
ところで、このような光ファイバにあっては、上記の要
求に充分に応えられるだけの低損失性を達成しているも
のの、長期間に亙って高濃度の水素雰囲気にさらされる
と、この光ファイバを形成する石英ガラスが不活性であ
るにも拘わらず、光フアイバ表面から水素が徐々に吸収
され、漸次コア内部にまで拡散されることがあった。こ
のように光伝送路であるコア内部に拡散された水素は、
■コア内の伝搬光を自ら吸収したり、■コアに添加され
たドーパントのG e Otに作用して、このドーパン
トの結合部分の電子軌道を乱すとともに結合部分の電子
吸収特性を変化させたり、あるいは■酸素と結合して水
酸基となり、この水酸基の分子振動による赤外吸収特性
を変化させたりなどして、光ファイバの伝搬光の伝送量
や伝送モードなとを変化させ、その結果、光ファイバの
伝送損失を増大させていた。Incidentally, although such optical fibers have achieved low loss properties that are sufficient to meet the above requirements, if they are exposed to a high concentration hydrogen atmosphere for a long period of time, this light Even though the silica glass forming the fiber is inert, hydrogen may be gradually absorbed from the surface of the optical fiber and gradually diffused into the core. Hydrogen diffused into the core, which is the optical transmission path, is
■Absorbs the light propagating in the core by itself, ■Acts on the G e Ot of the dopant added to the core, disturbs the electron orbit of the bonding part of this dopant, and changes the electron absorption characteristics of the bonding part. Alternatively, it combines with oxygen to form a hydroxyl group, which changes the infrared absorption characteristics due to the molecular vibration of the hydroxyl group, thereby changing the transmission amount and transmission mode of light propagating through the optical fiber.As a result, the optical fiber transmission loss was increased.
「問題へを解決するための手段」
そこで、発明音らは、上記の事情に鑑み、鋭意検討を重
ねた結果、コアガラス中に極微量のアルカリ金遣および
またはアルカリ土類金属を添加すると、これらの金属が
長期間に亙って光フアイバ内への水素の吸収、拡散を阻
止するとともに水素による上記の損失増加作用を防止し
て、この光ファイバを水素に対して安定な低損失ファイ
バとすることを見出だした。すなわち、この発明の光フ
ァイバは、コアガラスにアルカリ金属およびまたはアル
カリ土類金属を0.01〜15ppmの範囲で添加せし
めたことを特徴とするものである。``Means for solving the problem'' Therefore, in view of the above circumstances, Inventor et al., as a result of intensive studies, found that by adding a trace amount of alkali metal and/or alkaline earth metal to the core glass, These metals prevent absorption and diffusion of hydrogen into the optical fiber over a long period of time, and also prevent the above-mentioned loss increasing effect due to hydrogen, making this optical fiber a low-loss fiber that is stable against hydrogen. I found something to do. That is, the optical fiber of the present invention is characterized in that an alkali metal and/or alkaline earth metal is added to the core glass in a range of 0.01 to 15 ppm.
以下、図面を参照してこの発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.
第1図は、この発明の光ファイバの一例を示すものであ
って、図中符号lは光ファイバである。FIG. 1 shows an example of an optical fiber according to the present invention, and reference numeral 1 in the figure indicates an optical fiber.
この光ファイバ1は、コアLaとクラッド1bとからな
るものである。コアlaは、5iCQ、などのガラス原
料を主原料とし、これにGcCり。、POCQ3、r3
13r3なとのドーパノドを添加して形成されたしので
ある。ドーパントのコアla中の含有量は、光ファイバ
1に要求される屈折率差なとにより決められろが、通常
、3〜10重量%重量%径囲とされる。This optical fiber 1 consists of a core La and a cladding 1b. Core LA uses glass raw materials such as 5iCQ as the main raw material, and GcC is added to this. , POCQ3, r3
It was formed by adding a dopant such as 13r3. The content of the dopant in the core la is determined depending on the refractive index difference required for the optical fiber 1, but is usually 3 to 10% by weight.
