JPS6338518A - Production of steel plate having excellent hydrogen induced cracking resistance - Google Patents
Production of steel plate having excellent hydrogen induced cracking resistanceInfo
- Publication number
- JPS6338518A JPS6338518A JP18149686A JP18149686A JPS6338518A JP S6338518 A JPS6338518 A JP S6338518A JP 18149686 A JP18149686 A JP 18149686A JP 18149686 A JP18149686 A JP 18149686A JP S6338518 A JPS6338518 A JP S6338518A
- Authority
- JP
- Japan
- Prior art keywords
- water cooling
- temperature range
- cooling
- hot rolling
- steel plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 47
- 239000010959 steel Substances 0.000 title claims abstract description 47
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 14
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 14
- 239000001257 hydrogen Substances 0.000 title claims abstract description 14
- 238000005336 cracking Methods 0.000 title claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 238000001816 cooling Methods 0.000 claims abstract description 109
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 68
- 238000005098 hot rolling Methods 0.000 claims abstract description 19
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052802 copper Inorganic materials 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000005496 tempering Methods 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims 2
- 229910001563 bainite Inorganic materials 0.000 abstract description 11
- 229910000734 martensite Inorganic materials 0.000 abstract description 10
- 230000015572 biosynthetic process Effects 0.000 abstract description 8
- 229910000859 α-Fe Inorganic materials 0.000 description 14
- 229910001562 pearlite Inorganic materials 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 5
- 238000005204 segregation Methods 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- 238000005275 alloying Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000005956 quaternization reaction Methods 0.000 description 2
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910001568 polygonal ferrite Inorganic materials 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、H!Sを含んだ原油、天然ガスの輸送に用い
るラインパイプ用として有用な、耐水素誘起割れ性に優
れかつ、低降伏比を特徴とする鋼板の製造方法、特に、
二段冷却法を採用して微細かつ均一なベイナイト+フェ
ライト組織とした耐水素誘起割れ性に優れかつ、低降伏
比を特徴とする鋼板の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention provides H! A method for producing a steel plate, which is useful for line pipes used for transporting S-containing crude oil and natural gas, and is characterized by excellent resistance to hydrogen-induced cracking and a low yield ratio, in particular,
The present invention relates to a method for manufacturing a steel sheet that employs a two-stage cooling method to create a fine and uniform bainite + ferrite structure, which has excellent resistance to hydrogen-induced cracking and is characterized by a low yield ratio.
(従来の技術)
水素誘起割れ(HIC)は、湿潤His環境下で鋼が腐
食したときに発生する水素が、鋼中に侵入することによ
って起こる水素脆化現象である。(Prior Art) Hydrogen-induced cracking (HIC) is a hydrogen embrittlement phenomenon that occurs when hydrogen generated when steel corrodes in a wet His environment penetrates into the steel.
HICIC性が最も高い部分は、板厚中心部であり、ス
ラブの中心偏析に起因する部分である。The part with the highest HICIC property is the central part of the plate thickness, which is the part caused by central segregation of the slab.
従来、HICを防止する手段としては、次の方法等がと
られている。Conventionally, the following methods have been used to prevent HIC.
■スラブソーキングによる偏析の軽減
■Pの低減による偏析の軽減
■Ca、 REMによる非金属介在物の形態を制御して
、HICの起点となる介在物を減らす。■Reducing segregation by slab soaking ■Reducing segregation by reducing P ■Controlling the morphology of nonmetallic inclusions using Ca and REM to reduce inclusions that are the starting point of HIC.
しかし、これらの手段のうち■、■は非常なコスト上昇
を招く。また、■に至っては効果があいまいである。However, among these methods, (2) and (3) lead to a significant increase in costs. Moreover, the effect is ambiguous when it comes to (■).
そこで、最近、圧延後加速水冷することによって、合金
元素の4化を防止し、均一・微細な組織にして、偏析部
の低温度Liu 織の生成を抑えた鋼の製造が試みられ
ている。例えば、特開昭54−118325号、同57
−85928号、同58−77530号、および60−
33310号参照。Therefore, attempts have recently been made to produce steel that prevents the quaternization of alloying elements by performing accelerated water cooling after rolling, creates a uniform and fine structure, and suppresses the formation of low-temperature Liu weave in the segregated areas. For example, JP-A-54-118325, JP-A-57
-85928, 58-77530, and 60-
See No. 33310.
そのような加速水冷を利用した耐水素誘起割れ性鋼(以
下、耐HICMという)の製造方法はおおよそ、Arz
点以上で仕上圧延を終了し、Ars −30℃以上から
水冷して、組織を微細なフェライト+パーライト[1’
あるいはフェライト+ベイナイト混合組織にして耐HI
C性を向上させるというものである。The manufacturing method of hydrogen-induced cracking resistant steel (hereinafter referred to as HICM resistant) using such accelerated water cooling is roughly based on Arz
Finish rolling is finished at Ars -30°C or above, and the structure is changed to fine ferrite + pearlite [1'
Or use a ferrite + bainite mixed structure to resist HI.
The purpose is to improve C properties.
つまり、水冷条件としては、ある温度範囲をある一定の
冷却速度で均等に冷却するというものである。また、そ
の冶金学的組織もフェライト÷パーライト組織あるいは
フェライト+ベイナイト組熾であ名。In other words, the water cooling condition is to uniformly cool a certain temperature range at a certain cooling rate. Also, its metallurgical structure is known as ferrite/pearlite structure or ferrite+bainite structure.
しかしながら、水冷条件が適当でないと、マルテンサイ
トのような低温変態組織が生成したり、硬度の高いヘイ
ナイトが生成したりして、かえって耐HIC性が低下す
る。However, if the water-cooling conditions are not appropriate, a low-temperature transformed structure such as martensite or haynite with high hardness may be formed, resulting in a decrease in HIC resistance.
また、圧延−水冷条件が適当であっても、ある成分系に
おいては耐HIC性の余り良好でないτ4が得られたり
する。Furthermore, even if the rolling-water cooling conditions are appropriate, some component systems may result in a τ4 that is not very good in HIC resistance.
一方、万一、HrCが発生してもそれが破裂のような重
大事故につながらないよう、低降伏比(低YR)型高強
度鋼が求められるようになっている。つまり、YR(Y
S/TS比)が低ければ、HICが発生して割れ部に応
力が集中して一部降伏現象が発生しても破断に番よ至ら
ないと考えられる。その場合のYRはおよそ85%以下
と考えられている。On the other hand, low yield ratio (low YR) high-strength steels are now being sought after to prevent serious accidents such as explosions from occurring even if HrC occurs. In other words, YR(Y
If the S/TS ratio is low, it is thought that even if HIC occurs and stress is concentrated at the cracked part and a partial yield phenomenon occurs, it will not lead to rupture. In that case, YR is thought to be about 85% or less.
