JPS63292667A - Mos semiconductor device - Google Patents
Mos semiconductor deviceInfo
- Publication number
- JPS63292667A JPS63292667A JP62128911A JP12891187A JPS63292667A JP S63292667 A JPS63292667 A JP S63292667A JP 62128911 A JP62128911 A JP 62128911A JP 12891187 A JP12891187 A JP 12891187A JP S63292667 A JPS63292667 A JP S63292667A
- Authority
- JP
- Japan
- Prior art keywords
- cell array
- electrode material
- insulating film
- region
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 23
- 239000004020 conductor Substances 0.000 claims abstract description 25
- 239000000758 substrate Substances 0.000 claims description 9
- 239000007772 electrode material Substances 0.000 abstract description 35
- 239000000463 material Substances 0.000 abstract description 6
- 238000002955 isolation Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 230000010354 integration Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 241000293849 Cordylanthus Species 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Landscapes
- Semiconductor Memories (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、大規模集積回路装置における絶縁ゲート型電
界効果トランジスタ等のMOS型半導体装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a MOS semiconductor device such as an insulated gate field effect transistor in a large-scale integrated circuit device.
[従来の技術]
近年、絶縁ゲート型電界効果トランジスタ(MISS
FET)の微細化が進み、その集積度が高くなってい
る。この半導体装置の高集積化のためには、各能動素子
の微細化に加え、各素子間を分離する素子間分離領域も
微細化する必要がある。[Prior art] In recent years, insulated gate field effect transistors (MISS
FETs) are becoming increasingly finer, and their degree of integration is increasing. In order to achieve high integration of this semiconductor device, in addition to miniaturizing each active element, it is also necessary to miniaturize an inter-element isolation region that separates each element.
このため、種々の素子分離技術が開発され、提案されて
いる。For this reason, various element isolation techniques have been developed and proposed.
ところで、従来の代表的な素子分離技術として、LOG
O8技術と称せられる選択酸化による素子分離技術があ
る。しかしながら、このLOCO3による素子分離技術
においては、活性領域から素子間分離領域への遷移領域
、即ちバーズビークの幅が大きいため、これが高集積化
に対する障害になるという欠点がある。この高集積化に
対する障害は、小さな能動素子を大量に集積する必要が
あるメモリーセルアレイにおいて特に重大なものとなる
。By the way, as a typical conventional element isolation technology, LOG
There is an element isolation technology using selective oxidation called O8 technology. However, this element isolation technology using LOCO3 has a disadvantage in that the width of the transition region from the active region to the element isolation region, that is, the bird's beak, is large, and this becomes an obstacle to high integration. This impediment to high integration becomes particularly serious in memory cell arrays where large amounts of small active elements must be integrated.
そこで、この欠点を解消する手段として、従来、第4図
(a)乃至(d)に示すように、電極材間に絶縁膜を埋
め込んで、フィールド絶縁膜を形成するという技術が提
案されている。Therefore, as a means to overcome this drawback, a technique has been proposed in which a field insulating film is formed by embedding an insulating film between electrode materials, as shown in FIGS. 4(a) to 4(d). .
以下、このフィールド絶縁膜の形成方法について第4図
(a)乃至(d)を参照して説明する。A method of forming this field insulating film will be described below with reference to FIGS. 4(a) to 4(d).
先ず、第4図(a)に示すように、半導体基板21上に
ゲート絶縁膜22を形成した後、ゲート電極膜23を形
成する。次に、第4図(b)に示すように、フォトレジ
スト技術により、活性領域を規定するマスクパターンを
形成した後、ゲート電極膜23をエツチングして電極パ
ターン24を形成する。その後、この電極パターン24
をマスクとして、チャンネルカット不純物を基板21に
導入し、チャンネルカット領域25を形成する。First, as shown in FIG. 4(a), a gate insulating film 22 is formed on a semiconductor substrate 21, and then a gate electrode film 23 is formed. Next, as shown in FIG. 4(b), a mask pattern defining an active region is formed using a photoresist technique, and then the gate electrode film 23 is etched to form an electrode pattern 24. After that, this electrode pattern 24
Using as a mask, a channel cut impurity is introduced into the substrate 21 to form a channel cut region 25.