また、コアIaには、損失増加の原因となる水素がコア
la中の酸素と結合して水酸基を形成するのを抑制する
とともに、水素を揮散させて除去する耐水素剤が添加さ
れている。このような耐水素剤としては、Ll、Na、
に、Rb、Csなどのアルカリ金属、Mg、Ca、5r
XBaなどのアルカリ土類金属、あるいはこれらアルカ
リ金属とアルカリ土類金属との、昆合物が挙げられ、こ
れらの耐水素剤は、いずれらコアIa内においてイオン
状態で存在せしめられている。そして、この耐水素剤の
コアIa中の添加量は、001〜15ppmの範囲とさ
れる。 0.0’lppm未満のものでは、少な過ぎて
耐水素剤の添加効果がなく、コアIa中の含存水素によ
、り光ファイバ1の伝送損失が著しく増加する不都合が
生じる。また、tsppmを越えるものでは、多過ぎて
上記の耐水素剤の添加効果が頭打ちとなるばかりでなく
、コアlaの透明度が低下してコア1a内を伝搬する伝
搬光の伝送量も低下するなどの不都合が生じる。また、
耐水素剤中のアルカリ金属とアルカリ土類金属との混合
割合は、光ファイバ1に要求される伝送特性やアルカリ
金属およびアルカリ土類金属の種類などに応じて適宜決
められる。Furthermore, a hydrogen resistant agent is added to the core Ia to prevent hydrogen from bonding with oxygen in the core la to form hydroxyl groups, which causes increased loss, and to volatilize and remove hydrogen. Such hydrogen resistant agents include Ll, Na,
, alkali metals such as Rb and Cs, Mg, Ca, 5r
Examples include alkaline earth metals such as XBa, or combinations of these alkali metals and alkaline earth metals, and these hydrogen resistant agents are present in an ionic state in the core Ia. The amount of the hydrogen resistant agent added to the core Ia is in the range of 0.001 to 15 ppm. If it is less than 0.0'lppm, it is too small to have any effect of adding the hydrogen resistant agent, and the transmission loss of the optical fiber 1 increases significantly due to the hydrogen contained in the core Ia. Furthermore, if it exceeds tsppm, it is too much and not only does the effect of adding the above-mentioned hydrogen resistant agent reach a ceiling, but also the transparency of the core la decreases and the amount of transmitted light propagating within the core la also decreases. This will cause some inconvenience. Also,
The mixing ratio of the alkali metal and alkaline earth metal in the hydrogen resistant agent is appropriately determined depending on the transmission characteristics required of the optical fiber 1, the types of the alkali metal and alkaline earth metal, and the like.
このようなコアlaの外側には、クラッドlbが一体に
設けられている。このクラッドIbは、コア1aより低
い屈折率を有する石英ガラスなどからなるものであって
、その外径は通常9〜50μ肩程度とされる。A cladding lb is integrally provided on the outside of such a core la. The cladding Ib is made of quartz glass or the like having a lower refractive index than the core 1a, and its outer diameter is usually about 9 to 50 microns.
このような構成からなる光ファイバ1の外側には、コノ
先ファイ)<lを保護するためのジャケント2が設けら
れている。このジャケット2は、天然石英ガラス製、合
成石英ガラス製などの円筒管を被覆したもの、あるいは
クラッドlbの表面にスートを堆積してなるものである
。On the outside of the optical fiber 1 having such a configuration, a jacket 2 is provided to protect the tip of the fiber <l. This jacket 2 is formed by covering a cylindrical tube made of natural quartz glass or synthetic quartz glass, or by depositing soot on the surface of the clad lb.
次に、この光ファイバ1を製造する方法について説明す
る。まず、VAD法なとの常法によって多孔質ガラスプ
リフォームを製造する。次いで、この多孔質ガラスプリ
フォームを所定の外径寸法となるように延伸処理したの
ち、このグリフ4−−ムの表面をフッ酸などの表面処理
剤てエツチング処理することによって、処理表面に凹凸
を形成しその表面積を大きくする。Next, a method for manufacturing this optical fiber 1 will be explained. First, a porous glass preform is manufactured by a conventional method such as the VAD method. Next, this porous glass preform is stretched to a predetermined outer diameter, and then the surface of the glyph 4-- is etched using a surface treatment agent such as hydrofluoric acid to create irregularities on the treated surface. form and increase its surface area.