ところで、そのような低YR型鋼を製造するには、Cは
できるだけ高いのが望ましいが、Cはスラブの中心偏析
を助長するので、単純水冷だけでは十分な耐HIC性を
得るのが困難になる。一方、C量が低い場合(0,05
〜0.10%程度)、低YRを水冷によって得るには比
較的早い水冷速度(10〜b
ず、それはマルテンサイトの生成をもたらすから、13
tHIc性が劣化するのは免れない。By the way, in order to manufacture such low YR type steel, it is desirable to have as high a carbon content as possible, but since carbon promotes segregation at the center of the slab, it becomes difficult to obtain sufficient HIC resistance with simple water cooling alone. . On the other hand, when the amount of C is low (0.05
~0.10%), relatively fast water cooling rate to obtain low YR by water cooling (10~b), since it results in the formation of martensite, 13
It is inevitable that the tHIc property will deteriorate.
ここに、第1図および第2図は、従来法の代表的水冷パ
ターンを示すものであり、それらにそれぞれ示すように
、いずれの場合にあっても一定の温度範囲を均等に冷却
することが特徴となっている。Here, Fig. 1 and Fig. 2 show typical water cooling patterns of the conventional method, and as shown in each of them, it is possible to uniformly cool a certain temperature range in any case. It has become a feature.
すなわち、第り図の場合、熱間圧延終了後、Arz点以
上で水冷を開始し、650〜550℃の温度範囲まで3
〜b
冷を行うのである。第2図の場合は、Arc−30℃以
上から水冷を開始し、550〜350℃の温度範囲まで
10〜b
図の場合と同様に放冷するのである。In other words, in the case of Figure 1, after hot rolling, water cooling is started above the Arz point and the temperature is increased to 650 to 550°C.
~b It performs cooling. In the case of FIG. 2, water cooling is started from Arc-30° C. or higher, and the cooling is continued until the temperature ranges from 550 to 350° C. in the same way as in the case of FIG.
第3図は、後述する第1表の鋼へに相当する組成の鋼に
ついての従来法における水冷停止温度とYRおよびHi
C官受性、つまりCLR(%)との関係を示すグラフ
である。このグラフからは、耐HIC性は水冷停止温度
かは\375℃以上でなければならないが、一方、低Y
Rとするには水冷停止温度は375℃以下でなければな
らないことが分かる。Figure 3 shows the water cooling stop temperature and YR and Hi
It is a graph showing the relationship with C-official acceptability, that is, CLR (%). From this graph, it can be seen that HIC resistance must be at the water cooling stop temperature of \375℃ or higher, but on the other hand, low Y
It can be seen that in order to obtain R, the water cooling stop temperature must be 375°C or lower.
したがって、従来の水冷法では、特に低C材(0,05
%程度)で低YR(YR<85%)かっ酎)(IC性に
優れた鋼板を得るのが困難であることが分かる。Therefore, in the conventional water cooling method, especially low C materials (0,05
It can be seen that it is difficult to obtain a steel plate with low YR (YR < 85%) (approximately 50%) and excellent IC properties.
(発明が解決しようとする問題点)
したがって、本発明の目的とするところは、低YR1か
つ耐HIC性にすぐれた鋼板の製造方法を提供すること
である。(Problems to be Solved by the Invention) Therefore, an object of the present invention is to provide a method for manufacturing a steel plate with low YR1 and excellent HIC resistance.
さらに本発明の目的は、低C材にあってマルテンサイト
の生成、ベイナイトの硬度上昇を駆出した水冷法による
、低YR(85%以下)、かつ54+11C性にすぐれ
た鋼板の製造方法を提供することである。A further object of the present invention is to provide a method for producing a steel sheet with low YR (85% or less) and excellent 54+11C properties using a water cooling method that produces martensite and increases the hardness of bainite in a low C material. It is to be.
本発明のなお別の目的は、温潤1hS環境下において問
題となるH I Cに優れた砥抗性を存し、かつ、経済
的なラインパイプ用の低YR型鋼板の製遣方法を提供す
ることである。Still another object of the present invention is to provide an economical method for producing a low YR type steel plate for line pipes, which has excellent abrasiveness against HIC, which is a problem in a warm and humid 1hS environment. It is to be.
(問題点を解決するための手段)
本発明は、耐HIC性を損なうことなく、ラインパイプ
用低YR型高張力鋼を製造することを目的とした発明で
ある。(Means for Solving the Problems) The present invention aims at producing a low YR type high tensile strength steel for line pipes without impairing HIC resistance.
本発明者らが加速水冷鋼の耐HIC性を、圧延−水冷条
件との関係において、詳しく検討した結果、次の事実が
判明した。As a result of the inventors' detailed study of the HIC resistance of accelerated water-cooled steel in relation to rolling-water-cooling conditions, the following facts were found.
■フェライト+パーライトのバンド状組織あるいは、パ
ーライトが残存する組織を有する目板は耐HIC性が劣
る。■A batten having a band-like structure of ferrite + pearlite or a structure in which pearlite remains has poor HIC resistance.
■硬度が250以下のへイナイトとフェライトから成る
混合組織は耐HI C性に口れる。■A mixed structure consisting of heinite and ferrite with a hardness of 250 or less has good HIC resistance.
■硬度が250以上のベイナイト、あるいはマルテンサ
イトを含む組織を存する鋼は耐HIC性に劣る。■ Steels with a structure containing bainite or martensite with a hardness of 250 or more have poor HIC resistance.
つまり、圧延後の冷却速度を適当に選択し、パーライト
の生成を抑える一方、ベイナイト変態を起こさせ、しか
も、マルテンサイトが生成しないようにすれば、耐HI
C性が向上する。In other words, if the cooling rate after rolling is appropriately selected to suppress the formation of pearlite while causing bainite transformation, and preventing the formation of martensite, it is possible to achieve high resistance to HI.
C properties are improved.
また、低YRgを得るには、ポリゴナルフェライト組織
あるいは針状のアシキュラー・フェライト組織、または
フェライトとベイナイトの混合組織が望ましい。このよ
うな組織を有する鋼は、引張試験において降伏点伸びを
示さないS−3IJ!I線を示し、低降伏比(約85%
以下)を特徴とする。Further, in order to obtain a low YRg, a polygonal ferrite structure, an acicular acicular ferrite structure, or a mixed structure of ferrite and bainite is desirable. Steel with such a structure shows no elongation at yield point in a tensile test.S-3IJ! I-line, low yield ratio (approximately 85%
(below).