次に、第4図(C)に示すように、例えば、バイアスス
パッタ蒸着法により、絶縁膜26を成長させる。この場
合に、ゲート電極パターン24は絶縁膜26に覆われる
が、この絶縁膜26は、パターン24上で薄く、パター
ン24間では厚く形成される。Next, as shown in FIG. 4C, an insulating film 26 is grown by, for example, bias sputter deposition. In this case, the gate electrode pattern 24 is covered with an insulating film 26, but this insulating film 26 is formed thinly on the pattern 24 and thickly between the patterns 24.
次に、第4図(d)に示すように、ゲート電極パターン
24の表面が露出するように絶縁膜26をエツチングす
る。その後、配線用材料膜27を形成する。Next, as shown in FIG. 4(d), the insulating film 26 is etched so that the surface of the gate electrode pattern 24 is exposed. Thereafter, a wiring material film 27 is formed.
このように、活性領域の電極材料で形成されたパターン
間に絶縁物を埋め込み、これをフィールド絶縁膜とする
ことにより、前述のLOCO3酸化技術に伴うバースビ
ークの問題を解消することができ、メモリーセルアレイ
の高集積化が可能となる。In this way, by embedding an insulator between the patterns formed of the electrode material in the active region and using this as a field insulating film, it is possible to solve the problem of birthbeak associated with the LOCO3 oxidation technology mentioned above, and improve memory cell arrays. High integration becomes possible.
[発明が解決しようとする問題点]
しかしながら、上述のフィールド絶縁膜26が形成され
た半導体装置においては、第5図(a)に示すように、
電極パターン24が規則正しく、密に形成されたメモリ
ーセルアレイ内部28においては、絶縁膜26がパター
ン24間の領域に良好に埋込まれるが、パターンが疎と
なるセルアレイ端部29においては、絶縁膜26が十分
に形成されず、薄くなってしまう。このため、第5図(
b)に示すように、絶縁膜26上に配線用材料膜27を
形成し、更に素子を形成した場合は、セルアレイ端部2
9の素子においてフィールド絶縁膜26が薄くなってい
るため、寄生トランジスタのサブスレショルド電圧が低
下してしまう。また、このセルアレイ端部29にて絶縁
膜26及び配線層30に急激な段差が生じるため配線形
状が悪化してしまう。このため、セルアレイ端部の素子
の特性がセルアレイ内部の素子に比して悪くなるという
欠点がある。[Problems to be Solved by the Invention] However, in the semiconductor device in which the above-described field insulating film 26 is formed, as shown in FIG. 5(a),
In the memory cell array interior 28 where the electrode patterns 24 are regularly and densely formed, the insulating film 26 is well embedded in the areas between the patterns 24, but in the cell array end 29 where the patterns are sparse, the insulating film 26 is is not formed sufficiently and becomes thin. For this reason, Figure 5 (
As shown in b), when the wiring material film 27 is formed on the insulating film 26 and further elements are formed, the cell array end 2
Since the field insulating film 26 in the device No. 9 is thinner, the subthreshold voltage of the parasitic transistor is lowered. Moreover, since a sharp step occurs in the insulating film 26 and the wiring layer 30 at the cell array end 29, the wiring shape deteriorates. Therefore, there is a drawback that the characteristics of the elements at the end of the cell array are worse than those of the elements inside the cell array.
本発明はかかる事情に鑑みてなされたものであって、セ
ルアレイ端部においても、素子の特性が劣化することが
なく、また配線形状に急激な段差が生ずることがなく、
セルアレイの全領域において均質な特性を得ることがで
きるMO8型半導体装置を提供することを目的とする。The present invention has been made in view of the above circumstances, and it prevents the characteristics of the elements from deteriorating even at the ends of the cell array, and prevents sudden steps from forming in the wiring shape.
It is an object of the present invention to provide an MO8 type semiconductor device that can obtain uniform characteristics in the entire region of a cell array.
