Nothing Special   »   [go: up one dir, main page]

JPS6331489B2 - - Google Patents

Info

Publication number
JPS6331489B2
JPS6331489B2 JP55017938A JP1793880A JPS6331489B2 JP S6331489 B2 JPS6331489 B2 JP S6331489B2 JP 55017938 A JP55017938 A JP 55017938A JP 1793880 A JP1793880 A JP 1793880A JP S6331489 B2 JPS6331489 B2 JP S6331489B2
Authority
JP
Japan
Prior art keywords
diisocyanate
epoxy
vinyl
catalyst
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55017938A
Other languages
Japanese (ja)
Other versions
JPS56115313A (en
Inventor
Tooru Koyama
Toshikazu Narahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1793880A priority Critical patent/JPS56115313A/en
Publication of JPS56115313A publication Critical patent/JPS56115313A/en
Publication of JPS6331489B2 publication Critical patent/JPS6331489B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Epoxy Resins (AREA)
  • Insulating Of Coils (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Insulating Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はエポキシ―イソシアネート系樹脂を硬
化するための新規な硬化触媒に関する。 近年、回転電機等の電気機器においては、その
大容量化、小型軽量化及び使用条件の苛酷化に伴
ない、耐熱性の優れた電機巻線の開発が望まれて
いた。このため、電機巻線の構成材料としても耐
熱性の優れた絶縁基材及び絶縁ワニスが開発され
ている。現在、絶縁基材としてガラス裏打マイカ
ーテープ又は耐熱フイルム材が、又、絶縁ワニス
としてエポキシ―イソシアネート系樹脂が使用さ
れており、これらのの絶縁基材と絶縁ワニスを組
合わせて耐熱性の良好な電機巻線が得られてい
る。電機巻線の製作時には、絶縁ワニスに硬化触
媒を添加することが耐熱性の良好な電機巻線を得
るために必要である。しかし、硬化触媒を絶縁ワ
ニスに添加すると、常温においても徐々に絶縁ワ
ニスの硬化が進行して増粘し、絶縁ワニスの可使
寿命が短縮する。これは、大量の絶縁ワニスを調
製して電機巻線の絶縁に反復使用する工場作業に
おいては不利でありかつ非経済的である。このた
めに、硬化触媒を絶縁ワニスに添加せずに、絶縁
基材に硬化触媒を保持した後、硬化触媒を含まな
い絶縁ワニスを含浸して絶縁層内で触媒と接触さ
せる方法が提案されている。この方式により絶縁
ワニスを含浸した巻線は、硬化触媒を含む絶縁ワ
ニスを含浸した巻線と全く同様に加熱することに
より絶縁ワニスを硬化させて耐熱性の良好な電機
巻線となる。 しかしながら、このように硬化触媒を保持した
絶縁基材を導体上に巻回する際、摩擦等により触
媒が剥落し易く、特に、触媒が固体であるとか、
絶縁基材がフイルムであるような場合にその傾向
が著しい。その結果、絶縁層中の硬化触媒含量が
変動し、これに対応した硬化条件の調節も困難な
ため、製作される電機巻線の特性のバラツキを免
れ得なかつた。しかも、絶縁ワニスと絶縁基材と
が接触しているとき、硬化触媒が絶縁ワニス中に
溶出して、絶縁ワニスの可使寿命が短く未だ不十
分であつた。そのうえ、絶縁基材に絶縁ワニスを
含浸する直前に高温乾燥をしなければならない場
合、保持した硬化触媒が絶縁基材から揮発して硬
化不十分となる場合がしばしばあつた。 本発明はこのような現状に鑑みてなされたもの
であり、その目的は、エポキシ―イソシアネート
系樹脂を硬化するための新規な硬化触媒を提供す
ることである。 本発明につき概説すれば、本発明のエポキシ―
イソシアネート系樹脂硬化用触媒は、構成単量体
単位としてビニル置換含窒素複素環式化合物を有
する重合体よりなることを特徴とするものであ
る。 近年、ポリ―4―ビニルピリジン及びこれとス
チレンとの共重合体がイソシアネートとアルコー
ルの反応に触媒効果を示すことが発表された。
〔Journal of Polymer Science:Part C.No.22、
PP 309―318(1968)参照〕 本発明者等は、この種の化合物に着目し、絶縁
基材上でビニルイミダゾール、ビニルモルホリン
及びビニリピリジン等のビニル単量体を単独重合
又は他のビニル化合物と共重合させ、触媒の機能
を保持しつつその剥落及び絶縁ワニス中への溶出
を減少させあるいは又触媒の耐熱性を向上させる
方法につき種々検討を重ねた結果、本発明を完成
するに至つたものである。 本発明の構成単量体単位としてビニル置換含窒
素複素環式化合物を有する重合体よりなる硬化触
媒は、これをワニスを含浸すべき絶縁基材に予め
含浸して、該基材を導体上に巻回し、次にエポキ
シ―イソシアネート系樹脂よりなるワニスを含浸
して硬化することにより耐熱性及び電気的特性の
優れた電機巻線の製造に適用される。 本発明におけるビニル置換含窒素複素環式化合
物としては、例えば、1―ビニルイミダゾール、
2―メチル―1―ビニルイミダゾール、2,4―
ジメチル―1―ビニルイミダゾール、1―アリル
―2―エチル―4―メチルイミダソール、2―ス
チリルイミダゾール、1―ビニルモルホリン、2
―ビニルピリジン、4―ビニルピリジン、2―メ
チル―5―ビニルピリジン、2―ビニル―5―エ
チルピリジン、2―ビニルキノリン及び4―ビニ
ルキノリン等を挙げることができる。又、上記ビ
ニル置換含窒素複素環式化合物と共重合させる化
合物(ビニル単量体)としては、例えば、スチレ
ン及びその誘導体、ジアリルフタレート、ジアリ
ルイソフタレート、トリメチロールプロパンアリ
ルエーテル、グリセリンアリルエーテル、トリア
リルシアヌレート及びトリアリルイソシアヌレー
ト等のアリル化合物、メタクリル酸及びその誘導
体ならびにポリブタジエン及びその変性体等を挙
げることができる。これらは単独もしくは2種以
上混合して使用することができる。 上記したビニル置換含窒素複素環式化合物を単
独重合又は他のビニル化合物と共重合させるに当
つては、必要に応じて重合開始剤、重合促進剤及
び重合禁止剤等を添加することができる。 本発明における重合開始剤としては、例えば、
ベンゾイルパーオキサイド及びアセチルパーオキ
サイドのようなアシルパーオキサイド、キユメン
ヒドロパーオキサイドのようなヒドロパーオキサ
イド、メチルエチルケトンパーオキサイド及びシ
クロヘキサノンパーオキサイドのようなケトンパ
ーオキサイド、ジクミルパーオキサイド及びジ―
第3級ブチルパーオキサイドのようなアルキルパ
ーオキサイド、第3級ブチルパーオキシベンゾエ
ート及び第3級ブチルパーオキシアセテートのよ
うなオキシパーオキサイドならびに2,2′―アゾ
ビスイソブチロニトリル等の一般的なラジカル開
始剤を挙げることができ、これらは単独もしくは
2種以上併用して添加することができる。これら
重合開始剤の添加量は、一般に、前記ビニル置換
含窒素複素環式化合物及び他の重合用単量体に対
し約0.5〜5重量%、望ましくは約1〜3重量%
の範囲内とすることが適当である。 又、本発明における重合促進剤としては、一般
に使用されるナフテン酸又はオクテン酸の各種金
属(例えば、コバルト、マンガン、鉄、鉛、ニツ
ケル、錫及び亜鉛等)の塩等を挙げることがで
き、その添加量は、一般に前記ビニル置換含窒素
複素環式化合物及び他の共重合用単量体に対し約
2重量%以下とすることが適当である。 又、本発明における重合禁止剤としては、例え
ば、ハイドロキノン、p―第3級ブチルカテコー
ル及びピロガロール等のキノン類その他一般に使
用されているものを挙げることができ、その添加
量は、前記ビニル置換含窒素複素環式化合物及び
他の共重合用単量体に対し約0.5重量%以下とす
ることが適当である。 本発明の硬化用触媒が適用される電機巻線用ワ
ニスの基材であるエポキシ―イソシアネート系樹
脂の一成分であるエポキシ化合物としては、例え
ば、ビスフエノールAのジグリシジルエーテル、
ブタジエンジエポキシド、3,4―エポキシシク
ロヘキシルメチル―(3,4―エポキシ)シクロ
ヘキサンカルボキシレート、ビニルシクロヘキセ
ンジオキサイド、4,4′―ジ(1,2―エポキシ
エチル)ジフエニルエーテル、4,4′―(1.2―
エポキシシクロヘキシル)プロパン、レゾルシン
のジグリシジルエーテル、フロログルシンのジグ
リシジルエーテル、メチルフロログルシンのジグ
リシジルエーテル、ビス(2,3―エポキシシク
ロペンチル)エーテル、2―(3,4―エポキ
シ)シクロヘキサン―5,5′―スピロ(3,4―
エポキシ)シクロヘキサン―m―ジオキサン、ビ
ス―(3,4―エポキシ―6―メチルシクロヘキ
シル)アジペート及びN,N′―m―フエニレン
ビス(4,5―エポキシ―1,2―シクロヘキサ
ンジカルボキシイミド)等の2官能のエポキシ化
合物、パラアミノフエノールのトリグリシジルエ
ーテル、ポリアリルグリシジルエーテル、1,
3,5―トリ(1,2―エポキシエチル)ベンゼ
ン、2,2′,4,4′―テトラグリシドキシベンゾ
フエノン、テトラグリシドキシテトラフエニルメ
タン、フエノールホルムアルデヒドノボラツクの
ポリグリシジルエーテル、グリセリンのトリグリ
シジルエーテル及びトリメチロールプロパンのト
リグリシジルエーテル等の3官能以上のエポキシ
化合物を挙げることができる。 又、多官能のイソシアネート化合物としては、
メタンジイソシアネート、エタン―1,2―ジイ
ソシアネート、ブタン―1,1―ジイソシアネー
ト、ブタン―1,2―ジイソシアネート、トラン
スビニレンジイソシアネート、プロパン―1,3
―ジイソシアネート、ブタン―1,4―ジイソシ
アネート、2―ブデン―1,4―ジイソシアネー
ト、2―メチルブタン―1,4―ジイソシアネー
ト、ペンタン―1,5―ジイソシアネート、2,
2―ジメチルペンタン―1,5―ジイソシアネー