本発明の重要性は、単に低降伏比現象のみならず、この
低降伏比化と耐111C性の向上という2つの重要な要
素を(L/P J11鋼にとって)組み合わせた条件を
見出したことである。The importance of the present invention is not only the low yield ratio phenomenon, but also the discovery of conditions that combine two important elements (for L/P J11 steel): this low yield ratio and improved 111C resistance. be.
すなわち、均一かつ微細なフエライトーベイナ壱
イト&[を水冷によって得て、低降伏比化をはり、また
、耐HIC性をそこなう中心偏析部の低温変態&I!織
やパーライトバンドMiPaをなくすことにより耐HI
C性の向上をはかる。In other words, uniform and fine ferrite-vainaite is obtained by water cooling, resulting in a low yield ratio, and low-temperature transformation of the central segregated part that impairs HIC resistance. HI resistance is achieved by eliminating the weave and pearlite band MiPa.
Aim to improve C properties.
なお、このとき、合金元素の4化も同時に可及的に抑え
、中心偏析も軽減されるように合金組成も調整する。At this time, the alloy composition is also adjusted so that the quaternization of alloying elements is simultaneously suppressed as much as possible and center segregation is also reduced.
よって、本発明の要旨とするところは、重量%で、
C: 0.01〜0.20%、 Si:0.03
〜0.80%、Mn: 0.40〜1.80%、 P
:0.025%以下、s : 0.002%以下、 T
i:0.008〜0.15%、sol.Al: 0.
01〜0.10%ならびに
Cu: 0.05〜0.50%、Ca: 0.0005
〜0.0050%、およびR叶: Q、GO05〜0.
01%のうちの1種以上、
および、所里l;より、
Ni: 0.05〜0.50%、Cr: 0.05〜0
.50%、M。Therefore, the gist of the present invention is, in weight %, C: 0.01 to 0.20%, Si: 0.03
~0.80%, Mn: 0.40~1.80%, P
: 0.025% or less, s: 0.002% or less, T
i:0.008-0.15%, sol. Al: 0.
01-0.10% and Cu: 0.05-0.50%, Ca: 0.0005
~0.0050%, and R Kano: Q, GO05~0.
One or more of the following: 0.01%, Ni: 0.05-0.50%, Cr: 0.05-0
.. 50%, M.
: O,OS〜0.50%、Nb: 0.01〜0.1
5%、およびV: 0.01〜0.15%のうちの1種
以上残部不可避不純物および鉄
から成る組成のCCスラブを加熱し、Ar3 + 15
0℃以下、Ar3点以上の温度域で、少なくとも50%
以上の熱間圧延を行い、Ars点以上で該熱間圧延を終
了し、Ar3 30℃以上の温度域から、650℃以下
、550℃以上の温度域まで冷却速度15〜30℃/S
の範囲で加速水冷し、続いて550℃以下、400℃以
上の温度域まで、前記冷却速度よりは小さい冷却速度3
〜15℃/Sの範囲で加速水冷し、水冷停止後放冷する
ことを特徴とする、耐水素誘起割れ性に優れた鋼板の製
造方法である。: O, OS~0.50%, Nb: 0.01~0.1
5%, and one or more of V: 0.01 to 0.15%, the remainder being unavoidable impurities and iron is heated, and Ar3 + 15
At least 50% in the temperature range of 0℃ or below and Ar3 point or above
The above hot rolling is carried out, and the hot rolling is finished at the Ars point or higher, and the cooling rate is 15 to 30°C/S from the temperature range of Ar3 30°C or higher to the temperature range of 650°C or lower to 550°C or higher.
Accelerated water cooling is performed in the range of
This is a method for producing a steel sheet with excellent hydrogen-induced cracking resistance, which is characterized by accelerated water cooling in the range of ~15° C./S, and cooling after stopping the water cooling.
このようにして得た鋼板に、500℃以上、Ac。The steel plate thus obtained was heated to Ac at 500°C or higher.
点板下の温度域まで加熱し焼戻しを行ってもよい。Tempering may be performed by heating to a temperature range below the dot plate.
本発明はいわば2段水冷法とも言うべく、第1段の急水
冷(>Ar、 −30℃−650〜550℃、15〜b
態が起こるように初析フェライトの生成および成長を抑
えるもので、第2段の緩水冷(650〜550t−55
0〜400℃、3〜b
の生成を防止し、かつ硬度が上界し過ぎないようにベイ
ナイト変態を続けて進行させ、その後、放冷してマルテ
ンサイトの生成を防止するものである。The present invention can be referred to as a two-stage water cooling method, in which the formation and growth of pro-eutectoid ferrite is suppressed so that the first stage rapid water cooling (>Ar, -30℃-650~550℃, 15~b state occurs). , second stage slow water cooling (650~550t-55
The bainite transformation is continued to proceed so as to prevent the formation of 3-b at 0 to 400°C and to prevent the hardness from exceeding the upper limit, and then allowed to cool to prevent the formation of martensite.
(作用)
本発明において鋼組成を上述のように限定した理由は次
の通りである。(Function) The reason why the steel composition is limited as described above in the present invention is as follows.
C:
鋼の強度確保のためにO,01%以上を必要とし、また
、鋼の靭性確保および溶接低温割れの防止のため0.2
0%以下とする。C: 0.01% or more is required to ensure the strength of the steel, and 0.2% or more is required to ensure the toughness of the steel and prevent welding cold cracking.
0% or less.
Si:
口の強度確保および脱酸のために0.03%以上を必要
とし、また、鋼の靭性確保および焼戻脆化の防止のため
0.80%以下とする。Si: 0.03% or more is required to ensure the strength of the mouth and deoxidize, and it is 0.80% or less to ensure the toughness of the steel and prevent temper embrittlement.
ごn:
1間の強度および靭性の確保のため0.40%以上を必
要とし、またMnの増加によって偏析部の合金元素温度
が増加するが、1.80%以下までは許容できる。Mn: 0.40% or more is required to ensure the strength and toughness of Mn, and an increase in Mn increases the temperature of the alloying element in the segregated part, but it is permissible up to 1.80%.
