JPS6338982A - Electroluminescence element - Google Patents
Electroluminescence elementInfo
- Publication number
- JPS6338982A JPS6338982A JP18315986A JP18315986A JPS6338982A JP S6338982 A JPS6338982 A JP S6338982A JP 18315986 A JP18315986 A JP 18315986A JP 18315986 A JP18315986 A JP 18315986A JP S6338982 A JPS6338982 A JP S6338982A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- insulating layer
- emitting layer
- light emitting
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005401 electroluminescence Methods 0.000 title 1
- 230000005684 electric field Effects 0.000 claims description 6
- 230000001747 exhibiting effect Effects 0.000 claims description 2
- 239000000758 substrate Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 10
- 238000004544 sputter deposition Methods 0.000 description 8
- 239000010409 thin film Substances 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000005132 Calcium sulfide based phosphorescent agent Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
投権分災
本発明は、コンピュータ端末等のデイスプレィなどとし
て用いられるエレクトロルミネッセンス素子に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electroluminescent element used as a display of a computer terminal or the like.
従来技術
エレクトロルミネッセンス(EL)素子は、蛍光体のよ
うな半導体に電界を加えたときに発光する現象を利用し
たものであり、表示素子などとして利用されている。E
L素子は、発光層と、これに電界を印加する一対の電極
とから形成されており、発光層と一方あるいは両方の電
極との間に絶縁層を設けた絶縁構造薄膜EL素子は、信
頼性が高いことから広く用いられている。BACKGROUND OF THE INVENTION Electroluminescent (EL) elements utilize the phenomenon of emitting light when an electric field is applied to a semiconductor such as a phosphor, and are used as display elements. E
The L element is formed from a light-emitting layer and a pair of electrodes that apply an electric field to the light-emitting layer.Thin-film EL elements with an insulating structure in which an insulating layer is provided between the light-emitting layer and one or both electrodes have high reliability. It is widely used because of its high
しかし、この構造のEL素子は絶″RMと発光層とに印
加電圧が分圧されるために、必要な駆動電圧が高く(例
えば200v以上)となるという問題があった。However, the EL element with this structure has a problem in that the required driving voltage is high (for example, 200 V or more) because the applied voltage is divided between the absolute RM and the light emitting layer.
これを改善するために、絶縁層に強誘電体を用いること
が試みられている(桑田他;電子通信学会、技術研究報
告ED85−6)。その結果、5rTiOaやP b
T i O,のような誘電率の大きいペロブスカイト型
の強誘電体を用いることが有効であることが判ってきた
。しかし、これらの強誘電体はアルミニウム電極に対し
て伝播型(非自己回復型)の絶縁破壊特性を有するため
に、絶縁層として十分に機能を果たさない。In order to improve this, attempts have been made to use a ferroelectric material in the insulating layer (Kuwata et al., Institute of Electronics and Communication Engineers, Technical Research Report ED85-6). As a result, 5rTiOa and P b
It has been found that it is effective to use a perovskite-type ferroelectric material with a high dielectric constant, such as T i O. However, these ferroelectric materials have propagation type (non-self-healing type) dielectric breakdown characteristics with respect to aluminum electrodes, and therefore do not function satisfactorily as an insulating layer.
この問題を解決するために、発光層とAQ電極との間に
誘電率の小さい自己回復型の誘電体を用いることも提案
されている。(特開昭60−25199号公報)。In order to solve this problem, it has also been proposed to use a self-healing dielectric with a small dielectric constant between the light emitting layer and the AQ electrode. (Japanese Unexamined Patent Publication No. 60-25199).
1皿二且孜
本発明は、低電圧駆動が可能で、信頼性の高いEL索子
を提供することを目的とする。An object of the present invention is to provide an EL probe that can be driven at low voltage and has high reliability.