ト、ヘキサン―1,6―ジイソシアネート、ヘプ
タン―1,7―ジイソシアネート、オクタン―
1,8―ジイソシアネート、ノナン―1,9―ジ
イソシアネート、デカン―1,10―ジイソシアネ
ート、ジメチルシランジイソシアネート、ジフエ
ニルシランジイソシアネート、ω,ω′―1,3
―ジメチルベンゼンジイソシアネート、ω,
ω′―1,4―ジメチルベンゼンジイソシアネー
ト、ω,ω′―1,3―ジメチルシクロヘキサン
ジイソシアネート、ω,ω′―1,4―ジメチル
シクロヘキサンジイソシアネート、ω,ω′―1,
4―ジメチルナフタレンジイソシアネート、ω,
ω′―1,5―ジメチルナフタレンジイソシアネ
ート、シクロヘキサン―1,3―ジイソシアネー
ト、シクロヘキサン―1,4―ジイソシアネー
ト、ジシクロヘキシルメタン―4,4′―ジイソシ
アネート、1,3―フエニレンジイソシアネー
ト、1,4―フエニレンジイソシアネート、1―
メチルベンゼン―2,4―ジイソシアネート、1
―メチルベンゼン―2,5―ジイソシアネート、
1―メチルベンゼン―2,6―ジイソシアネー
ト、1―メチルベンゼン―3,5―ジイソシアネ
ート、ジフエニルエーテル―4,4′―ジイソシア
ネート、ジフエニルエーテル―2,4′―ジイソシ
アネート、ナフタレン―1,4―ジイソシアネー
ト、ナフタレン―1,5―ジイソシアネート、ビ
フエニル―4,4′―ジイソシアネート、3,3′―
ジメチルビフエニル―4,4′―ジイソシアネー
ト、2,3―ジメトキシビフエニル―4,4′―ジ
イソシアネート、ジフエニルメタン―4,4′―ジ
イソシアネート、3,3′―ジメトキシジフエニル
メタン―4,4′―ジイソシアネート、4,4′―ジ
メトキシジフエニルメタン―3,3′―ジイソシア
ネート、ジフエニルサルフアイド―4,4′―ジイ
ソシアネート及びジフエニルスルホン―4,4′―
ジイソシアネート等の2官能のイソシアネート化
合物、ポリメチレンポリフエニルイソシアネー
ト、トリフエニルメタントリイソシアネート、ト
リス(4―イソシアネートフエニル)チオホスフ
エート及び3,3′,4,4′―ジフエニルメタンテ
トライソシアネート等の3官能以上のイソシアネ
ート化合物を挙げることができる。又、これらイ
ソシアネート化合物の2量体、3量体あるいは
4,4′―ジフエニルメタンジイソシアネートの一
部をカルボジイミド化した液状イソシアネート化
合物等も使用することができる。なお又、前記エ
ポキシ化合物及びイソシアネート化合物は、それ
ぞれ単独もしくは2種以上混合して使用すること
ができる。 上記エポキシ化合物とイソシアネート化合物と
を配合してなるエポキシ―イソシアネート系含浸
ワニスは、その硬化物に優れた耐熱性を出すため
に適切な配合割合が必要である。この配合割合
は、エポキシ化合物1当量に対してイソシアネー
ト化合物2.5〜40当量とすることが望ましい。こ
の範囲外であると、硬化物の加熱減量、電気特
性、機械特性等のバランスがとれず、電機巻線と
しての絶縁性能の低下が懸念される。特に望まし
いのは前者1当量に対し、後者5〜15当量の範囲
である。 本発明の硬化用触媒が適用される上記エポキシ
―イソシアネート系含浸ワニスは、絶縁基材に保
持させた、構成単量体単位としてビニル置換含窒
素複素環式化合物を有する重合体を触媒として加
熱することにより容易に硬化することができる。
この場合、該触媒のエポキシ―イソシアネート系
含浸ワニスに対する配合量は、該重合体中のビニ
ル置換複素環式化合物の単量体単位を基として
0.01〜30.0重量%となるように調整することが適
当である。 又、本発明における有機質の絶縁基材として
は、例えば、芳香族ポリアミド、ポリイミド、ポ
リベンゾイミダゾール、ポリアミドイミド、ポリ
エステルイミド、ポリスルホン、ポリ―p―キシ
リレン、ポリフエニレンオキサイド、ポリイミダ
ゾピロロンエーテル、ポリイミダゾピロロン、ポ
リ―p―フエニレンオキサジアゾ―ル、ポリベン
ゾチアゾール、ポリトリアゾール、ポリキナゾリ
ンジオン、ポリベンゾオキサジノン、ポリキナゾ
ロン、ポリキノキサリン、ポリベンゾイミダゾー
ルイミド、ポリインドフエナジン、ポリベンゾオ
キサゾールピロメリツトイミド、ポリイソインド
ロキナゾリンジオン、ポリメチルキナゾロン、ポ
リベンゾイミダゾキナゾリン、ポリインドロン及
びポリイミダゾベンゾフエナンスロリン等の構造
単位を少なくとも1種以上含むフイルム、不織布
及び紙等が耐熱性を考慮して有用である。又、無
機質の絶縁基材としては、例えば、ガラスクロス
及びマイカシート等があり、特にマイカーシート
は、軟質又は硬質マイカを未焼成又は焼成法によ
りシート状にしたものがよい。 本発明の触媒の調製に当つては、各成分の所定
量を必要に応じて適当な溶剤に溶解し、適当な温
度及び時間反応させることにより容易に重合体溶
液として得ることができる。又、電機巻線の製造
に当つては、この溶液を適当な有機質又は無機質
の絶縁基材上に塗布、乾燥して絶縁シートとし、
これを素線導体上に巻回した後真空乾燥し、これ
に所定の絶縁ワニスを含浸し段階的に温度を上昇
させて硬化することにより、目的とする電機巻線
を得ることができる。 次に本発明及びその効果を実施例により詳細に
説明するが、本発明はこれらによりなんら限定さ
れるものではない。 実施例 1 (a) 触媒の調製 1,2―ポリブタジエン(日本曹達社製、
NISSO―PB―B 5000:分子量5000)100重
量部、トリアリルイソシアヌレート20重量部、
1―ビニルイミダゾール5重量部及びベンゾイ
ルパーオキサイド0.12重量部をトルエン180重
量部に溶解した。80℃で16時間反応させ、粘度
130センチポイズの溶液を得た。これにジクミ
ルパーオキサイド2重量部及びベンゾイルパー
オキサイド0.5重量部を加えてバインダー(触
媒溶液)を調製した。 (b) 絶縁基材の作成 上記バインダーを厚さ0.05mmの芳香族ポリア
ミド不織布シート(デユポン社製、
NOMEX410)の片側に塗布した。次に、溶媒
の一部を揮発させ粘着性が生じた時点で厚さ
0.05mmの集成マイカシートを粘着面に貼り合わ
せ、厚着ロールで仕上げて厚さ0.14mmのマイカ
絶縁シートを得、このシートを幅25mmに切断し
てテープを得た。 (c) 絶縁ワニスの作成 ビスフエノールA系ジグリシジルエーテル
(ダウケミカル社製、DER 332:エポキシ当量
175)100重量部、液状ジフエニルメタンジイソ
シアネート(バイエル社製、デスモジユール
CD:イソシアネート当量140)1000重量部及び
マロンニトリル0.10重量部を配合して絶縁ワニ
スを得た。 (d) 電機巻線の製造 前記(b)で得たテープを素線導体上に規定巻回
し、100℃で5時間真空乾燥した後、前記(c)で
得た絶縁ワニスを真空加圧含浸し、110℃で15
時間、150℃で2時間、250℃で5時間硬化を行
なつて電機巻線を得た。 実施例 2 実施例1における芳香族ポリアミド不織布シー
トNOMEX410の代わりにポリイミドフイルム
(デユポン社製、KAPTON、厚さ0.05mm)を用
いた以外は、実施例1と同様にして電機巻線を得
た。 実施例 3 (a) 触媒の調製 1,2―ポリブタジエン(日本曹達社製、
NISSO―PB―B 5000:分子量5000)100重
量部、トリアリルイソシアヌレート20重量部、
1―ビニルイミダゾール5重量部及びベンゾイ
ルパーオキサイド1重量部を混合して80℃で5
時間加熱し、バインダーを調製した。 (b) 絶縁基材の作成 上記バインダーを厚さ0.1mmのガラスクロス
シートに塗布した。次に、厚さ0.025mmの前記
ポリイミドフイルムKAPTONを貼り合わせ、
110℃で30分間乾燥してシートを得、これを幅
25mmに切断してテープを得た。 (c) 絶縁ワニスの作成 実施例1の(c)と全く同様にして絶縁ワニスを
得た。 (d) 電機巻線の製造 上記(b)で得たテープを素線導体上に規定巻回
し、上記(c)で得た絶縁ワニスを真空含浸し、
110℃で15時間、150℃で2時間、250℃で5時
間硬化を行なつて電機巻線を得た。 実施例 4 実施例3における厚さ0.025mmのポリイミドフ
イルムKAPTONの代わりに厚さ0.075mmの芳香
族ポリアミド不織布シートNOMEX410を用いた
以外は、実施例3と同様にして電機巻線を得た。 実施例 5〜8 実施例3における1―ビニルイミダゾールの代
わりに、それぞれ2―メチル―1―ビニルイミダ
ゾール、2,4―ジメチル―1―メチルイミダゾ
ール、1―ビニルモルホリン及び1―ビニルピリ
ジンを用いた以外は、実施例3と同様にして4種
の電機巻線を得た。 実施例 9 スチレン100重量部、1―ビニルイミダゾール
5重量部及びベンゾイルパーオキサイド1重量部
を混合して80℃で5時間加熱してバインダーを調
製した。このバインダーを用いた以外は実施例3
と同様にして電機巻線を得た。 実施例 10 電機巻線製造時に、100℃で5時間真空乾燥す
る代わりに180℃で2時間加熱乾燥した以外は、
実施例9と同様にして電機巻線を得た。 実施例 11 1―ビニルイミダゾール100重量部、トルエン
5重量部及びベンゾイルパーオキサイド1重量部
を混合して80℃で5時間加熱してバインダーを調
製し、これを用いた以外は、実施例9と同様にし
て電機巻線を得た。 比較例 1―シアノエチル―2―フエニルイミダゾール
をメタノール―トルエン混液(重量比1:1)に
溶解して3重量%溶液(触媒溶液)を調製した。
素線導体上に厚さ0.075mmの芳香族ポリアミド不
織布シートNOMEX410及び厚さ0.1mmのガラステ
ープを規定巻回し、これを上記触媒溶液に5時間
浸漬して風乾した。次いで、90℃で12時間、更に
60℃、0.1Torrの条件で5時間減圧乾燥した。次
に実施例1におけるものと同じ絶縁ワニスを真空
含浸し、110℃で15時間、150℃で2時間、250℃
で5時間硬化を行なつて電機巻線を得た。 以上の実施例1〜11及び比較的で製造した電機
巻線の主要特性である絶縁破壊電圧の測定結果を
下表に纒めて示す。又、真空含浸に使用した残り
のワニスの一部をガードナー式粘度測定管に入れ
て密封し、これを60℃の恒温槽に入れ、ワニスの
初期粘度が10倍に達するまでの日数を測定し、可
使時間として下表に併記した。