[問題点を解決するための手段]
本発明に係るMOS型半導体装置は、半導体基板上に、
絶縁膜を介して複数個の導電材を一定の間隔で配置し各
導電材の間に絶縁膜を埋込んでフィールド絶縁膜を形成
して構成されるセルアレイ領域を有するMOS型半導体
装置において、前記セルアレイ領域の外側に配置され、
前記セルアレイ領域内の導電材群の相互間隔と実質的に
同一の間隔でセルアレイ領域の端部の導電材から離隔す
る補助の導電材を有することを特徴とする。[Means for Solving the Problems] A MOS semiconductor device according to the present invention includes a semiconductor substrate having:
In a MOS type semiconductor device having a cell array region configured by arranging a plurality of conductive materials at regular intervals through an insulating film and embedding an insulating film between each conductive material to form a field insulating film, placed outside the cell array area,
The present invention is characterized in that it has an auxiliary conductive material spaced apart from the conductive material at the end of the cell array region at substantially the same distance as the mutual distance between the conductive material groups in the cell array region.
[作用]
本発明においては、補助の導電材がセルアレイ領域内の
導電材群の相互間隔と実質的に同一の間隔でセルアレイ
領域の端部の導電材から離隔して、セルアレイ領域の外
側に配置されている。従って、導電材及び半導体基板上
に絶縁膜を形成すると、セルアレイ端部の導電材と補助
導電材との間にも、セルアレイ内部の導電材相互間と同
様に十分な厚さの絶縁膜が形成される。これにより、セ
ルアレイの端部に至るまで均質な素子を形成することが
でき、また配線形状の悪化を防止することができる。[Function] In the present invention, the auxiliary conductive material is spaced apart from the conductive material at the end of the cell array region at substantially the same distance as the mutual spacing between the conductive materials in the cell array region, and is disposed outside the cell array region. has been done. Therefore, when an insulating film is formed on the conductive material and the semiconductor substrate, a sufficiently thick insulating film is formed between the conductive material and the auxiliary conductive material at the end of the cell array, as well as between the conductive materials inside the cell array. be done. This makes it possible to form uniform elements up to the ends of the cell array, and prevent deterioration of the wiring shape.
[実施例]
次に、本発明の実施例に係るMOS型半導体装置につい
て、添付の図面を参照して説明する。第1図はセルアレ
イ全体の平面図であり、第2図(a)は第1図の■−■
線による断面図、第2図(b)はその絶縁膜形成後の断
面図である。[Example] Next, a MOS semiconductor device according to an example of the present invention will be described with reference to the accompanying drawings. Fig. 1 is a plan view of the entire cell array, and Fig. 2 (a) is a plan view of the entire cell array.
FIG. 2(b) is a cross-sectional view taken along a line after the insulating film is formed.
=6−
第1図及び第2図(a>は、前述の第4図(b)に示す
製造段階に相当する。つまり、半導体基板4上にゲート
絶縁膜3を形成した後、ゲート電極材料の膜を一様に形
成する。そして、フォトレジスト技術により活性領域を
規定するマスクパターンを形成した後、電極材料膜をエ
ツチングして活性領域に電極パターンを形成する。これ
により、等幅の電極材2が一定の間隔で配列したセルア
レイ5が形成される。この電極材2は後に素子の一部と
なる。=6- Figures 1 and 2 (a) correspond to the manufacturing stage shown in Figure 4 (b) above. That is, after forming the gate insulating film 3 on the semiconductor substrate 4, the gate electrode material is After forming a mask pattern that defines the active region using photoresist technology, the electrode material film is etched to form an electrode pattern in the active region. A cell array 5 is formed in which materials 2 are arranged at regular intervals.This electrode material 2 will later become a part of the device.