次に、このプリフォームを例えば所定濃度の塩化ナトリ
ウム水溶液中に充分に浸漬したのち、このプリフォーム
のクラッド表面を酸水素炎バーナで約1500〜160
0℃程度に加熱して、クラッド表面からナトリウム(耐
水素剤)を浸透させ、コア内に拡散させる。ここで、コ
アへの耐水素剤の添加方法として、上記のナトリウムの
ようにコアおよびクラッド内での・移動速度の大きい耐
水素剤の場合、上記の浸漬法を用いることができるが、
移動速度の小さいアルカリ土類金属等の耐水素剤の場合
、相法による耐水素剤の1洛加方法を説明すると、まず
、上記で延伸処理して所定の外径寸法としfこ多孔質ガ
ラスプリフォームを、高純度のアルカリ土類金嘱塩(耐
水素剤)とともに焼結炉内に収容する。Next, this preform is sufficiently immersed in, for example, a sodium chloride aqueous solution of a predetermined concentration, and then the cladding surface of this preform is heated to about 1500 to 160 ml with an oxyhydrogen flame burner.
It is heated to about 0°C to allow sodium (hydrogen resistant agent) to permeate through the cladding surface and diffuse into the core. Here, as a method for adding the hydrogen resistant agent to the core, in the case of a hydrogen resistant agent that moves at a high speed within the core and cladding, such as the above-mentioned sodium, the immersion method described above can be used.
In the case of a hydrogen resistant agent such as an alkaline earth metal that has a low movement speed, the method for adding the hydrogen resistant agent using the phase method is as follows: First, the above porous glass is stretched to a predetermined outer diameter. The preform is placed in a sintering furnace together with a high purity alkaline earth metal salt (hydrogen resistant agent).
次いて、金属塩を所定温度に加熱して得た所定量の気化
ガスを、Heガス、7\rガスなどの不活性ガスからな
るキャリアガスとともに、所定温度に加熱された多孔質
ガラスプリフォーム表面に流すことによって、このプリ
フォームのクラッド表面から上記の金属を浸透させ、漸
次コア内に拡散させる。Next, a predetermined amount of vaporized gas obtained by heating the metal salt to a predetermined temperature is applied to a porous glass preform heated to a predetermined temperature together with a carrier gas consisting of an inert gas such as He gas or 7\r gas. By flowing over the surface, the metal penetrates through the cladding surface of the preform and gradually diffuses into the core.
次に、このようにして得られたプリフォームのクラッド
表面に外付は法により合成石英ガラスのスートを堆積さ
せて堆積層を形成する。次いで、このプリフォームを約
1500°C程度に加熱して透明ガラス化した光フアイ
バ母材とし、この光フアイバ母材をさらに加熱、線引き
して目的の光ファイバ1を得る。Next, synthetic quartz glass soot is deposited on the cladding surface of the preform thus obtained by an external method to form a deposited layer. Next, this preform is heated to about 1500° C. to obtain a transparent vitrified optical fiber preform, and this optical fiber preform is further heated and drawn to obtain the desired optical fiber 1.
このようにして得られた光ファイバ1は、コアlaに、
アルカリ金属およびまたはアルカリ土類金属が(1,0
l−15ppaの範囲で添加されてなるものであるので
、添加されたアルカリ金属およびまたはアルカリ土類金
属により、光フアイバl内に拡散する水素による水酸基
の形成が抑制されかつその水素が外部に押散せしめろれ
ることかみ、耐水素性に浸れたものとなる。よって、こ
の光ファイバlにあっては、(費れた耐水素性を有する
ことから、水素雰囲気で長期間に亙って安定な低損失性
を召に持するものとなる。The optical fiber 1 thus obtained has a core la,
Alkali metal and or alkaline earth metal (1,0
The added alkali metal and/or alkaline earth metal suppresses the formation of hydroxyl groups due to hydrogen diffusing into the optical fiber and pushes the hydrogen to the outside. When it is dispersed, it becomes immersed in hydrogen resistance. Therefore, since this optical fiber 1 has excellent hydrogen resistance, it has a stable low loss property over a long period of time in a hydrogen atmosphere.