The present invention relates to a novel curing catalyst for curing epoxy-isocyanate resins. BACKGROUND ART In recent years, as electrical equipment such as rotating electrical machines has become larger in capacity, smaller and lighter, and has harsher operating conditions, there has been a desire to develop electrical machine windings with excellent heat resistance. For this reason, insulating base materials and insulating varnishes with excellent heat resistance have been developed as constituent materials for electrical machine windings. Currently, glass-lined mica tape or heat-resistant film materials are used as insulating base materials, and epoxy-isocyanate resins are used as insulating varnishes. Electrical windings have been obtained. When producing electrical machine windings, it is necessary to add a curing catalyst to the insulating varnish in order to obtain electrical machine windings with good heat resistance. However, when a curing catalyst is added to an insulating varnish, the insulating varnish gradually hardens and thickens even at room temperature, shortening the usable life of the insulating varnish. This is disadvantageous and uneconomical in factory operations where large quantities of insulating varnish are prepared and used repeatedly to insulate electrical machine windings. To this end, a method has been proposed in which the curing catalyst is held in the insulating base material without adding the curing catalyst to the insulating varnish, and then the insulating varnish that does not contain the curing catalyst is impregnated and brought into contact with the catalyst within the insulating layer. There is. A winding impregnated with an insulating varnish by this method is heated in exactly the same way as a winding impregnated with an insulating varnish containing a curing catalyst, thereby curing the insulating varnish and becoming an electric machine winding with good heat resistance. However, when the insulating base material holding the curing catalyst is wound around the conductor, the catalyst tends to peel off due to friction etc., especially when the catalyst is solid or
This tendency is remarkable when the insulating base material is a film. As a result, the content of the curing catalyst in the insulating layer fluctuates, and it is difficult to adjust the curing conditions accordingly, making it impossible to avoid variations in the characteristics of the electrical windings produced. Moreover, when the insulating varnish and the insulating base material are in contact with each other, the curing catalyst is eluted into the insulating varnish, and the usable life of the insulating varnish is short and still insufficient. Moreover, when the insulating base material must be dried at high temperatures immediately before being impregnated with the insulating varnish, the retained curing catalyst often evaporates from the insulating base material, resulting in insufficient curing. The present invention was made in view of the current situation, and its purpose is to provide a novel curing catalyst for curing epoxy-isocyanate resins. To summarize the present invention, the epoxy of the present invention
The isocyanate resin curing catalyst is characterized by being made of a polymer having a vinyl-substituted nitrogen-containing heterocyclic compound as a constituent monomer unit. In recent years, it has been announced that poly-4-vinylpyridine and its copolymer with styrene exhibit a catalytic effect on the reaction between isocyanate and alcohol.
[Journal of Polymer Science: Part C.No.22,
[See PP 309-318 (1968)] The present inventors focused on this type of compound and polymerized vinyl monomers such as vinyl imidazole, vinyl morpholine, and vinyl pyridine on an insulating substrate or with other vinyl compounds. The present invention was completed as a result of various studies on a method of copolymerizing the catalyst to reduce its peeling and elution into the insulating varnish while retaining the catalyst's function, or to improve the heat resistance of the catalyst. It is. The curing catalyst made of a polymer having a vinyl-substituted nitrogen-containing heterocyclic compound as a constituent monomer unit of the present invention is prepared by impregnating an insulating base material to be impregnated with varnish in advance, and then applying the base material onto a conductor. It is applied to the production of electrical machine windings with excellent heat resistance and electrical properties by winding the wire, then impregnating it with a varnish made of epoxy-isocyanate resin and curing it. Examples of the vinyl-substituted nitrogen-containing heterocyclic compound in the present invention include 1-vinylimidazole,
2-methyl-1-vinylimidazole, 2,4-
Dimethyl-1-vinylimidazole, 1-allyl-2-ethyl-4-methylimidazole, 2-styrylimidazole, 1-vinylmorpholine, 2