この発明においては、第1図に示すように、セルアレイ
5の周囲に、このセルアレイ5を取囲むようにしてダミ
ー又は補助の電極材1が形成されている。このダミーの
電極材1はセルアレイ5の電極材2と同一の幅を有し、
この電極材2相互間の間隔と同一の間隔をおいて、電極
材2の幅方向端部及び長手方向端部から離隔する。この
ダミー電極材1は素子の一部とはならず、単に、後述す
る如く、フィールド絶縁膜を均厚化するためのものであ
る。このタミー電極材1は電極材2を形成するために前
述のマスクパターンを形成する際に、この電極材1のパ
ターンも併せて形成することにより電極材2と同時に形
成することができる。その後、絶縁膜7を形成する。In this invention, as shown in FIG. 1, a dummy or auxiliary electrode material 1 is formed around the cell array 5 so as to surround the cell array 5. This dummy electrode material 1 has the same width as the electrode material 2 of the cell array 5,
It is separated from the width direction end portion and the longitudinal direction end portion of the electrode material 2 by the same distance as the distance between the electrode materials 2. This dummy electrode material 1 does not become a part of the element, but merely serves to make the field insulating film uniform in thickness, as will be described later. This tummy electrode material 1 can be formed at the same time as the electrode material 2 by also forming the pattern of the electrode material 1 when forming the aforementioned mask pattern for forming the electrode material 2. After that, an insulating film 7 is formed.
このように構成された半導体装置においては、セルアレ
イ5内の素子の一部となる電極材2のうちその最端部の
ものの外側にダミー電極材1が存在するため、第2図(
b)に示すように、最端部の電極材2の外側領域6、つ
まりこの電極材2とダミー電極材1との間の領域にも、
セルアレイ5内部の電極材2相互間と同様に、十分厚い
絶縁膜7が形成される。従って、セルアレイ5の端部の
素子は、セルアレイ5内部の素子と同様に良好な特性を
有する。In the semiconductor device configured in this way, the dummy electrode material 1 is present outside the endmost electrode material 2 that forms part of the elements in the cell array 5.
As shown in b), the outer region 6 of the electrode material 2 at the extreme end, that is, the region between this electrode material 2 and the dummy electrode material 1,
A sufficiently thick insulating film 7 is formed similarly to between the electrode materials 2 inside the cell array 5. Therefore, the elements at the ends of the cell array 5 have good characteristics similar to the elements inside the cell array 5.
なお、前述のフィールド絶縁膜7はバイアススパッタリ
ングに限らず、種々の手段、例えば、気相成長法及びエ
ッチバックにより形成してもよい。Note that the field insulating film 7 described above is not limited to bias sputtering, and may be formed by various means, such as vapor phase growth and etchback.
次に、第3図(a)、(b)を参照して本発明の第2の
実施例について説明する。Next, a second embodiment of the present invention will be described with reference to FIGS. 3(a) and 3(b).
この第3図(a)、(b)の断面図に示すように、この
実施例は、トレンチ分離技術により素子分離するMO8
型半導体装置に本発明を適用したものである。As shown in the cross-sectional views of FIGS. 3(a) and 3(b), in this embodiment, the MO8
The present invention is applied to a type semiconductor device.
このトレンチ分離技術においては、第3図(a)に示す
ように、半導体基板8の不活性領域に溝を形成してトレ
ンチ9を設け、このトレンチ9に絶縁膜14が埋め込ま
れる。また、トレンチ9間に導電材としての活性領域1
0が形成される。In this trench isolation technique, as shown in FIG. 3(a), a trench 9 is provided by forming a trench in an inactive region of a semiconductor substrate 8, and an insulating film 14 is embedded in the trench 9. In addition, an active region 1 as a conductive material is provided between the trenches 9.
0 is formed.
この実施例においては、半導体基板8に溝を形成してト
レンチ9を設ける際に、セルアレイ12の最端部のトレ
ンチ9の外側領域13に、セルアレイ12内部のトレン
チつと同一幅のダミートレンチ11を、セルアレイ12
内部のトレンチ9相互間の間隔と同一の間隔をおいて形
成しておく。In this embodiment, when forming trenches in the semiconductor substrate 8 to provide the trenches 9, a dummy trench 11 having the same width as one of the trenches inside the cell array 12 is placed in the outer region 13 of the trench 9 at the end of the cell array 12. , cell array 12
The trenches 9 are formed with the same spacing as the spacing between the trenches 9 inside.
従って、セルアレイ12端部の活性領域10の外側に、
ダミーの活性領域15が形成される。Therefore, outside the active region 10 at the end of the cell array 12,
A dummy active region 15 is formed.