P=
少ないほど02折部の合金元素濃度は減少し、耐HIC
性にイ】れるが、低P化することは製造コストを上界さ
せるので、本発明に悪影9を与えない範囲で可及的に高
含有量である0、025%を上限とする。しかし、少な
ければ少ない程好ましいのは言うまでもない。The smaller P=, the lower the alloy element concentration in the 02 fold, and the higher the HIC resistance.
However, since lowering the P content will increase the manufacturing cost, the upper limit is set at 0.025%, which is as high as possible without adversely affecting the present invention. However, it goes without saying that the smaller the amount, the better.
S:
Sは0.002%超になると、Caによる形態制御が不
能なMnSが生成し、HICの起点となる。S: When S exceeds 0.002%, MnS whose morphology cannot be controlled by Ca is generated, which becomes the starting point of HIC.
したがって、本発明にあってSは0.002%以下に制
限する。Therefore, in the present invention, S is limited to 0.002% or less.
Ti:
TiNにより圧延組織の細粒化をはかり、第1段水冷時
の非常に微細かつ均一なヘイナイト変態を起こすのを助
長する。TiNおよびTiCによる水素のトラップ効果
で耐HI C性を向上させるため0.008%以上を必
要とし、一方、0.15 %超になると靭性が著しく損
なわれるため、上限を0.15%とする。Ti: TiN aims to refine the rolling structure and promotes extremely fine and uniform heinite transformation during the first stage water cooling. 0.008% or more is required to improve HIC resistance due to the hydrogen trapping effect of TiN and TiC. On the other hand, if it exceeds 0.15%, toughness is significantly impaired, so the upper limit is set at 0.15%. .
sol.Al:
鋼の脱酸のため0.01%以上を必要とし、また、清浄
度を確保するため0.10%以下とする。sol. Al: Requires 0.01% or more for deoxidizing steel, and 0.10% or less to ensure cleanliness.
本発明にあっては、その他、6(食性付与元素として、
Cu、 CaおよびREMの少なくとも1種を添加する
。In the present invention, in addition, 6 (as an edibility-imparting element,
At least one of Cu, Ca and REM is added.
Cu: 耐食性付与のため0.05%以上を添加する。Cu: Add 0.05% or more to impart corrosion resistance.
しかし、0.50%を超えると溶接性をtpなう。However, if it exceeds 0.50%, weldability deteriorates.
Ca:
鋼中介在物であるMnSの形態を制御し、耐HIC性を
向上させるためにo、ooos%以上を添加する。しか
し、0.0050%を超えると、Ca系介在物が逆に耐
HIC性、耐5scc性を劣化させる。Ca: O,oos% or more is added to control the morphology of MnS, which is an inclusion in steel, and to improve HIC resistance. However, when the content exceeds 0.0050%, Ca-based inclusions conversely deteriorate HIC resistance and 5scc resistance.
RE門:
Caの場合と同様にMnSの形態の制?ilのため0゜
0005%以上添加するが、0.01%を超えると、・
清浄度が擾なわれ、耐HIC性、耐5scc性が低下N
i:
鋼の強度、靭性確保のため0.05%以上を必要とし、
0.50%を超えると耐5scc性が劣化する。RE Gate: As in the case of Ca, is it possible to control the morphology of MnS? For il, more than 0°0005% is added, but if it exceeds 0.01%,
Cleanliness deteriorates, HIC resistance and 5scc resistance decreaseN
i: 0.05% or more is required to ensure the strength and toughness of steel,
If it exceeds 0.50%, the 5scc resistance deteriorates.
Cr+ Mo:
いずれも鋼の強度、あるいは靭性確保のためそれぞれ0
.05%以上、0.50%以下を添加する。Cr + Mo: Both are 0 to ensure the strength or toughness of the steel.
.. Add 0.05% or more and 0.50% or less.
!Jt+−V+
いずれも鋼の強度、あるいは靭性61!保のためそれぞ
れ0.01%以上、0.15%以下を必要とする。! Jt+-V+ Both are steel strength or toughness 61! For protection, 0.01% or more and 0.15% or less are required, respectively.
このような組成のCCスラブを、次に、本発明によって
は、熱間圧延そして2段加速水冷するが、第4図はこの
ときの水冷パターンを示すものである。According to the present invention, the CC slab having such a composition is then subjected to hot rolling and two-stage accelerated water cooling, and FIG. 4 shows the water cooling pattern at this time.
すなわち、熱間圧延を行う適宜温度に加熱してから仕上
げ温度Ar3点以上、Ar++150 ℃以下で制?1
17JA間圧延を行い、次いで、(Ar、点〜Ar)
30℃)以上の範囲の温度から15〜bで
第1段加速水冷を行なう。この第1段急水冷は650〜
550℃の温度範囲で停止し、次いで550〜400℃
の範囲の温度にまで前記冷却速度よりは小さい3〜b
その後放冷する。That is, after heating to an appropriate temperature for hot rolling, the finishing temperature is controlled at Ar 3 points or higher and Ar++150°C or lower. 1
Rolling was performed for 17JA, and then (Ar, point ~ Ar)
The first stage accelerated water cooling is performed from a temperature range of 30° C. or higher to 15° C. to 15° C. This first stage rapid water cooling is 650~
Stop at temperature range of 550℃, then 550-400℃
3 to b, which is lower than the cooling rate described above, to a temperature in the range of 3 to b, which is then allowed to cool.
本発明において熱間圧延条イ1ならびに前記で水冷およ
び緩水冷の水冷条件を上述のように限定した理由は次の
通りである。The reason why the hot rolled strip 1 and the water cooling conditions for water cooling and slow water cooling in the present invention are limited as described above is as follows.
まず、熱間圧延に当って1よ以下の熱間圧延が可能な温
度にまで加ジさする。First, during hot rolling, the material is heated to a temperature that allows hot rolling of 1 or less.
熱間■延仕上温度5よ、上限をArz”L50℃とする
が、これを超えた温度で圧延を終了すると、十分な細粒
とならず、高強度、高靭性が得られない。Hot rolling finishing temperature 5: The upper limit is Arz"L50°C, but if rolling is finished at a temperature exceeding this, the grains will not be sufficiently fine and high strength and toughness will not be obtained.
また、Ar3点未満で終了すると、所定の水冷開始温度
が得られない。加熱−仕上温度の途中の圧延は任意であ
る。Furthermore, if the process ends at less than 3 Ar points, a predetermined water cooling start temperature cannot be obtained. Rolling between heating and finishing temperature is optional.