-vinylpyridine, 4-vinylpyridine, 2-methyl-5-vinylpyridine, 2-vinyl-5-ethylpyridine, 2-vinylquinoline and 4-vinylquinoline. Examples of the compound (vinyl monomer) to be copolymerized with the vinyl-substituted nitrogen-containing heterocyclic compound include styrene and its derivatives, diallyl phthalate, diallyl isophthalate, trimethylolpropane allyl ether, glycerin allyl ether, and trimethylolpropane allyl ether. Examples include allyl compounds such as allyl cyanurate and triallylisocyanurate, methacrylic acid and derivatives thereof, polybutadiene and modified products thereof, and the like. These can be used alone or in combination of two or more. When homopolymerizing or copolymerizing the vinyl-substituted nitrogen-containing heterocyclic compound described above with another vinyl compound, a polymerization initiator, a polymerization accelerator, a polymerization inhibitor, etc. can be added as necessary. Examples of the polymerization initiator in the present invention include:
Acyl peroxides such as benzoyl peroxide and acetyl peroxide, hydroperoxides such as kyumene hydroperoxide, ketone peroxides such as methyl ethyl ketone peroxide and cyclohexanone peroxide, dicumyl peroxide and dicumyl peroxide.
Alkyl peroxides such as tertiary butyl peroxide, oxyperoxides such as tertiary butyl peroxybenzoate and tertiary butyl peroxy acetate, and common such as 2,2'-azobisisobutyronitrile. These radical initiators can be added alone or in combination of two or more. The amount of these polymerization initiators added is generally about 0.5 to 5% by weight, preferably about 1 to 3% by weight based on the vinyl-substituted nitrogen-containing heterocyclic compound and other monomers for polymerization.
It is appropriate to keep it within the range of . In addition, examples of the polymerization accelerator in the present invention include salts of commonly used naphthenic acid or octenoic acid of various metals (e.g., cobalt, manganese, iron, lead, nickel, tin, zinc, etc.), The amount added is generally about 2% by weight or less based on the vinyl-substituted nitrogen-containing heterocyclic compound and other monomers for copolymerization. In addition, examples of the polymerization inhibitor in the present invention include quinones such as hydroquinone, p-tertiary butylcatechol, and pyrogallol, and other commonly used ones. Suitably, the amount is about 0.5% by weight or less based on the nitrogen heterocyclic compound and other comonomers. Examples of the epoxy compound that is a component of the epoxy-isocyanate resin that is the base material of the varnish for electrical windings to which the curing catalyst of the present invention is applied include diglycidyl ether of bisphenol A,
Butadiene diepoxide, 3,4-epoxycyclohexylmethyl-(3,4-epoxy)cyclohexanecarboxylate, vinylcyclohexene dioxide, 4,4'-di(1,2-epoxyethyl)diphenyl ether, 4,4' -(1.2-
epoxycyclohexyl)propane, diglycidyl ether of resorcin, diglycidyl ether of phloroglucin, diglycidyl ether of methylphloroglucin, bis(2,3-epoxycyclopentyl)ether, 2-(3,4-epoxy)cyclohexane-5, 5'- Spiro (3,4-
epoxy)cyclohexane-m-dioxane, bis-(3,4-epoxy-6-methylcyclohexyl)adipate and N,N'-m-phenylenebis(4,5-epoxy-1,2-cyclohexanedicarboximide), etc. Bifunctional epoxy compound, triglycidyl ether of para-aminophenol, polyallyl glycidyl ether, 1,
3,5-tri(1,2-epoxyethyl)benzene, 2,2',4,4'-tetraglycidoxybenzophenone, tetraglycidoxytetraphenylmethane, polyglycidyl ether of phenol formaldehyde novolak, Tri- or higher functional epoxy compounds such as triglycidyl ether of glycerin and triglycidyl ether of trimethylolpropane can be mentioned. In addition, as polyfunctional isocyanate compounds,
Methane diisocyanate, ethane-1,2-diisocyanate, butane-1,1-diisocyanate, butane-1,2-diisocyanate, transvinylene diisocyanate, propane-1,3
-diisocyanate, butane-1,4-diisocyanate, 2-butane-1,4-diisocyanate, 2-methylbutane-1,4-diisocyanate, pentane-1,5-diisocyanate, 2,
2-dimethylpentane-1,5-diisocyanate, hexane-1,6-diisocyanate, heptane-1,7-diisocyanate, octane-
1,8-diisocyanate, nonane-1,9-diisocyanate, decane-1,10-diisocyanate, dimethylsilane diisocyanate, diphenylsilane diisocyanate, ω,ω′-1,3
-dimethylbenzene diisocyanate, ω,
ω'-1,4-dimethylbenzene diisocyanate, ω,ω'-1,3-dimethylcyclohexane diisocyanate, ω,ω'-1,4-dimethylcyclohexane diisocyanate, ω,ω'-1,
4-dimethylnaphthalene diisocyanate, ω,
ω'-1,5-dimethylnaphthalene diisocyanate, cyclohexane-1,3-diisocyanate, cyclohexane-1,4-diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate Nylene diisocyanate, 1-
Methylbenzene-2,4-diisocyanate, 1
-Methylbenzene-2,5-diisocyanate,
1-methylbenzene-2,6-diisocyanate, 1-methylbenzene-3,5-diisocyanate, diphenyl ether-4,4'-diisocyanate, diphenyl ether-2,4'-diisocyanate, naphthalene-1,4- Diisocyanate, naphthalene-1,5-diisocyanate, biphenyl-4,4'-diisocyanate, 3,3'-