発明の構成
本発明のEL素子は、電界を加えたときに発光する発光
層と、該発光層に電界を印加する背面電極および透明電
極を具え、少なくとも該発光層と背面電極との間に絶縁
層が設けられたエレクトロルミネッセンス素子において
、前記絶縁層と背面電極との間に非オーム性電気伝導を
示す薄層を設けたことを特徴とする。Structure of the Invention The EL device of the present invention includes a light-emitting layer that emits light when an electric field is applied, a back electrode and a transparent electrode that apply an electric field to the light-emitting layer, and an insulating layer between at least the light-emitting layer and the back electrode. The electroluminescent device provided with a layer is characterized in that a thin layer exhibiting non-ohmic electrical conduction is provided between the insulating layer and the back electrode.
以下、添付図面に添って本発明をさらに詳細に説明する
。Hereinafter, the present invention will be described in further detail with reference to the accompanying drawings.
第1図は、EL素子の構成例を示す断面図である。透明
基板11上に透明電極13が設けられ、さらにその上に
第1の絶縁層15を介して発光層17が設けられている
。この発光層17上には、第2の絶縁層19および非オ
ーム性電気伝導層21が順次積層され、さらにその上に
背面電極23が形成されて薄膜型のEL素子が構成され
ている。FIG. 1 is a sectional view showing an example of the configuration of an EL element. A transparent electrode 13 is provided on a transparent substrate 11, and a light emitting layer 17 is further provided thereon with a first insulating layer 15 interposed therebetween. A second insulating layer 19 and a non-ohmic electrically conductive layer 21 are sequentially laminated on this light emitting layer 17, and a back electrode 23 is further formed thereon to constitute a thin film type EL element.
非オーム性電気伝導層21は、非オーム性電気伝導を示
す。この層21は、たとえば、ZnOを主成分とする層
からなり、好ましくは、Co、Bi、La、Mg、Pr
、Sb、Mn、Crなどの不純物がドーピングされる6
ドーピング物質の濃度は、各々0.05〜5mo1%
程度が好適である。The non-ohmic electrically conductive layer 21 exhibits non-ohmic electrical conduction. This layer 21 is made of, for example, a layer containing ZnO as a main component, preferably Co, Bi, La, Mg, Pr.
, doped with impurities such as Sb, Mn, and Cr6
The concentration of each doping substance is 0.05-5mol%
degree is suitable.
非オーム性電気伝導層2工の膜厚はO01〜10μm程
度が好適である。The thickness of the second non-ohmic electrically conductive layer is preferably about 001 to 10 μm.
本発明は、絶縁層と背面電極との間に非オーム性電気伝
導層を設けることを骨子とするものであり、その他の構
成や材料は特に限定されず、従来公知のものを使用する
ことができる。The main feature of the present invention is to provide a non-ohmic electrically conductive layer between the insulating layer and the back electrode, and other configurations and materials are not particularly limited, and conventionally known materials can be used. can.
特に絶縁層の材料としては、Ca T I O3,5r
Ti03、P b T i O,のようなペロブスカイ
ト型の強誘導体を用いることが可能となる。In particular, as a material for the insulating layer, Ca T I O3,5r
It becomes possible to use perovskite-type strong derivatives such as Ti03 and P b T i O.
このような強誘電体は駆動電圧を大きく低下させること
ができるが、伝播型の絶縁破壊を生ずるために、従来は
好適に使用することが固層であった。これに対して本発
明では、非オーム性電気伝導層を設けることにより、絶
縁破壊が自己回復型となり、上記のような強誘電体の使
用が容易となる。絶縁層材料としては、特にTiを含む
誘電体が好ましい。また、上記以外の絶′a層材料とし
ては、Tie、、BaTiO3などがある。Although such a ferroelectric material can greatly reduce the driving voltage, since it causes propagation type dielectric breakdown, conventionally, a solid layer has been preferably used. In contrast, in the present invention, by providing a non-ohmic electrically conductive layer, the dielectric breakdown becomes self-healing, making it easy to use the above-mentioned ferroelectric material. As the insulating layer material, a dielectric material containing Ti is particularly preferable. In addition, examples of materials for the absolute a-layer other than those mentioned above include Tie, BaTiO3, and the like.
第1および第2の絶縁層15.19の厚さは、0.1〜
1.0μm程度が好適である。The thickness of the first and second insulating layers 15.19 is between 0.1 and 15.19.