圧下率は、50%未満ではオーステナイト粒が十分な細
粒とならず、加速冷却しても均一な&Il織とならない
。If the rolling reduction ratio is less than 50%, the austenite grains will not become sufficiently fine, and even if accelerated cooling is performed, a uniform &Il texture will not be obtained.
水冷開始温度は、^ry 30℃より低い温度では初
析フェライトの成長に伴い、偏折部に合金元素が;;化
し水冷時に低温変態ll織が生成するので、耐HIC性
が低下する。より好ましくは静1点以上が良い。When the water cooling start temperature is lower than 30°C, the alloying elements change into polarized portions due to the growth of pro-eutectoid ferrite, and a low-temperature transformed Il texture is generated during water cooling, resulting in a decrease in HIC resistance. More preferably, the score is 1 point or more.
第1段水冷冷却速度は、下限を15℃/Sとし、これよ
り小では初析フェライトが多量に生成してしまうので均
一かつ倣細なベイナイト変態が起こらず、低YRかつ耐
HIC性を満足しない。また、30℃/Slでは、水冷
停止温度のコントロールが難しくなる。好ましくは18
〜b
第1段水冷における水冷停止温度は、上限を650℃と
し、これより高い温度では水冷の効果がなく、初析フェ
ライトが成長し、一方、550℃未満ではへイナイトの
硬度上昇を招く。The lower limit of the cooling rate for the first stage water cooling is 15°C/S. If the cooling rate is lower than this, a large amount of pro-eutectoid ferrite will be generated, so uniform and fine bainite transformation will not occur, and low YR and HIC resistance will be satisfied. do not. Further, at 30° C./Sl, it becomes difficult to control the water cooling stop temperature. Preferably 18
~b The water cooling stop temperature in the first stage water cooling has an upper limit of 650°C. At a temperature higher than this, water cooling has no effect and pro-eutectoid ferrite grows, while a temperature lower than 550°C causes an increase in the hardness of heinite.
第2段水冷冷却速度は、第1段水冷冷却速度より小とし
、下限を3℃/Sとし、これ未満では一部バーライトが
生成する。また、15℃/S超では、ベイナイトの硬度
上昇を引き起こし、ある成分系においてはマルテンサイ
トの生成を招く。好ましくは、5〜b
第2段水冷における水冷停止温度は、上限を550℃と
し、これを超えると放冷時にパーライトが生成してしま
う。また、400℃未満では水冷時にマルテンサイトが
生成してしまう。The second-stage water-cooling cooling rate is lower than the first-stage water-cooling cooling rate, with a lower limit of 3° C./S, and below this, some barlite is generated. Moreover, if the temperature exceeds 15° C./S, the hardness of bainite will increase, and in some component systems, martensite will be formed. Preferably, the upper limit of the water cooling stop temperature in the second stage water cooling is 550°C, and if this temperature is exceeded, pearlite will be generated during cooling. Further, if the temperature is lower than 400°C, martensite will be generated during water cooling.
第5図は、本発明の範囲内の後述する第12!2のAA
に相当する0、05%C材を830℃の仕上げ温度で熱
間圧延を行い、770℃から冷却速度25℃/Sで水冷
を開始し、次いで600℃まで冷却してから第2段水冷
を8℃/Sの冷却速度で行い、放冷したときの第2段水
冷停止点度とYR(%)さらにCI−R(%)との関係
を示すグラフである。第2段水冷停止点度を400〜5
50℃とすることによりYRlCLRともに満足する範
囲にくることが分かる。FIG. 5 shows the 12!2 AA described below within the scope of the present invention.
A 0.05% C material corresponding to the above was hot rolled at a finishing temperature of 830°C, water cooling was started from 770°C at a cooling rate of 25°C/S, and then the second stage water cooling was performed after cooling to 600°C. It is a graph showing the relationship between the second stage water cooling stop point degree and YR (%) and CI-R (%) when cooling was performed at a cooling rate of 8° C./S and left to cool. 2nd stage water cooling stop point degree 400~5
It can be seen that by setting the temperature to 50°C, both YR and CLR are within a satisfactory range.
さらに、本発明の好適態様にあっては、上述のように製
造された鋼板に焼戻し処理をするが、焼ア温度がAc1
点超では再結晶が起きてしまう。一方、500℃未満で
は、焼戻による効果が得られない。Furthermore, in a preferred embodiment of the present invention, the steel plate manufactured as described above is tempered, and the tempering temperature is Ac1.
Recrystallization occurs when the point exceeds the point. On the other hand, if the temperature is less than 500°C, the effect of tempering cannot be obtained.
次に、本発明を実施例によってさらに説明する。Next, the present invention will be further explained by examples.
実施例
第1表に示す組成の供試鋼を使い、慣用法によりCCス
ラブを製造し、これを第2表および第3表に示す条件下
で熱間圧延そして加速冷却を行った。EXAMPLES CC slabs were manufactured by conventional methods using test steels having the compositions shown in Table 1, and were hot rolled and accelerated cooled under the conditions shown in Tables 2 and 3.
得られたり人間圧延材の機械的特性および耐HIC性に
ついて同じく第2表および第3表にまとめて示す。The mechanical properties and HIC resistance of the obtained and human-rolled materials are also summarized in Tables 2 and 3.
第2表は、0.05%C材における従来水冷法、本発明
法それぞれによって製造した鋼のYRおよび’iti+
Ic性の比較を示す。Table 2 shows YR and 'iti+ of 0.05% C steel manufactured by the conventional water cooling method and the method of the present invention, respectively.
A comparison of Ic properties is shown.
第2表に示す結果からも明らかなように、従来の水冷法
でも水冷条件によっては耐HIC性を満足するが、YR
は必ずしも85%以下°にならない。As is clear from the results shown in Table 2, the conventional water cooling method satisfies HIC resistance depending on the water cooling conditions, but YR
is not necessarily less than 85%.
また、Yl’?を85%以下にしようと思えば、水冷停
止温度を下げねばならず、耐HIC性をtDなう。Also, Yl'? If it is desired to reduce the temperature to 85% or less, the water cooling stop temperature must be lowered, which will reduce the HIC resistance.
この点、本発明方法では、耐HIC性も、YR85%以
下も両方とも満足する鋼板が得られている。In this regard, the method of the present invention yields a steel plate that satisfies both HIC resistance and YR of 85% or less.
第3表は、第1表に示した各鋼種B−Fによる同様な実
施例についてその製造条件および機械的特性そしてYR
および耐HI C性をまとめて示すものである。Table 3 shows the manufacturing conditions, mechanical properties and YR
and HIC resistance are collectively shown.