Dimethylbiphenyl-4,4'-diisocyanate, 2,3-dimethoxybiphenyl-4,4'-diisocyanate, diphenylmethane-4,4'-diisocyanate, 3,3'-dimethoxydiphenylmethane-4,4'- Diisocyanate, 4,4'-dimethoxydiphenylmethane-3,3'-diisocyanate, diphenylsulfide-4,4'-diisocyanate and diphenylsulfone-4,4'-
Bifunctional isocyanate compounds such as diisocyanate, trifunctional such as polymethylene polyphenyl isocyanate, triphenylmethane triisocyanate, tris(4-isocyanate phenyl) thiophosphate, and 3,3',4,4'-diphenylmethane tetraisocyanate. The above isocyanate compounds can be mentioned. Dimers and trimers of these isocyanate compounds, or liquid isocyanate compounds obtained by converting a portion of 4,4'-diphenylmethane diisocyanate into carbodiimide, etc. can also be used. Furthermore, the above-mentioned epoxy compound and isocyanate compound can be used alone or in a mixture of two or more. The epoxy-isocyanate-based impregnated varnish prepared by blending the above-mentioned epoxy compound and isocyanate compound requires an appropriate blending ratio in order to provide the cured product with excellent heat resistance. The blending ratio is preferably 2.5 to 40 equivalents of the isocyanate compound per equivalent of the epoxy compound. If it is outside this range, the weight loss on heating, electrical properties, mechanical properties, etc. of the cured product will not be balanced, and there is a concern that the insulation performance as an electric machine winding will deteriorate. Particularly desirable is a range of 1 equivalent of the former to 5 to 15 equivalents of the latter. The above-mentioned epoxy-isocyanate-based impregnated varnish to which the curing catalyst of the present invention is applied is heated using a polymer having a vinyl-substituted nitrogen-containing heterocyclic compound as a constituent monomer unit, which is held on an insulating base material, as a catalyst. This allows for easy curing.
In this case, the amount of the catalyst added to the epoxy-isocyanate impregnated varnish is based on the monomer unit of the vinyl-substituted heterocyclic compound in the polymer.
It is appropriate to adjust the content to 0.01 to 30.0% by weight. In addition, examples of the organic insulating base material in the present invention include aromatic polyamide, polyimide, polybenzimidazole, polyamideimide, polyesterimide, polysulfone, poly-p-xylylene, polyphenylene oxide, polyimidazopyrrolone ether, and polyamide. imidazopyrrolone, poly-p-phenyleneoxadiazole, polybenzothiazole, polytriazole, polyquinazolinedione, polybenzoxazinone, polyquinazolone, polyquinoxaline, polybenzimidazoleimide, polyindophenadine, polybenzoxazole pyro Films, nonwoven fabrics, papers, etc. containing at least one structural unit such as meritzimide, polyisoindoquinazolinedione, polymethylquinazolone, polybenzimidazoquinazoline, polyindolone, and polyimidazobenzophenanthroline are considered heat resistant. It is useful. Examples of the inorganic insulating base material include glass cloth and mica sheets. In particular, the mica sheet is preferably a sheet made of soft or hard mica by an unfired or fired method. In preparing the catalyst of the present invention, a polymer solution can be easily obtained by dissolving a predetermined amount of each component in an appropriate solvent as needed and reacting at an appropriate temperature and time. In addition, in the production of electrical windings, this solution is applied onto a suitable organic or inorganic insulating base material and dried to form an insulating sheet.
The desired electrical winding can be obtained by winding this on a wire conductor, vacuum drying it, impregnating it with a predetermined insulating varnish, and curing it by raising the temperature stepwise. EXAMPLES Next, the present invention and its effects will be explained in detail with reference to Examples, but the present invention is not limited to these in any way. Example 1 (a) Preparation of catalyst 1,2-polybutadiene (manufactured by Nippon Soda Co., Ltd.,
NISSO-PB-B 5000: molecular weight 5000) 100 parts by weight, triallyl isocyanurate 20 parts by weight,
5 parts by weight of 1-vinylimidazole and 0.12 parts by weight of benzoyl peroxide were dissolved in 180 parts by weight of toluene. React at 80℃ for 16 hours, viscosity
A solution of 130 centipoise was obtained. A binder (catalyst solution) was prepared by adding 2 parts by weight of dicumyl peroxide and 0.5 parts by weight of benzoyl peroxide. (b) Creation of insulating base material The above binder was mixed with a 0.05 mm thick aromatic polyamide nonwoven fabric sheet (manufactured by DuPont,
NOMEX410) was applied to one side. Next, when some of the solvent evaporates and becomes sticky, the thickness