以下、実験例を示してこの発明の作用効果を明確にする
。Hereinafter, the effects of this invention will be clarified by showing experimental examples.
「実験例」
(実験例1 )
VAD法によってノングルモードタイプの多孔質ガラス
プリフォームを製造した。この多孔質カラスプリフォー
ムは、S i 02にG e 02をトープしrこちの
をコアとし、クラッドを9102から形成したもので、
コア径寸法がクラツド径寸法の約178で、コアとクラ
ッドとの比屈折率差Δが約0.3%であった。次いで、
この多孔質ガラスプリフォームを、このクラツド径寸法
が約15mmとなるように低伸処理したのち、このプリ
フォームの表面をフッ酸などの表面処理剤でエツチング
処理した。"Experimental Example" (Experimental Example 1) A non-glue mode type porous glass preform was manufactured by the VAD method. This porous glass preform is made by doping S i 02 with G e 02, making it the core, and forming the cladding from 9102.
The core diameter was about 178 times the cladding diameter, and the relative refractive index difference Δ between the core and the cladding was about 0.3%. Then,
This porous glass preform was subjected to low elongation treatment so that the cladding diameter was approximately 15 mm, and then the surface of this preform was etched with a surface treatment agent such as hydrofluoric acid.
次に、プリフォームを約1009/(2程度の塩化ナト
リウム水溶液中に約5分間浸漬したのち、このプリフォ
ームのクラッド表面を酸水素炎バーナで約1500〜l
l00°C程度に加熱して、クラッド表面からナトリウ
ムを浸透させた。次いで、上記のプリフォームのクラッ
ド表面に外付は法により合成石英ガラスのスートを堆積
させてジャケットを被覆したのち、約1500°C程度
に加熱して透明ガラス化して光フアイバ母材を製造した
。次いで、この光フアイバ母材をさらに加熱、線引きす
るとともに、外周上に変性ノリコーン樹脂製コート(内
側)およびノリコーン樹脂製コート(外側)の2層コー
トを施して先ファイバを製造した。Next, the preform is immersed in a sodium chloride aqueous solution of about 1009/2 for about 5 minutes, and then the cladding surface of this preform is heated with an oxyhydrogen flame burner to about 1500 to 1500 liters.
It was heated to about 100°C to infiltrate sodium from the cladding surface. Next, a synthetic quartz glass soot was deposited on the cladding surface of the above preform by an external method to cover the jacket, and then heated to about 1500°C to make it transparent vitrified to produce an optical fiber base material. . Next, this optical fiber base material was further heated and drawn, and a two-layer coating of a modified Noricone resin coat (inside) and a Noricone resin coat (outside) was applied on the outer periphery to produce a tip fiber.
・(水素耐性試験)
このようにして得られた光ファイバについて、水素耐性
試験を行なった。この試験は、密閉装置内に上記の光フ
ァイバを収容し、この装置内を100%の水素雰囲気と
した上で、温度を種々の値に設定して、各設定温度にお
ける損失増加量の経時変化を測定するもので、この試験
によれば、上記の各lj、度におけろ損失増加量の経時
変化を表す関係式より、100%の水素雰囲気で星空2
0°Cの条件で25年間経過した後の遺失増加量を予測
することができる。- (Hydrogen resistance test) A hydrogen resistance test was conducted on the optical fiber thus obtained. In this test, the optical fiber described above was housed in a sealed device, the device was made into a 100% hydrogen atmosphere, the temperature was set to various values, and the change in loss increase over time at each set temperature was measured. According to this test, from the above relational expression expressing the change in loss increase over time at each lj and degree, starry sky 2 in a 100% hydrogen atmosphere.
It is possible to predict the increase in loss after 25 years at 0°C.