その後、第3図(b)に示すように、バイアススパッタ
リングにより絶縁膜14をトレンチ9及びダミートレン
チ11に埋め込む。この場合に、セルアレイ12の端部
の活性領域10の外側にも、内部と同一の間隔をおいて
ダミー活性領域15が形成されているため、この端部活
性領域10の外側にも、十分厚いフィールド絶縁膜14
が形成される。Thereafter, as shown in FIG. 3(b), the trench 9 and the dummy trench 11 are filled with the insulating film 14 by bias sputtering. In this case, since dummy active regions 15 are formed outside the active region 10 at the end of the cell array 12 at the same spacing as inside, the outside of the end active region 10 is also thick enough. Field insulation film 14
is formed.
[発明の効果コ
本発明によれば、電極材又は活性領域等の導電材が一定
の間隔で密に且つ規則正しく配列されたセルアレイの端
部の導電材の外側に、セルアレイ内部の導電材と同一間
隔で離隔するダミーの導電材を配置しであるから、フィ
ールド絶縁膜がセルアレイ端部においてもセルアレイ内
部と同様に十分の厚さを有して形成される。これにより
、セルアレイ端部の素子の特性の劣化が回避される。[Effects of the Invention] According to the present invention, conductive materials such as electrode materials or active regions are arranged densely and regularly at regular intervals on the outside of the conductive materials at the ends of the cell array, which are the same as the conductive materials inside the cell array. Since the dummy conductive materials are arranged at intervals, the field insulating film is formed to have a sufficient thickness at the end of the cell array as well as inside the cell array. This avoids deterioration of the characteristics of the elements at the ends of the cell array.
第1図は本発明の実施例に係るMOS型半導体装置の平
面図、第2図(a)は第1図の■−■線による断面図、
第2図(b)はその絶縁膜形成後の断面図、第3図(a
)、(b)は本発明の他の実施例を示す断面図、第4図
(a)乃至(d)は従来のMOS型半導体装置の製造過
程を示す断面図、第5図(a)、(b)は従来のMOS
型半導体装置のセルアレイ端部を示す断面図である。
1;ダミー電極材、2,24.電極材、3,22;ゲー
ト絶縁膜、4,8,21 ;半導体基板、5.12;セ
ルアレイ、6.13;外側領域、7゜14.26.絶縁
膜、9;トレンチ、10.活性領域、11;ダミートレ
ンチ、15;ダミー活性領域FIG. 1 is a plan view of a MOS type semiconductor device according to an embodiment of the present invention, FIG. 2(a) is a cross-sectional view taken along the line ■-■ in FIG.
FIG. 2(b) is a cross-sectional view after forming the insulating film, and FIG. 3(a)
), (b) are cross-sectional views showing other embodiments of the present invention, FIGS. 4(a) to (d) are cross-sectional views showing the manufacturing process of a conventional MOS type semiconductor device, and FIG. 5(a), (b) is a conventional MOS
FIG. 2 is a cross-sectional view showing an end portion of a cell array of a type semiconductor device. 1; Dummy electrode material, 2, 24. Electrode material, 3, 22; Gate insulating film, 4, 8, 21; Semiconductor substrate, 5.12; Cell array, 6.13; Outer region, 7° 14.26. Insulating film, 9; trench, 10. Active region, 11; dummy trench, 15; dummy active region
Claims (1)
の間隔で配置し各導電材の間に絶縁膜を埋込んでフィー
ルド絶縁膜を形成して構成されるセルアレイ領域を有す
るMOS型半導体装置において、前記セルアレイ領域の
外側に配置され、前記セルアレイ領域内の導電材群の相
互間隔と実質的に同一の間隔でセルアレイ領域の端部の
導電材から離隔する補助の導電材を有することを特徴と
するMOS型半導体装置。A MOS type that has a cell array region formed by arranging a plurality of conductive materials at regular intervals on a semiconductor substrate with an insulating film interposed therebetween, and embedding an insulating film between each conductive material to form a field insulating film. The semiconductor device includes an auxiliary conductive material disposed outside the cell array region and spaced apart from the conductive material at the end of the cell array region at substantially the same distance as the mutual distance between the conductive materials in the cell array region. A MOS type semiconductor device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62128911A JPS63292667A (en) | 1987-05-25 | 1987-05-25 | Mos semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62128911A JPS63292667A (en) | 1987-05-25 | 1987-05-25 | Mos semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63292667A true JPS63292667A (en) | 1988-11-29 |
Family