A 0.05 mm laminated mica sheet was attached to the adhesive surface and finished with a thick roll to obtain a 0.14 mm thick mica insulating sheet, and this sheet was cut into 25 mm width to obtain tape. (c) Preparation of insulating varnish Bisphenol A diglycidyl ether (manufactured by Dow Chemical Company, DER 332: epoxy equivalent
175) 100 parts by weight, liquid diphenylmethane diisocyanate (manufactured by Bayer AG, Desmodyur)
CD: An insulating varnish was obtained by blending 1000 parts by weight of isocyanate equivalent (140) and 0.10 parts by weight of malonitrile. (d) Manufacture of electrical windings The tape obtained in (b) above was wound in a prescribed manner on a bare wire conductor, dried in vacuum at 100°C for 5 hours, and then impregnated with the insulating varnish obtained in (c) above under vacuum pressure. and 15 at 110℃
Curing was performed at 150°C for 2 hours and at 250°C for 5 hours to obtain an electrical winding. Example 2 An electrical winding was obtained in the same manner as in Example 1, except that a polyimide film (manufactured by DuPont, KAPTON, thickness 0.05 mm) was used instead of the aromatic polyamide nonwoven fabric sheet NOMEX410 in Example 1. Example 3 (a) Preparation of catalyst 1,2-polybutadiene (manufactured by Nippon Soda Co., Ltd.,
NISSO-PB-B 5000: molecular weight 5000) 100 parts by weight, triallyl isocyanurate 20 parts by weight,
5 parts by weight of 1-vinylimidazole and 1 part by weight of benzoyl peroxide were mixed and heated at 80°C.
A binder was prepared by heating for an hour. (b) Preparation of insulating base material The above binder was applied to a glass cloth sheet with a thickness of 0.1 mm. Next, the polyimide film KAPTON with a thickness of 0.025 mm was attached,
Dry at 110℃ for 30 minutes to obtain a sheet, which is
The tape was cut into 25 mm pieces. (c) Preparation of insulating varnish An insulating varnish was obtained in exactly the same manner as in (c) of Example 1. (d) Manufacture of electrical windings The tape obtained in (b) above is wound in a prescribed manner on a wire conductor, and vacuum impregnated with the insulating varnish obtained in (c) above.
Electrical windings were obtained by curing at 110°C for 15 hours, 150°C for 2 hours, and 250°C for 5 hours. Example 4 An electric machine winding was obtained in the same manner as in Example 3, except that the aromatic polyamide nonwoven fabric sheet NOMEX410 with a thickness of 0.075 mm was used instead of the polyimide film KAPTON with a thickness of 0.025 mm in Example 3. Examples 5 to 8 2-methyl-1-vinylimidazole, 2,4-dimethyl-1-methylimidazole, 1-vinylmorpholine, and 1-vinylpyridine were used in place of 1-vinylimidazole in Example 3, respectively. Except for this, four types of electric machine windings were obtained in the same manner as in Example 3. Example 9 100 parts by weight of styrene, 5 parts by weight of 1-vinylimidazole and 1 part by weight of benzoyl peroxide were mixed and heated at 80°C for 5 hours to prepare a binder. Example 3 except that this binder was used
Electrical windings were obtained in the same manner. Example 10 During the manufacture of electrical windings, the following steps were taken:
An electric machine winding was obtained in the same manner as in Example 9. Example 11 100 parts by weight of 1-vinylimidazole, 5 parts by weight of toluene and 1 part by weight of benzoyl peroxide were mixed and heated at 80°C for 5 hours to prepare a binder. Electrical windings were obtained in the same manner. Comparative Example A 3% by weight solution (catalyst solution) was prepared by dissolving 1-cyanoethyl-2-phenylimidazole in a methanol-toluene mixture (weight ratio 1:1).
An aromatic polyamide nonwoven fabric sheet NOMEX410 with a thickness of 0.075 mm and a glass tape with a thickness of 0.1 mm were wound around the wire conductor in a specified manner, and this was immersed in the above catalyst solution for 5 hours and air-dried. Then, at 90℃ for 12 hours, and then
It was dried under reduced pressure at 60°C and 0.1 Torr for 5 hours. Next, the same insulating varnish as in Example 1 was impregnated in vacuum at 110°C for 15 hours, at 150°C for 2 hours, and at 250°C.
After curing for 5 hours, an electrical winding was obtained. The measurement results of the dielectric breakdown voltage, which is the main characteristic of the electrical machine windings manufactured in Examples 1 to 11 and Comparison, are summarized in the table below. In addition, a portion of the remaining varnish used for vacuum impregnation was placed in a Gardner-type viscosity measuring tube, sealed, and placed in a constant temperature bath at 60℃, and the number of days until the initial viscosity of the varnish reached 10 times was measured. , are also listed in the table below as pot life.