第3表に示す結果からも明らかなように、本発明による
ものはYRおよび耐HI C性のいずれも所要条件を満
足する。しかし、F5mは、Tiを含んでいないので、
耐HIC性または低YRのいずれかを満足しない。
−
第6図[11)ないしくf)は本例により製造された各
種鋼板の顕微鏡Mi織写真を示す。As is clear from the results shown in Table 3, the products according to the present invention satisfy the required conditions for both YR and HIC resistance. However, since F5m does not contain Ti,
Does not satisfy either HIC resistance or low YR.
- Figures 6 [11) to f) show microscopic Mi weave photographs of various steel plates manufactured according to this example.
第6図fa)は第2表のA9の顕微vL徂繊織写真×1
゜O)を、第6図(blは同しく拡大したもの(x 5
00)を示す。均一、微細なフェライト十ヘイナイBJ
Ii!になっているのがわかる。Figure 6fa) is a micrograph of A9 in Table 2.
゜O) in Figure 6 (bl is the same enlarged version (x 5
00). Uniform, fine ferrite BJ
Ii! You can see that it is.
第6図telは、第1表のB鋼を仕上げ温度910℃で
熱間圧延を行い、次いでこれを840℃から540℃ま
で25℃/Sの冷却速度で急冷したときの鋼組織(X1
00)を示すもので、マルテンサイトが生成しているの
が分かる。第6図fd+は同じX500の顕微鏡組織写
真である。Figure 6 tel shows the steel structure (X1
00), and it can be seen that martensite is generated. FIG. 6 fd+ is the same microscopic structure photograph taken at X500.
第6図telは第2表の八1の顕微鏡組織写真(X10
0)を示すものである。これは、従来の一段冷却による
ものであり、冷却速度は12℃/Sと遅いためパーライ
トが生成しているのが分かる。第6図(flは同じX5
00の顕微鏡組織の写真を示すものである。The tel in Figure 6 is the microscopic structure photograph of 81 in Table 2 (X10
0). This is due to conventional one-stage cooling, and since the cooling rate is slow at 12° C./S, it can be seen that pearlite is generated. Figure 6 (fl is the same X5
This shows a photograph of the microscopic structure of No. 00.
なお、耐HIC性の試験は第7図および第8図に示す要
領で行った。The HIC resistance test was conducted as shown in FIGS. 7 and 8.
すなわち、HIC試験には、第7図に示すように鋼板よ
り表裏面2111111切削した厚さで、幅100mm
、長さ100mmの板状試験片を全幅にわたって採取し
、同しく長さ方向にも数ケ所採取した。これらの試験片
は、600メンシユエメリー研磨した後、アセトン脱脂
した。HT C試験に用いた試験液は、NACEン夜と
呼ばれるもので0.5%酢酸(C113CO□I+)−
5%食塩(Na(Q)水溶液で試験中はH2Sを通気し
、飽和状態にした。温度は25℃で100時間試験した
。In other words, for the HIC test, as shown in Figure 7, a steel plate with a thickness of 2111111 mm cut from the front and back surfaces and a width of 100 mm was used.
A plate-shaped test piece with a length of 100 mm was taken over the entire width, and also at several locations along the length. These test pieces were polished with 600 mensier emery and then degreased with acetone. The test solution used in the HTC test was called NACEN, and it was 0.5% acetic acid (C113CO□I+)-
During the test, H2S was bubbled through the test using a 5% aqueous solution of common salt (Na(Q)) to achieve a saturated state.The test was conducted at a temperature of 25° C. for 100 hours.
第8図に、HIC試験後の試験片端面を示すが、このと
き観察されるI(I Cを板幅方向の割れの長さくai
j)で測定し、断面幅に対するこのalj の総和の比
を割れ長さ率(%)(C,L、R,)とした。そして、
耐HIG適中率は、次式で表す。Figure 8 shows the end face of the specimen after the HIC test, where I (IC) is the length of the crack in the width direction ai
The ratio of the total sum of alj to the cross-sectional width was defined as the crack length ratio (%) (C, L, R,). and,
The HIG resistance accuracy rate is expressed by the following formula.
試験片の数Number of specimens
第1図および第2図は、従来法の代表的水冷パターンを
示す線図;
第3図は、従来法における水冷停止温度とYR(%)お
よびCLR(%)との関係を示すグラフ;第4図は、本
発明方法の水冷パターンを示す線図;
第5図は、本発明方法における第2段水冷停止温度とY
R(%)およびCLR(%)との関係を示すグラフ;お
よび
第7図および第8図は、II I C試験および耐14
1C性評価要領を示す略式説明図である。Figures 1 and 2 are diagrams showing typical water cooling patterns in the conventional method; Figure 3 is a graph showing the relationship between water cooling stop temperature and YR (%) and CLR (%) in the conventional method; Figure 4 is a diagram showing the water cooling pattern of the method of the present invention; Figure 5 is a diagram showing the second stage water cooling stop temperature and Y in the method of the present invention.
A graph showing the relationship between R (%) and CLR (%); and Figures 7 and 8 show the relationship between the II I C test and the
FIG. 2 is a schematic explanatory diagram showing a 1C property evaluation procedure.
Claims (4)
%、Mn:0.40〜1.80%、P:0.025%以
下、S:0.002%以下、Ti:0.008〜0.1
5%、sol.Al:0.01〜0.10% ならびに Cu:0.05〜0.50%、Ca:0.0005〜0
.0050%、およびREM:0.0005〜0.01
%のうちの1種以上、 残部不可避不純物および鉄 から成る組成のCCスラブを加熱し、Ar_3+150
℃以下、Ar_3点以上の温度域で、少なくとも50%
以上の熱間圧延を行い、Ar_3点以上で該熱間圧延を
終了し、Ar_3−30℃以上の温度域から、650℃
以下、550℃以上の温度域まで冷却速度15〜30℃
/Sの範囲で加速水冷し、続いて550℃以下、400
℃以上の温度域まで、前記冷却速度より小さい冷却速度
3〜15℃/Sの範囲で加速水冷し、水冷停止後放冷す
ることを特徴とする、耐水素誘起割れ性に優れかつ、低
降伏比を特徴とする鋼板の製造方法。(1) In weight%, C: 0.01-0.20%, Si: 0.03-0.80
%, Mn: 0.40-1.80%, P: 0.025% or less, S: 0.002% or less, Ti: 0.008-0.1
5%, sol. Al: 0.01-0.10%, Cu: 0.05-0.50%, Ca: 0.0005-0
.. 0050%, and REM: 0.0005-0.01
%, the balance is unavoidable impurities, and iron is heated to form an Ar_3+150
At least 50% in the temperature range below ℃ and above Ar_3 points
The above hot rolling is carried out, and the hot rolling is finished at the Ar_3 point or more, and the temperature range is 650°C from the temperature range of Ar_3-30°C or more.