Approximately 1.0 μm is suitable.
透明基板11としては、ガラス、プラスチックなどが用
いられる。As the transparent substrate 11, glass, plastic, etc. are used.
透明電極13としては、I T O(Indium−T
in−Oxide) 、酸化スズ、酸化インジウムなど
が用いられる。EL素子においては発光層に設けられた
2つの電極(透明電極13.背面電極23)のいずれか
一方は、透明でも不透明でもよい。As the transparent electrode 13, ITO (Indium-T
In-Oxide), tin oxide, indium oxide, etc. are used. In the EL element, either one of the two electrodes (transparent electrode 13, back electrode 23) provided in the light emitting layer may be transparent or opaque.
発光層19は、ZnS:Pb、Cu、CQ、ZnS:C
u、AQ、ZnS :Mn、Cu、Zn(S。The light emitting layer 19 is made of ZnS:Pb, Cu, CQ, ZnS:C
u, AQ, ZnS: Mn, Cu, Zn(S.
Ss):Cu、1.ZnS:Cu、SrS:Ce、Ba
、ZnS:Mn、CaS:Ce、 ZnS:Te。Ss): Cu, 1. ZnS: Cu, SrS: Ce, Ba
, ZnS:Mn, CaS:Ce, ZnS:Te.
Mn、CaS:Euなどが用いられる。Mn, CaS:Eu, etc. are used.
背面電極23はアルミニウムなどの金属材料や上記の透
明電極材料などが用いられる。The back electrode 23 is made of a metal material such as aluminum or the above-mentioned transparent electrode material.
EL素子における各層ならびに電極は、真空蒸着、スパ
ッタリング、イオンブレーティング等の薄膜形成方法に
より形成することができる。Each layer and electrode in the EL element can be formed by a thin film forming method such as vacuum evaporation, sputtering, or ion blasting.
見豆匹羞來
本発明によれば、EL素子における絶縁層と背面電極と
の間に非オーム性電気伝導層を設けることにより、絶縁
破壊部の拡大を防止し、発光層と強誘電体絶縁層とを組
み合せることができ、比較的低い駆動電圧で安定な発光
が可能となり高輝度、低電圧駆動で、高信頼性のEL素
子を得ることができる。According to the present invention, by providing a non-ohmic electrically conductive layer between the insulating layer and the back electrode in the EL element, expansion of the dielectric breakdown area is prevented and the ferroelectric insulation between the light emitting layer and the ferroelectric insulation layer is prevented. This enables stable light emission with a relatively low driving voltage, resulting in a high-luminance, low-voltage driving, and highly reliable EL element.
実施例1
ガラス基板上に、スパッタリングによりITO透明電極
を1000人の薄膜で形成する。その上に、イオンブレ
ーティングにより以下の条件でCaTi0.絶縁層を2
000人の厚さに形成した。Example 1 An ITO transparent electrode is formed as a thin film of 1,000 layers on a glass substrate by sputtering. On top of that, CaTi0. 2 insulation layers
It was formed to a thickness of 1,000 people.
原 材 料:4NのCaTi0:+の焼成物基板温度=
400℃
反応圧カニ 2 X 1O−4Torr雰 囲 気:酸
素
RFパワー=50W
加速電圧ニー 5oov
この絶縁層上に、エレクトロンビーム蒸若により、基板
温度450℃で厚さ1μmのSrS:Ce発光層を形成
した。Raw material: 4N CaTi0:+ fired product substrate temperature =
400°C Reaction pressure 2 x 1O-4 Torr atmosphere Air: Oxygen RF power = 50W Acceleration voltage knee 5oov On this insulating layer, a 1 μm thick SrS:Ce light emitting layer was formed at a substrate temperature of 450°C by electron beam evaporation. Formed.
この発光層上に、再び上記と同様にしてCa T x
O3絶縁層を形成した。On this light emitting layer, Ca T x
An O3 insulating layer was formed.