そして、上記の温度条件を100℃、L50℃、200
°Cに設定して、各温度におけろ損失増加量を測定し、
この増加量の経時的な変化を調べ、その結果を第2図の
グラフに示した。このグラフは、縦軸に損失増加量をと
り、溝軸に時間をとったもので、各温度において損失増
加量と時間とはほぼ比例しており、次の(イ)式で表す
ことかできる。Then, the above temperature conditions were set to 100℃, L50℃, and 200℃.
°C, measure the increase in loss at each temperature,
Changes in this increase over time were investigated, and the results are shown in the graph of FIG. This graph shows the amount of loss increase on the vertical axis and the time on the groove axis.The amount of loss increase and time are almost proportional at each temperature, and can be expressed by the following equation (A). .
Qn(Δa ) = 12n(A) −(B/T)−←
3.8f2n(t) −(イ)この(イ)式において
、 (Δα)は遺失増加量、(T)は温度、(Dは経過
時間、AおよびBはそれぞれ常数である。そして、第2
図のグラフから、111す定開始1時間後の各温度にお
ける損失増加1を求め、その値を上記の(イ)式に代入
することによリ、常数AおよびBを求めた。次いで、(
イ)式に、温!7T =20(°C)、時間(t)=
2に9t)O(hr)−C25年間〕をそれぞれ代入し
て100%の水素雰囲気でかつ温度20°Cの条件で2
5年経過した後の損失増加1を算出した。その結果、こ
の光ファイバの損失増加量は、波長1.3μmにおいて
G、G(lldB / kmであった。Qn(Δa) = 12n(A) −(B/T)−←
3.8f2n(t) - (a) In this equation (a), (Δα) is the amount of loss increase, (T) is the temperature, (D is the elapsed time, A and B are each constants, and the second
From the graph in the figure, the loss increase 1 at each temperature 1 hour after the start of 111 constant was determined, and the constants A and B were determined by substituting the values into the above equation (a). Then (
b) Warm! 7T = 20 (°C), time (t) =
By substituting 9t)O(hr)-C25 years] into 2 and 2 in a 100% hydrogen atmosphere and at a temperature of 20°C.
The loss increase 1 after 5 years has been calculated. As a result, the increase in loss of this optical fiber was G, G (lldB/km) at a wavelength of 1.3 μm.
この値は、従来の光ファイバに比べて約1710の増加
量であった。This value was an increase of about 1710 compared to conventional optical fiber.
(実験例2 )
実験例1で得られ、延伸処理してクラヅド径寸法が約1
5m肩とされた多孔質ガラスプリフォームを高純度の塩
化マグネシウムとともに焼結炉内に収容した。次いで、
塩化マグネシウムを温度的400°Cまで加熱して気化
させ、この気化ガスをHeガスとともに、約800°C
程度の温度に加熱された多孔質ガラスプリフォーム表面
に流すことによって、このプリフォームのクラッド表面
からマグネシウムを浸透させた。上記の気化ガスとHe
ガスとの、昆合割合は、t :lCOOであった。次に
、実施例1と同様にしてこのプリフォームのクラッド表
面にシャケ−ノドを被覆したのち、透明ガラス化し、加
熱、線引き工程を経て先ファイバを製造した。そして、
この先ファイバの 100%の水素雰囲気でかつ温度2
0℃の条件で25年間経過した後の伝送損失の増加mは
、波長1.3μmにおいて0.001dB / kmで
あり、従来の光ファイバに比−て約1710の伝送損失
の増加量であった。(Experimental Example 2) Obtained in Experimental Example 1, and after being stretched, the cladding diameter was approximately 1
A porous glass preform with a shoulder length of 5 m was placed in a sintering furnace together with high-purity magnesium chloride. Then,
Magnesium chloride is heated to a temperature of 400°C to vaporize it, and this vaporized gas is heated to about 800°C together with He gas.
Magnesium was allowed to permeate through the cladding surface of the preform by flowing it onto the surface of the porous glass preform that had been heated to a certain temperature. The above vaporized gas and He
The combination ratio with gas was t:lCOO. Next, in the same manner as in Example 1, the cladding surface of this preform was coated with a shark throat, and then the preform was made into transparent glass and subjected to heating and drawing steps to produce a tip fiber. and,
From now on, the fiber is exposed to 100% hydrogen atmosphere and at a temperature of 2.