Below, the cooling rate is 15-30℃ up to a temperature range of 550℃ or higher.
Accelerated water cooling in the range of /S, followed by 400℃ below 550℃
Excellent hydrogen-induced cracking resistance and low yield, characterized by accelerated water cooling at a cooling rate of 3 to 15°C/S, which is lower than the above cooling rate, to a temperature range of 3°C or higher, and cooling after stopping the water cooling. A method for manufacturing a steel plate characterized by the ratio.
%、Mn:0.40〜1.80%、P:0.025%以
下、S:0.002%以下、Ti:0.008〜0.1
5%、sol.Al:0.01〜0.10% ならびに Cu:0.05〜0.50%、Ca:0.0005〜0
.0050%、およびREM:0.0005〜0.01
%のうちの1種以上、 残部不可避不純物および鉄 から成る組成のCCスラブを加熱し、Ar_3+150
℃以下、Ar_3点以上の温度域で、少なくとも50%
以上の熱間圧延を行い、Ar_3点以上で該熱間圧延を
終了し、Ar_3−30℃以上の温度域から、650℃
以下、550℃以上の温度域まで冷却速度15〜30℃
/Sの範囲で加速水冷し、続いて550℃以下、400
℃以上の温度域まで、前記冷却速度より小さい冷却速度
3〜15℃/Sの範囲で加速水冷し、水冷停止後放冷し
て得た鋼板を、500℃以上、Ac_1点以下の温度域
まで加熱し焼戻すことを特徴とする、耐水素誘起割れ性
に優れかつ、低降伏比を特徴とする鋼板の製造方法。(2) In weight%, C: 0.01-0.20%, Si: 0.03-0.80
%, Mn: 0.40-1.80%, P: 0.025% or less, S: 0.002% or less, Ti: 0.008-0.1
5%, sol. Al: 0.01-0.10%, Cu: 0.05-0.50%, Ca: 0.0005-0
.. 0050%, and REM: 0.0005-0.01
%, the balance is unavoidable impurities, and iron is heated to form an Ar_3+150
At least 50% in the temperature range below ℃ and above Ar_3 points
The above hot rolling is carried out, and the hot rolling is finished at the Ar_3 point or more, and the temperature range is 650°C from the temperature range of Ar_3-30°C or more.
Below, the cooling rate is 15-30℃ up to a temperature range of 550℃ or higher.
Accelerated water cooling in the range of /S, followed by 400℃ below 550℃
A steel plate obtained by accelerated water cooling at a cooling rate of 3 to 15 °C/S lower than the above cooling rate to a temperature range of 500 °C or higher and below Ac_1 point after stopping the water cooling. A method for manufacturing a steel plate that is characterized by heating and tempering, and is characterized by excellent hydrogen-induced cracking resistance and a low yield ratio.
%、Mn:0.40〜1.80%、P:0.025%以
下、S:0.002%以下、Ti:0.008〜0.1
5%、sol.Al:0.01〜0.10% ならびに Cu:0.05〜0.50%、Ca:0.0005〜0
.0050%、およびREM:0.0005〜0.01
%のうちの1種以上、 および Ni:0.05〜0.50%、Cr:0.05〜0.5
0%、Mo:0.05〜0.50%、Nb:0.01〜
0.15%、およびV:0.01〜0.15%のうちの
1種以上残部不可避不純物および鉄 から成る組成のCCスラブを加熱し、Ar_3+150
℃以下、Ar_3点以上の温度域で、少なくとも50%
以上の熱間圧延を行い、Ar_3点以上で該熱間圧延を
終了し、Ar_3−30℃以上の温度域から、650℃
以下、550℃以上の温度域まで冷却速度15〜30℃
/Sの範囲で加速水冷し、続いて550℃以下、400
℃以上の温度域まで、前記冷却速度より小さい冷却速度
3〜15℃/Sの範囲で加速水冷し、水冷停止後放冷す
ることを特徴とする、耐水素誘起割れ性に優れかつ、低
降伏比を特徴とする鋼板の製造方法。(3) In weight%, C: 0.01-0.20%, Si: 0.03-0.80
%, Mn: 0.40-1.80%, P: 0.025% or less, S: 0.002% or less, Ti: 0.008-0.1
5%, sol. Al: 0.01-0.10%, Cu: 0.05-0.50%, Ca: 0.0005-0
.. 0050%, and REM: 0.0005-0.01
%, and Ni: 0.05-0.50%, Cr: 0.05-0.5
0%, Mo: 0.05~0.50%, Nb: 0.01~
Ar_3+150
At least 50% in the temperature range below ℃ and above Ar_3 points
The above hot rolling is carried out, and the hot rolling is finished at the Ar_3 point or more, and the temperature range is 650°C from the temperature range of Ar_3-30°C or more.
Below, the cooling rate is 15-30℃ up to a temperature range of 550℃ or higher.
Accelerated water cooling in the range of /S, followed by 400℃ below 550℃
Excellent hydrogen-induced cracking resistance and low yield, characterized by accelerated water cooling at a cooling rate of 3 to 15°C/S, which is lower than the above cooling rate, to a temperature range of 3°C or higher, and cooling after stopping the water cooling. A method for manufacturing a steel plate characterized by the ratio.