さらに、この絶縁層上に、下記の条件でスパッタリング
により膜厚1μmのZnO層(非オーム性電気伝導層)
を形成した。Furthermore, on this insulating layer, a ZnO layer (non-ohmic electrically conductive layer) with a thickness of 1 μm is formed by sputtering under the following conditions.
was formed.
ターゲット:ZnOにCo O,B i、o、。Target: Co O, B i, o, on ZnO.
La20.を各々0.5mo1%添
加して焼成したもの
スパッタ圧カニ1.5X10−2Torr雰 囲
気:酸素とアルゴンの混合ガス基板温度=300℃
堆積速度:1μm/時
RFパワー:200讐
また、これと同じ条件で別途作成したZnO薄膜(1μ
m)の電流−電圧特性を第2図に示す。La20. 0.5 mo1% of each was added and fired in a sputtering pressure crab atmosphere of 1.5 x 10-2 Torr.
Air: Mixed gas of oxygen and argon Substrate temperature = 300°C Deposition rate: 1 μm/hour RF power: 200
Figure 2 shows the current-voltage characteristics of m).
この膜が非オーム性電気伝導を示すことが判る。It can be seen that this film exhibits non-ohmic electrical conduction.
次に、このZnO層上に、スパッタリングによりAQ組
電極膜厚500人になるように形成しEL素子を作成し
た。Next, on this ZnO layer, an AQ group electrode was formed to a film thickness of 500 mm by sputtering to produce an EL element.
このELi子に、交流パルス電圧を5K)+Zで印加し
EL特性を調べたところ、第3図に示すように駆動電圧
が90V程度で輝度が略飽和し安定な発光をすることが
判った。また、さらに1電圧を増加していくと絶縁破壊
が発生したが、自己回復型であり、それが広がることは
なかった。When an AC pulse voltage of 5K)+Z was applied to this ELi element and the EL characteristics were investigated, it was found that the luminance was approximately saturated at a driving voltage of about 90V and stable light emission was achieved as shown in FIG. Further, when the voltage was increased by one more, dielectric breakdown occurred, but it was a self-recovery type and did not spread.
実施例2
実施例1と同様にして、ガラス基板上にITO透明電極
を形成したのち、イオンブレーティングにより以下の条
件で5rTiO,絶縁層を2000人の厚さに形成した
。Example 2 After forming an ITO transparent electrode on a glass substrate in the same manner as in Example 1, an insulating layer of 5rTiO was formed to a thickness of 2,000 yen by ion blasting under the following conditions.
原 材 料:4Nの5rTiO,の焼成物基板温度:4
00℃
反応圧カニ 2 X 10−’Torr雰 囲 気:酸
素
RFパワー: 501i1
加速電圧ニー 300V
この絶縁層上に、エレクトロンビーム蒸着により、基板
温度400℃で厚さ1μmのCaS:Ce発光層を形成
した。Raw material: 4N 5rTiO, fired product Substrate temperature: 4
00°C Reaction pressure 2 x 10-'Torr atmosphere Air: Oxygen RF power: 501i1 Acceleration voltage knee 300V On this insulating layer, a 1 μm thick CaS:Ce light-emitting layer was formed at a substrate temperature of 400°C by electron beam evaporation. Formed.
この発光層上に、再び上記と同様にしてS r T x
O3絶縁層を形成した。On this light emitting layer, S r T x is applied again in the same manner as above.
An O3 insulating layer was formed.
さらに、この絶縁層上に、下記の条件でスパッタリング
により膜厚1μIのZnO層(非オーム性電気伝導層)
を形成した。Furthermore, on this insulating layer, a ZnO layer (non-ohmic electrically conductive layer) with a thickness of 1 μI was formed by sputtering under the following conditions.
was formed.
ターゲ7 ト:Znoにcoo、MgO。Target 7: Zno, coo, MgO.
B l z 03 t P r 203を各々0.5m
o1%添加して焼成した
もの
スバッタ圧カニ 2 X 1O−2Torr雰 囲
気:酸素とアルゴンの混合ガス基板温度:350℃
堆積速度:1μm/時
RFパワー:150W
また、これと同じ条件で別途作成したZnO薄膜(1μ
m)の電流−電圧特性は、第2図と同様であった。B l z 03 t P r 203 each 0.5m
Baked with 1% o added, spatter pressure crab 2 x 1 O-2 Torr atmosphere
Air: Mixed gas of oxygen and argon Substrate temperature: 350°C Deposition rate: 1 μm/hour RF power: 150 W In addition, a ZnO thin film (1 μm
The current-voltage characteristics of m) were similar to those in FIG.