【表】【table】

【表】 表から明らかなように、本発明におけるビニル
置換含窒素複素環式化合物を構成単量体単位とし
て有する重合体よりなる触媒は、エポキシ―イソ
シアネート系樹脂を含む絶縁ワニスを硬化させる
のに極めて有効であり、更に又、このビニル置換
含窒素複素環式化合物を絶縁基材内で単独重合又
は他のビニル化合物と共重合させ、この絶縁基材
を導体上に巻回して上記絶縁ワニスを含浸して硬
化して得られる電機巻線は、従来の硬化触媒を付
着担持させて製造された電機巻線と比べて、その
電機巻線の特性例えば絶縁破壊電圧は同等であ
り、しかも、ワニスの可使時間が大幅に向上し、
更には、絶縁基材を高温にさらしても触媒として
の硬化能力の低下は起らない。 以上説明したように、本発明によれば、耐熱性
及び電気的特性の優れた電機巻線の製造に使用さ
れるエポキシ―イソシアネート系樹脂の硬化用触
媒を提供することができる。
[Table] As is clear from the table, the catalyst of the present invention made of a polymer having a vinyl-substituted nitrogen-containing heterocyclic compound as a constituent monomer unit is effective for curing an insulating varnish containing an epoxy-isocyanate resin. It is extremely effective. Furthermore, this vinyl-substituted nitrogen-containing heterocyclic compound is homopolymerized or copolymerized with other vinyl compounds within an insulating base material, and this insulating base material is wound on a conductor to coat the above-mentioned insulating varnish. The electric machine winding obtained by impregnating and curing has the same properties, such as dielectric breakdown voltage, as compared to the electric machine winding produced by adhering and carrying a conventional curing catalyst. The pot life of
Furthermore, even if the insulating base material is exposed to high temperatures, the curing ability as a catalyst does not decrease. As explained above, according to the present invention, it is possible to provide a catalyst for curing epoxy-isocyanate resin used in manufacturing electric machine windings with excellent heat resistance and electrical properties.