The increase in transmission loss m after 25 years under 0°C conditions was 0.001 dB/km at a wavelength of 1.3 μm, which was an increase in transmission loss of about 1710 compared to conventional optical fiber. .
「発明の効果」
以上説明したように、この発明の光ファイバは、コアガ
ラスに、アルカリ金属およびまたはアルカリ土類金属が
0.01〜15ppmの範囲で添加されてなるものであ
るので、これらの金属により長期間に亙って光フアイバ
内への水素の吸収、拡散が阻止されるとともに水素によ
る遺失増加作用が防止され、よって水素に対して長期間
に亙って安定な低I員夫なものとなる。"Effects of the Invention" As explained above, the optical fiber of the present invention has a core glass doped with an alkali metal and/or an alkaline earth metal in a range of 0.01 to 15 ppm. The metal prevents the absorption and diffusion of hydrogen into the optical fiber over a long period of time, and also prevents the hydrogen from increasing its loss, thus creating a stable, low-I element for hydrogen over a long period of time. Become something.
第1図は、この発明の光ファイバの一例を示す概略断面
図、第2図は、この発明の光ファイバの水素雰囲気にお
ける損失増加量の経時変化を示すグラフである。FIG. 1 is a schematic cross-sectional view showing an example of the optical fiber of the present invention, and FIG. 2 is a graph showing changes over time in the amount of loss increase in the optical fiber of the present invention in a hydrogen atmosphere.
Claims (1)
金属が0.01〜15ppmの範囲で添加されてなる光
ファイバ。An optical fiber comprising a core glass doped with an alkali metal and/or an alkaline earth metal in a range of 0.01 to 15 ppm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61185642A JPS6340744A (en) | 1986-08-07 | 1986-08-07 | Optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61185642A JPS6340744A (en) | 1986-08-07 | 1986-08-07 | Optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6340744A true JPS6340744A (en) | 1988-02-22 |
Family
ID=16174342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61185642A Pending JPS6340744A (en) | 1986-08-07 | 1986-08-07 | Optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6340744A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06211544A (en) * | 1992-08-28 | 1994-08-02 | American Teleph & Telegr Co <Att> | System with doped optical fiber |
US7426327B2 (en) | 2005-11-23 | 2008-09-16 | Corning Incorporated | Low attenuation non-zero dispersion shifted optical fiber |
JP2012062211A (en) * | 2010-09-15 | 2012-03-29 | Fujikura Ltd | Method for manufacturing glass preform |
JP2013174867A (en) * | 2012-01-23 | 2013-09-05 | Sumitomo Electric Ind Ltd | Optical fiber and optical fiber base material |
WO2014038512A1 (en) * | 2012-09-04 | 2014-03-13 | 住友電気工業株式会社 | Optical fiber |
US8798412B2 (en) | 2003-08-29 | 2014-08-05 | Corning Incorporated | Optical fiber containing an alkali metal oxide and methods and apparatus for manufacturing same |
US9416043B2 (en) | 2010-06-23 | 2016-08-16 | Fujikura Ltd. | Apparatus and method for manufacturing glass preform |
JP2016200830A (en) * | 2011-04-15 | 2016-12-01 | 住友電気工業株式会社 | Optical fiber |
JP2019218250A (en) * | 2018-06-21 | 2019-12-26 | 古河電気工業株式会社 | Method for manufacturing optical fiber and method for manufacturing optical fiber preform |
WO2022264937A1 (en) | 2021-06-14 | 2022-12-22 | 古河電気工業株式会社 | Optical fiber |
WO2023054620A1 (en) * | 2021-10-01 | 2023-04-06 | 古河電気工業株式会社 | Optical fiber and manufacturing method thereof |
-
1986
- 1986-08-07 JP JP61185642A patent/JPS6340744A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06211544A (en) * | 1992-08-28 | 1994-08-02 | American Teleph & Telegr Co <Att> | System with doped optical fiber |