次に、実施例1と同様にしてAQ組電極形成しEL素子
を作成した。Next, in the same manner as in Example 1, an AQ set of electrodes was formed to create an EL element.
このEL素子に、交流パルス電圧を5 KHzで印加し
EL特性を調べたところ、第4図に示すように駆動電圧
が100v程度で暉度が略飽和し安定な発光をすること
が判った。また、さらに電圧を増加していくと自己回復
型の絶縁破壊を示した。When an alternating current pulse voltage was applied to this EL element at 5 KHz and the EL characteristics were examined, it was found that, as shown in FIG. 4, when the driving voltage was about 100 V, the luminance was substantially saturated and stable light emission was achieved. Furthermore, as the voltage was further increased, self-healing dielectric breakdown occurred.
実施例3
ガラス基板上に、スパッタリングによりZnO:AQ透
明11!極を1000人の薄膜で形成する。その上に、
イオンブレーティングにより実施例2と同じ条件でS
rTi○、絶縁層を2000人の厚さに形成した。Example 3 ZnO:AQ transparent 11! was deposited on a glass substrate by sputtering. The poles are formed using a thin film of 1000 people. in addition,
S by ion blating under the same conditions as Example 2.
rTi○, an insulating layer was formed to a thickness of 2000 mm.
この絶縁層上に、共蒸着法により、基板温度450°C
で厚さ1μmの5rSe:Ce発光層を形成した。On this insulating layer, the substrate temperature is 450°C by co-evaporation method.
A 5rSe:Ce light-emitting layer with a thickness of 1 μm was formed.
この発光層上に、再び上記と同様にして5rTi○3絶
縁層を形成した。On this light emitting layer, a 5rTi*3 insulating layer was again formed in the same manner as above.
さらに、この絶縁層上に、下記の条件でスパッタリング
により膜厚1μmのZnO層(非オーム性電気伝導層)
を形成した。Furthermore, on this insulating layer, a ZnO layer (non-ohmic electrically conductive layer) with a thickness of 1 μm is formed by sputtering under the following conditions.
was formed.
ターゲット:Zn○にCo O+ M g O+B i
20..5b203.MnO。Target: Co O+ M g O+ B i on Zn○
20. .. 5b203. MnO.
Cr2O,を各々(1,5mo1%添
加して焼成したもの
スパッタ圧カニ2X10″″” Torr雰 囲
気:酸素とアルゴンの混合ガス基板温度:350℃
堆積速度=1μm/時
RFパワー:150W
また、こわと同じ条件で別途作成したZnO薄膜(1μ
m)の電流−電圧特性は、第2図と同様であった。Cr2O, each added (1.5 mo1%) and fired. Sputter pressure crab 2 x 10"" Torr atmosphere.
Air: Mixed gas of oxygen and argon Substrate temperature: 350°C Deposition rate = 1 μm/hour RF power: 150 W In addition, a ZnO thin film (1μ
The current-voltage characteristics of m) were similar to those in FIG.
次に、このZnO層上に、実施例1と同様にしてAQ電
%を形成しEL素子を作成した。Next, an AQ electrode was formed on this ZnO layer in the same manner as in Example 1 to produce an EL element.
このEL素子は、駆動電圧が120W程度で輝度が略飽
和し安定な発光をすることが判った。また、さらに電圧
を増加していくと自己回復型の絶縁破壊を示した。It was found that the luminance of this EL element was approximately saturated at a driving voltage of about 120 W, and stable light emission was achieved. Furthermore, as the voltage was further increased, self-healing dielectric breakdown occurred.