Claims (1)

【特許請求の範囲】 1 構成単量体単位としてビニル置換含窒素複素
環式化合物を有する重合体よりなることを特徴と
するエポキシ―イソシアネート系樹脂硬化用触
媒。 2 ビニル置換含窒素複素環式化合物が1―ビニ
ルイミダゾール、2―メチル―1―ビニルイミダ
ゾール、2,4―ジメチル―1―ビニルイミダゾ
ール、1―ビニルモルホリン及び4―ビニルピリ
ジンよりなる群から選ばれた少なくとも1種の化
合物である特許請求の範囲第1項記載のエポキシ
―イソシアネート系樹脂硬化用触媒。 3 重合体がビニル置換含窒素複素環式化合物の
単独重合体である特許請求の範囲第1項又は第2
項記載のエポキシ―イソシアネート系樹脂硬化用
触媒。 4 重合体がビニル置換含窒素複素環式化合物と
スチレン、トリアリルシアヌレート、トリアリル
イソシアヌレート及びポリブタジエンよりなる群
から選ばれた少なくとも1種の化合物との共重合
体である特許請求の範囲第1項又は第2項記載の
エポキシ―イソシアネート系樹脂硬化用触媒。
[Scope of Claims] 1. A catalyst for curing epoxy-isocyanate resins, comprising a polymer having a vinyl-substituted nitrogen-containing heterocyclic compound as a constituent monomer unit. 2. The vinyl-substituted nitrogen-containing heterocyclic compound is selected from the group consisting of 1-vinylimidazole, 2-methyl-1-vinylimidazole, 2,4-dimethyl-1-vinylimidazole, 1-vinylmorpholine, and 4-vinylpyridine. The epoxy-isocyanate resin curing catalyst according to claim 1, which is at least one compound. 3 Claims 1 or 2 in which the polymer is a homopolymer of a vinyl-substituted nitrogen-containing heterocyclic compound
Catalyst for curing epoxy-isocyanate resin as described in Section 1. 4. Claim No. 4, wherein the polymer is a copolymer of a vinyl-substituted nitrogen-containing heterocyclic compound and at least one compound selected from the group consisting of styrene, triallyl cyanurate, triallyl isocyanurate, and polybutadiene. The epoxy-isocyanate resin curing catalyst according to item 1 or 2.
JP1793880A 1980-02-18 1980-02-18 Catalyst for curing epoxy-isocyanate resin, and manufacturing of coil for electrical machinery Granted JPS56115313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1793880A JPS56115313A (en) 1980-02-18 1980-02-18 Catalyst for curing epoxy-isocyanate resin, and manufacturing of coil for electrical machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1793880A JPS56115313A (en) 1980-02-18 1980-02-18 Catalyst for curing epoxy-isocyanate resin, and manufacturing of coil for electrical machinery

Publications (2)

Publication Number Publication Date
JPS56115313A JPS56115313A (en) 1981-09-10
JPS6331489B2 true JPS6331489B2 (en) 1988-06-24

Family

ID=11957712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1793880A Granted JPS56115313A (en) 1980-02-18 1980-02-18 Catalyst for curing epoxy-isocyanate resin, and manufacturing of coil for electrical machinery

Country Status (1)

Country Link
JP (1) JPS56115313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121097A (en) * 1988-10-31 1990-05-08 Hochiki Corp Device for guard patrol

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179172A (en) * 1988-10-06 1993-01-12 Henkel Research Corporation Epichlorohydrin or chlorine-containing vinyl or acrylate (co)polymer-modified amines
JP3448435B2 (en) * 1996-07-01 2003-09-22 東洋アルミホイルプロダクツ株式会社 Paper container and method of forming paper container
CN101855678B (en) * 2007-10-12 2015-11-25 住友电工运泰克株式会社 Insulated electric conductor, the electric coil employing this insulated electric conductor and engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121097A (en) * 1988-10-31 1990-05-08 Hochiki Corp Device for guard patrol

Also Published As

Publication number Publication date
JPS56115313A (en) 1981-09-10

Similar Documents

Publication Publication Date Title
EP0036429B1 (en) Electrically insulating mica tape
US4013987A (en) Mica tape binder
US5464949A (en) Heat resistant resin compositions, articles and method
CA1233295A (en) Low viscosity epoxy resin compositions
US4254351A (en) Metal acetylacetonate latent accelerators for an epoxy-styrene resin system
US3998983A (en) Resin rich epoxide-mica flexible high voltage insulation
US3759734A (en) Binding tape and method of making same
US4160178A (en) Method of coating an article with a solventless acrylic epoxy impregnating composition curable in a gas atmosphere without heat
US4661397A (en) Polybutadiene bonded extremely flexible porous mica tape
US4157414A (en) Resin rich polybutadiene-mica flexible high voltage insulation
JPH0135587B2 (en)
JPS6331489B2 (en)
US3930915A (en) Method of making an electrical article
US4026872A (en) Epoxy resin compositions
JP7409980B2 (en) mold electrical equipment
JPS6217803B2 (en)
JPH02136046A (en) Insulation structure and insulation processing method for electrical rotating machine coil
JPS6136330B2 (en)
JPS6037813B2 (en) mica prepreg
JPH0452063B2 (en)
JPH0121568B2 (en)
JPS6351321B2 (en)
JPH0418448B2 (en)
JPS6185710A (en) Manufacture of heat resistant flat insulated wire
JP2000026630A (en) Production of mica tape