US9250386B2 (en) | 2003-08-29 | 2016-02-02 | Corning Incorporated | Optical fiber containing an alkali metal oxide and methods and apparatus for manufacturing same |
US8798412B2 (en) | 2003-08-29 | 2014-08-05 | Corning Incorporated | Optical fiber containing an alkali metal oxide and methods and apparatus for manufacturing same |
US7426327B2 (en) | 2005-11-23 | 2008-09-16 | Corning Incorporated | Low attenuation non-zero dispersion shifted optical fiber |
US9416043B2 (en) | 2010-06-23 | 2016-08-16 | Fujikura Ltd. | Apparatus and method for manufacturing glass preform |
JP2012062211A (en) * | 2010-09-15 | 2012-03-29 | Fujikura Ltd | Method for manufacturing glass preform |
US8844323B2 (en) | 2010-09-15 | 2014-09-30 | Fujikura Ltd. | Glass preform manufacturing method |
JP2016200830A (en) * | 2011-04-15 | 2016-12-01 | 住友電気工業株式会社 | Optical fiber |
JP2013174867A (en) * | 2012-01-23 | 2013-09-05 | Sumitomo Electric Ind Ltd | Optical fiber and optical fiber base material |
WO2014038512A1 (en) * | 2012-09-04 | 2014-03-13 | 住友電気工業株式会社 | Optical fiber |
EP2894498A4 (en) * | 2012-09-04 | 2016-04-27 | Sumitomo Electric Industries | Optical fiber |
CN104603652A (en) * | 2012-09-04 | 2015-05-06 | 住友电气工业株式会社 | Optical fiber |
JP2014067020A (en) * | 2012-09-04 | 2014-04-17 | Sumitomo Electric Ind Ltd | Optical fiber |
JP2019218250A (en) * | 2018-06-21 | 2019-12-26 | 古河電気工業株式会社 | Method for manufacturing optical fiber and method for manufacturing optical fiber preform |
WO2022264937A1 (en) | 2021-06-14 | 2022-12-22 | 古河電気工業株式会社 | Optical fiber |
WO2023054620A1 (en) * | 2021-10-01 | 2023-04-06 | 古河電気工業株式会社 | Optical fiber and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4125388A (en) | Method of making optical waveguides | |
JP3350875B2 (en) | Optical fiber resistant to hydrogen-induced attenuation and method of making same | |
US4385802A (en) | Long wavelength, low-loss optical waveguide | |
US4165223A (en) | Method of making dry optical waveguides | |
US4249925A (en) | Method of manufacturing an optical fiber | |
US4184860A (en) | Process for the production of glass fiber light conductors | |
US4339174A (en) | High bandwidth optical waveguide | |
AU741032B2 (en) | Decreased h2 sensitivity in optical fiber | |
US6776012B2 (en) | Method of making an optical fiber using preform dehydration in an environment of chlorine-containing gas, fluorine-containing gases and carbon monoxide | |
JPS6340744A (en) | Optical fiber | |
JPS59174541A (en) | Optical fiber maintaining plane of polarization | |
JP2001510137A5 (en) | ||
GB2211498A (en) | Method of manufacturing a light guide | |
EP0171537B1 (en) | Method for producing glass preform for optical fiber | |
KR100878709B1 (en) | A method for fabricating optical fiber using adjustment of oxygen stoichiometry | |
US20070077438A1 (en) | Soot layer formation for solution doping of glass preforms | |
NL8003105A (en) | OPTICAL FIBERS WITH MONO VIBRATION MODE. | |
JPS6096545A (en) | Optical fiber | |
JPH0791088B2 (en) | Rare-earth element-doped silica glass optical fiber preform and method for producing the same | |
JPS6283333A (en) | Optical fiber | |
CA1100001A (en) | Method of making optical waveguides | |
JPS6140843A (en) | Optical fiber | |
JPS6120491B2 (en) | ||
JPH03113404A (en) | Optical fiber | |
JPH068185B2 (en) | Manufacturing method of optical fiber preform |