第1図はEL素子の構成例を示す断面図である。
第2図は、ZnO薄膜の電流−電圧特性を示すグラフで
ある。
第3図および第4図は、実施例のEL索子の電圧−輝度
特性を示すグラフである。
11・・・透明基板 13・・・透明電極15・
・・第1の絶縁層 17・・・発光層19・・・第2
の絶縁層
21・・・非オーム性電気伝導層
23・・・背面電極
第1図
第2図
第3図
第4図
0 50 too 150パルス電圧(V
op)FIG. 1 is a sectional view showing an example of the configuration of an EL element. FIG. 2 is a graph showing current-voltage characteristics of a ZnO thin film. FIGS. 3 and 4 are graphs showing the voltage-luminance characteristics of the EL strings of the examples. 11...Transparent substrate 13...Transparent electrode 15.
...First insulating layer 17...Light emitting layer 19...Second
Insulating layer 21...Non-ohmic electrically conductive layer 23...Back electrode Fig. 1 Fig. 2 Fig. 3 Fig. 4
op)
Claims (1)
電界を印加する背面電極および透明電極を具え、少なく
とも該発光層と背面電極との間に絶縁層が設けられたエ
レクトロルミネッセンス素子において、前記絶縁層と背
面電極との間に非オーム性電気伝導を示す薄層を設けた
ことを特徴とするエレクトロルミネッセンス素子。1. An electroluminescent element comprising a light emitting layer that emits light when an electric field is applied, a back electrode and a transparent electrode for applying an electric field to the light emitting layer, and an insulating layer provided between at least the light emitting layer and the back electrode. An electroluminescent device according to claim 1, further comprising a thin layer exhibiting non-ohmic electrical conduction between the insulating layer and the back electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18315986A JPS6338982A (en) | 1986-08-04 | 1986-08-04 | Electroluminescence element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18315986A JPS6338982A (en) | 1986-08-04 | 1986-08-04 | Electroluminescence element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6338982A true JPS6338982A (en) | 1988-02-19 |
Family
ID=16130829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18315986A Pending JPS6338982A (en) | 1986-08-04 | 1986-08-04 | Electroluminescence element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6338982A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5269451A (en) * | 1990-09-14 | 1993-12-14 | Max Co., Ltd. | Electric stapler with unmovably fixed magazine |
US5346114A (en) * | 1990-09-14 | 1994-09-13 | Max Co., Ltd. | Electric stapler with unmovably fixed magazine |
-
1986
- 1986-08-04 JP JP18315986A patent/JPS6338982A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5269451A (en) * | 1990-09-14 | 1993-12-14 | Max Co., Ltd. | Electric stapler with unmovably fixed magazine |
US5346114A (en) * | 1990-09-14 | 1994-09-13 | Max Co., Ltd. | Electric stapler with unmovably fixed magazine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6240837B2 (en) | ||
KR20050111335A (en) | El function film and el device | |
JPS60124396A (en) | Thin film light emitting element | |
JPS6338982A (en) | Electroluminescence element | |
JPS6040160B2 (en) | electroluminescent device | |
JPS61250993A (en) | El element | |
JPS6260800B2 (en) | ||
JPS5829880A (en) | Electric field luminescent element | |
JPH0541284A (en) | El element | |
JP4831939B2 (en) | Luminescent thin film and light emitting element | |
JPS63994A (en) | Manufacture of thin film electric field light emission device | |
JPS62119896A (en) | Display device | |
JPH04363895A (en) | Electroluminescence element | |
JPS62259388A (en) | Low-voltage driven el device structure | |
JPH0740515B2 (en) | Thin film light emitting device | |
JPH01200593A (en) | Manufacture of electroluminescence display element | |
JPS6314833B2 (en) | ||
JPH0516158B2 (en) | ||
JPS6122597A (en) | Thin film electroluminescent element and method of producingsame | |
JPS60172196A (en) | Electroluminescent element and method of producing same | |
JPS61269894A (en) | Manufacture of thin film luminescence element | |
JPS62208593A (en) | Thin film light emitting device | |
JPH01122594A (en) | Thin film type electroluminescence element | |
JPS62216194A (en) | Electroluminescence panel | |
JPS6147097A (en) | Electroluminescent element |