ID=14996414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62128911A Pending JPS63292667A (en) | 1987-05-25 | 1987-05-25 | Mos semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63292667A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH056965A (en) * | 1991-06-26 | 1993-01-14 | Nec Ic Microcomput Syst Ltd | Semiconductor integrated circuit and manufacture thereof |
US5436095A (en) * | 1991-07-11 | 1995-07-25 | Hitachi, Ltd. | Manufacturing method or an exposing method for a semiconductor device for a semiconductor integrated circuit device and a mask used therefor |
US5468983A (en) * | 1993-03-03 | 1995-11-21 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and method of manufacturing the same |
JP2002246572A (en) * | 2001-02-16 | 2002-08-30 | Toshiba Corp | Semiconductor device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5613747A (en) * | 1979-07-13 | 1981-02-10 | Matsushita Electric Ind Co Ltd | Semiconductor device |
JPS61214559A (en) * | 1985-03-20 | 1986-09-24 | Hitachi Ltd | Semiconductor integrated circuit device |
-
1987
- 1987-05-25 JP JP62128911A patent/JPS63292667A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5613747A (en) * | 1979-07-13 | 1981-02-10 | Matsushita Electric Ind Co Ltd | Semiconductor device |
JPS61214559A (en) * | 1985-03-20 | 1986-09-24 | Hitachi Ltd | Semiconductor integrated circuit device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH056965A (en) * | 1991-06-26 | 1993-01-14 | Nec Ic Microcomput Syst Ltd | Semiconductor integrated circuit and manufacture thereof |
US5436095A (en) * | 1991-07-11 | 1995-07-25 | Hitachi, Ltd. | Manufacturing method or an exposing method for a semiconductor device for a semiconductor integrated circuit device and a mask used therefor |
US5468983A (en) * | 1993-03-03 | 1995-11-21 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and method of manufacturing the same |
JP2002246572A (en) * | 2001-02-16 | 2002-08-30 | Toshiba Corp | Semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0166003B1 (en) | Semiconductor integrated circuit | |
KR0165398B1 (en) | Vertical transistor manufacturing method | |
JPS6112382B2 (en) | ||
US6184085B1 (en) | Methods of forming nonvolatile memory devices using improved masking techniques | |
JPH06252359A (en) | Manufacture of semiconductor device | |
JPH0685277A (en) | Contact matching for nonvolatile memory device | |
US4751561A (en) | Dielectrically isolated PMOS, NMOS, PNP and NPN transistors on a silicon wafer | |
US4455742A (en) | Method of making self-aligned memory MNOS-transistor | |
JP2950212B2 (en) | Nonvolatile semiconductor memory device and method of manufacturing the same | |
US5055904A (en) | Semiconductor device | |
JPS63292667A (en) | Mos semiconductor device | |
EP0463511B1 (en) | Method of producing a split gate EPROM cell using polysilicon spacers | |
JPS5978576A (en) | Semiconductor device and manufacture thereof | |
JPH07254652A (en) | Semiconductor memory and fabrication thereof | |
KR0135690B1 (en) | Fabrication method of contact in semiconductor device | |
JP2792089B2 (en) | Method for manufacturing semiconductor memory device | |
KR100347145B1 (en) | Method of interconnecting cell region with segment transistor in flash cell array | |
JP3421588B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS6247151A (en) | Formation of mutual connection on substrate | |
JPH07130898A (en) | Semiconductor device and manufacture thereof | |
US6221778B1 (en) | Method of fabricating a semiconductor device | |
KR100281889B1 (en) | Semiconductor device having field shield isolation region and manufacturing method thereof | |
KR100214279B1 (en) | Method of manufacturing semiconductor device | |
KR100339429B1 (en) | Method for manufacturing semiconductor memory device | |
JPH01309373A (en) | Manufacture of semiconductor device |