%、Mn:0.40〜1.80%、P:0.025%以
下、S:0.002%以下、Ti:0.008〜0.1
5%、sol.Al:0.01〜0.10% ならびに Cu:0.05〜0.50%、Ca:0.0005〜0
.0050%、およびREM:0.0005〜0.01
%のうちの1種以上、 および Ni:0.05〜0.50%、Cr:0.05〜0.5
0%、Mo:0.05〜0.50%、Nb:0.01〜
0.15%、およびV:0.01〜0.15%のうちの
1種以上残部不可避不純物および鉄 から成る組成のCCスラブを加熱し、Ar_3+150
℃以下、Ar_3点以上の温度域で、少なくとも50%
以上の熱間圧延を行い、Ar_3点以上で該熱間圧延を
終了し、Ar_3−30℃以上の温度域から、650℃
以下、550℃以上の温度域まで冷却速度15〜30℃
/Sの範囲で加速水冷し、続いて550℃以下、400
℃以上の温度域まで、前記冷却速度より小さい冷却速度
3〜15℃/Sの範囲で加速水冷し、水冷停止後放冷し
て得た鋼板を、500℃以上、Ac_1点以下の温度域
まで加熱し焼戻すことを特徴とする、耐水素誘起割れ性
に優れかつ、低降伏比を特徴とする鋼板の製造方法。(4) In weight%, C: 0.01-0.20%, Si: 0.03-0.80
%, Mn: 0.40-1.80%, P: 0.025% or less, S: 0.002% or less, Ti: 0.008-0.1
5%, sol. Al: 0.01-0.10%, Cu: 0.05-0.50%, Ca: 0.0005-0
.. 0050%, and REM: 0.0005-0.01
%, and Ni: 0.05-0.50%, Cr: 0.05-0.5
0%, Mo: 0.05~0.50%, Nb: 0.01~
Ar_3+150
At least 50% in the temperature range below ℃ and above Ar_3 points
The above hot rolling is carried out, and the hot rolling is finished at the Ar_3 point or more, and the temperature range is 650°C from the temperature range of Ar_3-30°C or more.
Below, the cooling rate is 15-30℃ up to a temperature range of 550℃ or higher.
Accelerated water cooling in the range of /S, followed by 400℃ below 550℃
A steel plate obtained by accelerated water cooling at a cooling rate of 3 to 15 °C/S lower than the above cooling rate to a temperature range of 500 °C or higher and below Ac_1 point after stopping the water cooling. A method for manufacturing a steel plate that is characterized by heating and tempering, and is characterized by excellent hydrogen-induced cracking resistance and a low yield ratio.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61181496A JPH0774383B2 (en) | 1986-08-01 | 1986-08-01 | Method for producing steel sheet with excellent resistance to hydrogen-induced cracking |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61181496A JPH0774383B2 (en) | 1986-08-01 | 1986-08-01 | Method for producing steel sheet with excellent resistance to hydrogen-induced cracking |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6338518A true JPS6338518A (en) | 1988-02-19 |
JPH0774383B2 JPH0774383B2 (en) | 1995-08-09 |
Family
ID=16101773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61181496A Expired - Lifetime JPH0774383B2 (en) | 1986-08-01 | 1986-08-01 | Method for producing steel sheet with excellent resistance to hydrogen-induced cracking |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0774383B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02263918A (en) * | 1989-04-03 | 1990-10-26 | Nippon Steel Corp | Manufacturing method of high-strength steel plate with excellent HIC and SSC resistance |
JPH05125438A (en) * | 1991-11-06 | 1993-05-21 | Nippon Steel Corp | Method of manufacturing low yield ratio high strength steel |
US5252936A (en) * | 1991-09-27 | 1993-10-12 | Hewlett-Packard Company | Reed relay and switch matrix device using the same |
CN102343371A (en) * | 2011-07-08 | 2012-02-08 | 南阳汉冶特钢有限公司 | Cooling method for 60-100mm performance-guaranteed thick steel plate after rolling |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6324014A (en) * | 1986-07-15 | 1988-02-01 | Kobe Steel Ltd | Production of high-strength hot coil material having excellent hydrogen sulfide resistance and toughness |
-
1986
- 1986-08-01 JP JP61181496A patent/JPH0774383B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6324014A (en) * | 1986-07-15 | 1988-02-01 | Kobe Steel Ltd | Production of high-strength hot coil material having excellent hydrogen sulfide resistance and toughness |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02263918A (en) * | 1989-04-03 | 1990-10-26 | Nippon Steel Corp | Manufacturing method of high-strength steel plate with excellent HIC and SSC resistance |
US5252936A (en) * | 1991-09-27 | 1993-10-12 | Hewlett-Packard Company | Reed relay and switch matrix device using the same |
JPH05125438A (en) * | 1991-11-06 | 1993-05-21 | Nippon Steel Corp | Method of manufacturing low yield ratio high strength steel |
CN102343371A (en) * | 2011-07-08 | 2012-02-08 | 南阳汉冶特钢有限公司 | Cooling method for 60-100mm performance-guaranteed thick steel plate after rolling |
Also Published As
Publication number | Publication date |
---|---|
JPH0774383B2 (en) | 1995-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1989266B (en) | High tensile strength steel sheet having reduced acoustic anisotropy, excellent weldability and its production method | |
JP2023110068A (en) | High strength steel excellent in resistance to sulfide stress corrosion crack and manufacturing method thereof | |
JPH10306316A (en) | Method for producing low yield ratio high strength steel with excellent low temperature toughness | |
JPS6123715A (en) | Manufacture of high tensile and high toughness steel sheet | |
JPS63286517A (en) | Manufacture of high-tensile steel with low yielding ratio | |
JPH0920922A (en) | Production of high toughness steel plate for low temperature use | |
JPH0413406B2 (en) | ||
JP2002003985A (en) | High tensile steel excellent in high temperature strength and method for producing the same | |
KR20200047926A (en) | High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof | |
JPS6338518A (en) | Production of steel plate having excellent hydrogen induced cracking resistance | |
KR102400036B1 (en) | Steel sheet having excellent low temperature toughness and low yield ratio and method of manufacturing the same | |
JPS6338520A (en) | Method for producing steel sheets with excellent hydrogen-induced cracking resistance | |
KR100435467B1 (en) | A method for manufacturing high strength cold rolled steel sheet having superior ductility by continuous annealing | |
JPH05148544A (en) | Manufacturing method of high strength and high toughness steel plate with uniform hardness distribution in the plate thickness direction | |
JP7614357B2 (en) | Cold-rolled steel sheet with excellent workability and its manufacturing method | |
KR20200047081A (en) | High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof | |
JPS6338519A (en) | Production of steel plate having excellent hydrogen induced cracking resistance | |
JP2002012939A (en) | High tensile steel excellent in high temperature strength and method for producing the same | |
JPS5952207B2 (en) | Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate | |
JP2905306B2 (en) | Method of manufacturing thick steel plate with small difference in mechanical properties in the thickness direction | |
KR101009839B1 (en) | Manufacturing method of high strength steel sheet | |
KR100256357B1 (en) | Manufacturing method of copper precipitation strengthening type high tensile strength steel with excellent low temperature toughness | |
JPS63145711A (en) | Production of high tension steel plate having excellent low temperature toughness | |
JPH01116031A (en) | Manufacturing method for high-Si, high-carbon hot-rolled steel sheet with excellent toughness | |
JPH0625739A (en) | Method for producing sour resistant steel sheet having excellent low temperature toughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |