JPS63297230A - Molding mold for glass moldings - Google Patents
Molding mold for glass moldingsInfo
- Publication number
- JPS63297230A JPS63297230A JP13128187A JP13128187A JPS63297230A JP S63297230 A JPS63297230 A JP S63297230A JP 13128187 A JP13128187 A JP 13128187A JP 13128187 A JP13128187 A JP 13128187A JP S63297230 A JPS63297230 A JP S63297230A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- mold
- layer
- intermediate layer
- surface layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011521 glass Substances 0.000 title claims abstract description 82
- 238000000465 moulding Methods 0.000 title claims abstract description 33
- 239000010410 layer Substances 0.000 claims abstract description 82
- 239000002344 surface layer Substances 0.000 claims abstract description 70
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 15
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 7
- 239000002184 metal Substances 0.000 claims abstract description 6
- 150000002739 metals Chemical class 0.000 claims abstract description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 38
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 24
- 229910052710 silicon Inorganic materials 0.000 claims description 17
- 239000010703 silicon Substances 0.000 claims description 17
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 13
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 13
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 13
- 239000011651 chromium Substances 0.000 claims description 12
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 11
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 6
- 229910052741 iridium Inorganic materials 0.000 claims description 4
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052703 rhodium Inorganic materials 0.000 claims description 3
- 239000010948 rhodium Substances 0.000 claims description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 3
- 239000011195 cermet Substances 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 25
- 239000002356 single layer Substances 0.000 abstract description 4
- 238000005498 polishing Methods 0.000 abstract description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 16
- 238000005520 cutting process Methods 0.000 description 14
- 230000007704 transition Effects 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 239000010432 diamond Substances 0.000 description 8
- 229910003460 diamond Inorganic materials 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 8
- 230000003746 surface roughness Effects 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910001092 metal group alloy Inorganic materials 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910000510 noble metal Inorganic materials 0.000 description 4
- 229910001260 Pt alloy Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 239000005304 optical glass Substances 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052810 boron oxide Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- PXXKQOPKNFECSZ-UHFFFAOYSA-N platinum rhodium Chemical compound [Rh].[Pt] PXXKQOPKNFECSZ-UHFFFAOYSA-N 0.000 description 2
- HWLDNSXPUQTBOD-UHFFFAOYSA-N platinum-iridium alloy Chemical compound [Ir].[Pt] HWLDNSXPUQTBOD-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- -1 iridium Chemical compound 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229910000923 precious metal alloy Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
- C03B11/084—Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
- C03B11/086—Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/03—Press-mould materials defined by material properties or parameters, e.g. relative CTE of mould parts
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/08—Coated press-mould dies
- C03B2215/14—Die top coat materials, e.g. materials for the glass-contacting layers
- C03B2215/16—Metals or alloys, e.g. Ni-P, Ni-B, amorphous metals
- C03B2215/17—Metals or alloys, e.g. Ni-P, Ni-B, amorphous metals comprising one or more of the noble meals, i.e. Ag, Au, platinum group metals
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/08—Coated press-mould dies
- C03B2215/30—Intermediate layers, e.g. graded zone of base/top material
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/08—Coated press-mould dies
- C03B2215/30—Intermediate layers, e.g. graded zone of base/top material
- C03B2215/31—Two or more distinct intermediate layers or zones
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Laminated Bodies (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はガラスをプレス成形するための成形型に関し、
特に、プレス成形後に研磨を必要としない高精度のガラ
ス成形体を得るための成形型に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a mold for press-molding glass;
In particular, the present invention relates to a mold for obtaining a high-precision glass molded body that does not require polishing after press molding.
[従来の技術]
プレス成形によりガラス成形体を得るための成形型とし
て、シリコーンカーバイドやシリコンナイトライドを用
いた型(特開昭52−45613号公報参照)等が知ら
れている。また最近タングステンカーバイドを主成分と
する基盤上に表面層として白金と他の貴金属元素からな
る負金属合金のコーテイング膜を形成したもの(特開昭
60−246230号公報参照)やシリコンからなる基
盤上に表面層として白金と他の負金属元素からなる貴金
属合金のコーテイング膜を形成したもの(W間両61−
242922号公報参照)が提案されている。[Prior Art] As a mold for obtaining a glass molded body by press molding, a mold using silicone carbide or silicon nitride (see Japanese Patent Laid-Open No. 45613/1983) is known. Recently, a coating film of a negative metal alloy made of platinum and other noble metal elements is formed as a surface layer on a substrate mainly composed of tungsten carbide (see Japanese Patent Application Laid-Open No. 60-246230), and a substrate made of silicon. A coating film of a noble metal alloy consisting of platinum and other negative metal elements is formed as a surface layer (both 61-
242922) has been proposed.
[発明が解決しようとする問題点]
しかしながら、特開昭52−45613号公報において
成形型用材料として開示されたシリコンナイトライドや
シリコンカーバイドは非常に硬い材料であり、非球面状
に仕上げ加工を行なう際に、ダイヤモンドバイトによる
切削加工ができず、このため高精度加工の難易度が極め
て高く、またこれらの材料の極表面層は酸化層となりや
すいため、プレス成形時にガラスと融着しやすいという
欠点があった。[Problems to be Solved by the Invention] However, silicon nitride and silicon carbide disclosed as materials for molds in JP-A-52-45613 are very hard materials, and cannot be finished into an aspherical shape. When performing this process, cutting using a diamond cutting tool is not possible, making high-precision machining extremely difficult.Also, the extreme surface layer of these materials tends to become an oxidized layer, so it is easy to fuse with the glass during press molding. There were drawbacks.
また特開昭60−246230号公報に開示された、タ
ングステンカーバイド基盤上に表面層として白金系負金
属合金層を形成した成形型は、タングステンカーバイド
が上述のシリコンナイトライドヤシリコンカーバイドに
比べ高精度加工が多少容易であるという利点を有するが
、それでも十分ではなく、さらに長時間に亘って光学ガ
ラスを高温下で成形することによって基盤材料であるタ
ングステンカーバイドが酸化されて面積度が低下し、負
金属合金層が剥離しやすく、また成形時のガラス成形体
の離型性も良くないという欠点があった。In addition, in the mold disclosed in JP-A No. 60-246230, in which a platinum-based negative metal alloy layer is formed as a surface layer on a tungsten carbide base, tungsten carbide has a higher precision than the above-mentioned silicon nitride or silicon carbide. Although it has the advantage of being somewhat easy to process, it is still not sufficient, and furthermore, by forming optical glass at high temperatures for a long time, the base material tungsten carbide is oxidized and the area density decreases, resulting in negative There were disadvantages in that the metal alloy layer was easily peeled off, and the molding properties of the glass molded body during molding were also poor.
また特開昭61−242922号公報において基盤材料
として開示されたシリコンは切削加工による精密加工が
できるという利点を有するが、本発明者らの実験によれ
ば、シリコン基盤上に表面層として設けられた上記白金
系貴金属合金膜がシリコンに対する付着性に乏しく、両
者間の熱膨張係数が大きく異なることから、数回のプレ
ス成形で簡単に負金属合金膜がシリコン基盤から剥離し
てしまい、かつ、白金とイリジウム、オスミウム、ロジ
ウム、パラジウム、ルテニウムと云った貴金属のみの組
み合せの表面層では、プレス成形時のガラス成形体の離
型性があまりよくないことが判明している。Furthermore, silicon disclosed as a base material in JP-A No. 61-242922 has the advantage that it can be precisely processed by cutting, but according to experiments by the present inventors, The platinum-based noble metal alloy film has poor adhesion to silicon and the thermal expansion coefficients between the two are greatly different, so the negative metal alloy film easily peels off from the silicon substrate after several press moldings, and It has been found that a surface layer made of only a combination of platinum and noble metals such as iridium, osmium, rhodium, palladium, and ruthenium does not have very good mold release properties of the glass molded body during press molding.
従って本発明の目的は、上記した従来技術の成形型の欠
点を解消し、切削加工による精密加工性、表面層の基盤
との付着性、ガラス成形体の離型性の全てを同時に満足
するガラス成形体の成形型を提供することにある。Therefore, an object of the present invention is to solve the above-mentioned drawbacks of the conventional molds, and to provide a glass that simultaneously satisfies all of precision workability by cutting, adhesion of the surface layer to the base, and mold releasability of the glass molded product. The object of the present invention is to provide a mold for a molded article.
[問題点を解決するための手段]
本発明は上記の目的を達成するためになされたものであ
り、本発明のガラス成形体の成形型は基盤と、該基盤上
に設けられた中間層と、該中間層上に設けられた表面層
とを備え、前記の中間層が少なくとも1種のガラスで構
成され、そして前記の表面層が50〜95wt%の白金
と5〜40wt%のニッケル及び/又はクロムとを含む
少なくとも2種の金属で構成されていることを特徴とす
るものである。[Means for Solving the Problems] The present invention has been made to achieve the above object, and the mold for a glass molded article of the present invention comprises a base, an intermediate layer provided on the base, , a surface layer provided on the intermediate layer, the intermediate layer comprising at least one glass, and the surface layer comprising 50-95 wt% platinum, 5-40 wt% nickel and/or or chromium.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明のガラス成形体の成形型は、基盤と、該基盤上に
設けられた中間層と、該中間層上に設けられた表面層と
を備えたものである。The mold for a glass molded article of the present invention includes a base, an intermediate layer provided on the base, and a surface layer provided on the intermediate layer.
先ず基盤について説明すると、基盤材料については、基
盤として一般に要求される硬度、強度および耐熱性等を
満足するものであれば特に限定されず、シリコンカーバ
イド、シリコンナイトライド、タングステンカーバイド
、サーメット、ステンレス鋼、シリコンなどが使用可能
である。First, to explain the base material, the base material is not particularly limited as long as it satisfies the hardness, strength, heat resistance, etc. generally required for a base, and examples include silicon carbide, silicon nitride, tungsten carbide, cermet, and stainless steel. , silicon, etc. can be used.
上述の基盤材料のうち、シリコンカーバイド、シリコン
ナイトライド及びタングステンカーバイドなどの硬い材
料を用いた場合には、成形型の最終形状に近い形状に加
工した後に、中間層、表面層を順次形成し、しかる後に
ダイヤモンドバイトによる高精度切削加工を行ない最終
非球面形状に仕上げるのが好ましい。Among the above-mentioned base materials, when hard materials such as silicon carbide, silicon nitride, and tungsten carbide are used, after processing into a shape close to the final shape of the mold, an intermediate layer and a surface layer are sequentially formed. After that, it is preferable to perform high-precision cutting using a diamond cutting tool to obtain the final aspherical shape.
また基盤材料がシリコンの如き柔い材料の場合には、シ
リコン自体をダイヤモンドバイトで高精度に切削加工す
るのが好ましい。Further, when the base material is a soft material such as silicon, it is preferable to cut the silicon itself with high precision using a diamond cutting tool.
本発明の成形型においては、上記の基盤上に中間層が設
けられ、該中間層は少なくとも1種のガラスで構成され
ている。In the mold of the present invention, an intermediate layer is provided on the above-mentioned base, and the intermediate layer is made of at least one type of glass.
中間層は、基盤の酸化を防止し、かつ基盤中の金属成分
の表面層への拡散を防止すること及び基盤と表面層が熱
膨張係数の差によって剥離するのを防止し両者間の接着
性を向上させること等の目的を達成することが要求され
るが、本発明において中間層材料として用いられたガラ
スは、これらの目的を十分に達成することができる。そ
れはガラスが下記の如き性質及び特徴を有するからであ
る。The intermediate layer prevents the base from oxidizing, prevents the metal components in the base from diffusing into the surface layer, prevents the base and the surface layer from peeling off due to the difference in thermal expansion coefficient, and improves the adhesion between the two. The glass used as the intermediate layer material in the present invention can satisfactorily achieve these objectives. This is because glass has the following properties and characteristics.
(il ガラスは基盤上に均一なコーテイング膜を形
成し得るので、基盤の酸化を防止する。また基盤と表面
層の中間にあって、両者を隔離するバリヤ一層として働
き、基盤中の成分の表面層への拡散を防止する。(il) Glass can form a uniform coating film on the substrate, which prevents the substrate from oxidizing.It also acts as a barrier layer between the substrate and the surface layer, separating the two, and the surface layer of the components in the substrate. prevent the spread to.
(iil ガラスは基盤とも白金合金系表面層とも親
和性が良く、またガラス構成成分の種類及び組成比を変
えることによってその熱膨張係数を基盤の熱膨張係数と
表面層の熱膨張係数の間の所望の値に任意に設定できる
ので、基盤材料及び白金合金系表面層材料を広範囲に変
化させても両者間に強固な接着を形成することができる
。(iii) Glass has good affinity with both the substrate and the platinum alloy surface layer, and by changing the types and composition ratios of the glass components, the coefficient of thermal expansion can be adjusted to be between the coefficient of thermal expansion of the substrate and that of the surface layer. Since it can be arbitrarily set to a desired value, strong adhesion can be formed between the base material and the platinum alloy surface layer material even if they are varied over a wide range.
上述の如く中間層材料として用いられるガラスは、その
熱膨張係数が基盤の熱膨張係数と表面層の熱膨張係数の
間の値(3,5X10’〜10.5X10’/’C)で
ある必要があるが、更にプレス温度(被成形ガラスの粘
度がほぼ108〜1010ポアズになる温度)で軟化し
ないもの、即ら、ガラス層のガラス転移温度(Tq)が
プレス温度より高いものである必要がある。このような
ガラスの例としては、酸化ケイ素27〜55wt%、酸
化ホウ素10〜24wt%、酸化アルミニウム2〜12
wt%、酸化バリウム20〜53wt%とその他の成分
から成るガラス;酸化ケイ素1〜6wt%、酸化ホウ素
17〜4Qwt%、酸化ランタン20〜57wt%とそ
の他の成分から成るガラス:又は酸化ケイ素50〜65
wt%、酸化アルミニウム8〜20wt%、酸化亜鉛1
〜16w【%、酸化マグネシウム1〜16wt%とその
他の成分か、ら成るガラス等が挙げられる。As mentioned above, the glass used as the intermediate layer material must have a coefficient of thermal expansion between the coefficient of thermal expansion of the base layer and the coefficient of thermal expansion of the surface layer (3.5X10' to 10.5X10'/'C). However, it is also necessary that the glass layer does not soften at the pressing temperature (the temperature at which the viscosity of the glass to be formed is approximately 108 to 1010 poise), that is, the glass transition temperature (Tq) of the glass layer is higher than the pressing temperature. be. Examples of such glasses include 27-55 wt% silicon oxide, 10-24 wt% boron oxide, and 2-12 wt% aluminum oxide.
glass consisting of 1 to 6 wt% of silicon oxide, 17 to 4 Qwt% of boron oxide, 20 to 57 wt% of lanthanum oxide and 50 to 57 wt% of silicon oxide; 65
wt%, aluminum oxide 8-20wt%, zinc oxide 1
-16w[%], glass consisting of 1-16wt% of magnesium oxide and other components.
中間層は単一層であっても良いが、複数層であっても良
く、後者の場合、各層のガラスの熱膨張係数を基盤側か
ら表面層側に向って順次増加させると、中間層が単層か
らなる場合に比べて、基盤と中間層間及び中間層と表面
層間の熱膨張係数の差を低く抑えることができるので、
基盤と表面層間の接着性が更に向上する。なお中間層の
厚さは0.03〜10μm程度が適当である。0.03
μ偲未満では均一な層を形成することができず、また1
0μmを超えても厚くしたことによるメリットがないか
らである。The intermediate layer may be a single layer or multiple layers; in the latter case, if the coefficient of thermal expansion of the glass in each layer is increased sequentially from the base side to the surface layer side, the intermediate layer may be a single layer. Compared to the case where it consists of layers, the difference in thermal expansion coefficient between the base and the intermediate layer and between the intermediate layer and the surface layer can be kept low.
Adhesion between the base and surface layer is further improved. Note that the thickness of the intermediate layer is suitably about 0.03 to 10 μm. 0.03
If it is less than μm, a uniform layer cannot be formed, and if it is less than 1
This is because there is no advantage to increasing the thickness even if it exceeds 0 μm.
ガラス中間層の形成はスパッタ法等の手段により行なわ
れる。The glass intermediate layer is formed by means such as sputtering.
本発明の成形型においては、上記の中間層上に表面層が
設けられ、該表面層は50〜95wt%の白金と5〜4
0111t%のニッケル及び/又はクロムとを含む少な
くとも2種の金属で構成されている。In the mold of the present invention, a surface layer is provided on the above-mentioned intermediate layer, and the surface layer contains 50 to 95 wt% of platinum and 5 to 4 wt% of platinum.
It is composed of at least two kinds of metals including 0111t% of nickel and/or chromium.
本発明者らは、白金とイリジウム等の貴金属合金からな
る従来の表面層では、プレス成形時のガラス成形体の離
型性があまり良くないのに対し、50〜95wt%の白
金と5〜40wt%のニッケル及び/又はクロムとを含
む少なくとも2faの金属を表面層として用いると、離
型性が著しく向上することを見い出した。白金含有率を
50〜95wt%に、そしてニッケル及び/又はクロム
含有率を5〜40wt%に限定したのは、白金が95w
t%を超え、その結果ニッケル及び/又はクロムが5w
t%未満になると、硬度が低くなって傷が発生しやすく
、またプレス成形1時のガラスの離型性が良好でなくな
るためであり、一方、白金が5Qwt%未満となり、そ
の結果ニッケル及び/又はクロムが4Qwt%を超える
と、プレス成形時にニッケル及び/又はクロムがガラス
成形体に拡散しやすくなるためである。The present inventors discovered that with conventional surface layers made of platinum and precious metal alloys such as iridium, the mold release properties of glass molded bodies during press molding were not very good. It has been found that when a surface layer of a metal containing at least 2fa of nickel and/or chromium is used as the surface layer, the mold releasability is significantly improved. The platinum content was limited to 50 to 95 wt% and the nickel and/or chromium content was limited to 5 to 40 wt% because platinum was 95 wt%.
t%, so that nickel and/or chromium exceeds 5w
If the platinum content is less than 5Qwt%, the hardness will be low and scratches will easily occur, and the mold release property of the glass during press molding will not be good.On the other hand, if the platinum content is less than 5Qwt%, nickel and Alternatively, if chromium exceeds 4Qwt%, nickel and/or chromium will easily diffuse into the glass molded body during press molding.
上記の白金とニッケル及び/又はクロムに加えてロジウ
ム、イリジウム、パラジウム、金等を加えると、一層高
温のプレス成形においても使用に耐え得るようになる。Addition of rhodium, iridium, palladium, gold, etc. in addition to the above-mentioned platinum, nickel and/or chromium makes it possible to withstand even higher temperature press molding.
表面層の形成はスパッタ法等により行なわれるのが好ま
しい。The surface layer is preferably formed by sputtering or the like.
表面層の厚さは、基盤材料としてシリコンナイトライド
、シリコンカーバイド及びタングステンカーバイド等の
ダイヤモンドバイトによる高精度の非球面切削加工が困
難な材料を用いた場合には、表面層形成後にダイヤモン
ドバイトによる高精度の非球面切削加工を行なう必要が
あるため3〜50μmの厚さにするのが好ましいが、基
盤材料として、ダイヤモンドバイトによる高時間の非球
面切削加工が比較的に容易なシリコンを用いた場合には
、0.03〜10μmの厚さで良い。When using a material such as silicon nitride, silicon carbide, or tungsten carbide as the base material, which is difficult to cut into a highly accurate aspherical surface using a diamond cutting tool, the thickness of the surface layer should be determined by Since it is necessary to perform accurate aspherical cutting, it is preferable to use a thickness of 3 to 50 μm, but if silicon is used as the base material, as it is relatively easy to perform long-time aspherical cutting using a diamond cutting tool. For this purpose, a thickness of 0.03 to 10 μm is sufficient.
なお、最終形状が球面の場合は、基盤材料を鏡面仕上げ
し、中間層及び表面層を順次コーティングして、これを
最終面として使用してもよい。この場合、中間層及び表
面層のコーティング厚さの合計で10uI以下にするこ
とが好ましい。In addition, when the final shape is a spherical surface, the base material may be mirror-finished, the intermediate layer and the surface layer may be sequentially coated, and this may be used as the final surface. In this case, the total coating thickness of the intermediate layer and surface layer is preferably 10 uI or less.
[実施例]
以下、実施例を挙げて本発明を更に説明するが、本発明
はこれらの実施例に限定されるものではない。[Examples] Hereinafter, the present invention will be further explained with reference to Examples, but the present invention is not limited to these Examples.
実施例工
成形型を収納したプレス成形機の構造を示す断面図を第
2図に示す。成形型は上型1、下型2及び案内型3で構
成され、上型1及び下型2は案内型3内に滑動するよう
に収納されており、この上型1と下型2との間に被成形
ガラス塊4がセットされる。本実施例では案内型3は材
質をシリコンカーバイドとし、外径26mrn、内径1
4m1高さ40mmに加工したものを中間層及び表面層
を設けることなくそのまま使用した。また上型1及び下
型2は外径14+m、高さ約20s+で、材質としてタ
ングステンカーバイドのものとシリコンカーバイドのも
のを多数用意し、一端面を凹形状に精研削し、これを基
盤とした。一方、第1表に示す5種類の組成のガラス■
〜■を用意し、中間層形成用のターゲットとした。第1
表には中間層用ガラスの熱ll!張係数及び転移温度も
示しである。第2表には本実施例で用いられた基盤の種
類、各中間層のガラスの種類とその膜厚及び表面層の組
成と膜厚が一括して示しである。例えば、第2表に示さ
れた実験例4の成形型の製作例について詳述すると、焼
結時に)−11P処理を施して緻密にした、バインダー
としてコバルトを約6%含むタングステンカーバイドく
熱膨張係数5.OXl 0”6/’C>を第1図に示す
ように最終形状に近い非球面形状にダイヤモンド砥石で
加工したものを基盤5とし、スパッタリング装置を用い
て成膜するに先だって、逆スパツタリングにより表面を
清浄化し、第1表に示すガラス■(熱膨張係数6.5x
10’/”C)をターゲットとし、所定の成膜条件(ア
ルゴンガス圧I X 10 ’torr、成膜速度0.
05μm/min )で第1中間層6を形成しくIII
厚0.5μm)、その上にガラス■(熱膨張係数7.9
×10−6/’C)をターゲットとして同一条件で第2
巾間層7を形成しく膜厚0.5μl1l)、最後に白金
(70wt%)−ニッケル(30wt%)合金(熱膨張
係数11 X 10−6/℃)をターゲットとして、は
ぼ同一条件で膜厚10μlの表面層8の成膜を行なった
。次に、!11結晶のダイヤモンドバイトを用いて、表
面から約5μmを切削加工し非球面の成形型を完成させ
た。このとき表面粗さは10000ARであった。なお
、第1図では型の側面にax
も成膜されているが、型の成形面だけに成膜してもよい
。FIG. 2 is a cross-sectional view showing the structure of a press molding machine that accommodates an example mold. The mold is composed of an upper mold 1, a lower mold 2, and a guide mold 3. The upper mold 1 and the lower mold 2 are slidably housed in the guide mold 3, and the upper mold 1 and the lower mold 2 are A glass gob 4 to be formed is set between them. In this embodiment, the guide mold 3 is made of silicon carbide, has an outer diameter of 26 mrn, and an inner diameter of 1 mrn.
A 4 m 1 piece with a height of 40 mm was used as it was without providing an intermediate layer or a surface layer. The upper mold 1 and the lower mold 2 have an outer diameter of 14+m and a height of about 20s+, and are made of tungsten carbide and silicon carbide.One end surface is finely ground into a concave shape, and this is used as the base. . On the other hand, the five types of glass compositions shown in Table 1■
~■ were prepared and used as targets for forming the intermediate layer. 1st
On the front is the heat of the glass for the intermediate layer! The tensile modulus and transition temperature are also given. Table 2 collectively shows the type of substrate used in this example, the type and thickness of the glass of each intermediate layer, and the composition and thickness of the surface layer. For example, to explain in detail the fabrication example of the mold of Experimental Example 4 shown in Table 2, tungsten carbide containing about 6% cobalt as a binder, which was densified by -11P treatment during sintering, was thermally expanded. Coefficient 5. OXl 0"6/'C> was processed with a diamond grinding wheel into an aspherical shape close to the final shape as shown in Fig. 1, and this was used as the substrate 5. Prior to forming a film using a sputtering device, the surface was polished by reverse sputtering. Clean the glass ■ shown in Table 1 (thermal expansion coefficient 6.5x
10'/''C) as a target, and predetermined film forming conditions (argon gas pressure I x 10' torr, film forming rate 0.
05 μm/min) to form the first intermediate layer 6.
(thickness 0.5 μm), glass ■ (coefficient of thermal expansion 7.9
×10-6/'C) under the same conditions as the target.
To form the width layer 7, a film thickness of 0.5 μl (1 l) was formed, and finally a film was formed under almost the same conditions using a platinum (70 wt%)-nickel (30 wt%) alloy (thermal expansion coefficient: 11 x 10-6/°C) as a target. A surface layer 8 having a thickness of 10 μl was formed. next,! Using an 11-crystal diamond cutting tool, approximately 5 μm from the surface was cut to complete an aspherical mold. At this time, the surface roughness was 10,000 AR. Although ax is also deposited on the side surface of the mold in FIG. 1, the film may be deposited only on the molding surface of the mold.
実験例6は基盤を球面に加工しておき、表面層を50μ
mの厚さにスパッタした後、この表面層を非球面加工し
た例である。また、実験例1は基盤を高精度の球面に鏡
面加工し、中間層を2μm形成した後、表面層を1μm
成膜して、球面型として完成させたものであり、このと
き表面粗さは80ARであった。同様に実験例2.3及
びax
5において基盤をタングステンカーバイドとする本発明
の成形型が得られた。In Experimental Example 6, the base was processed into a spherical surface, and the surface layer was 50 μm.
This is an example in which the surface layer was sputtered to a thickness of m and then processed into an aspherical surface. In addition, in Experimental Example 1, the substrate was mirror-finished into a highly accurate spherical surface, and after forming an intermediate layer of 2 μm, a surface layer of 1 μm was formed.
A film was formed and completed as a spherical type, and the surface roughness at this time was 80AR. Similarly, in Experimental Examples 2.3 and ax 5, molds of the present invention having tungsten carbide as the base were obtained.
実験例7〜9はシリコンカーバイド焼結体にCVD法で
シリコンカーバイドを被覆したものを基盤とし、これを
球面に鏡面加工した後、中間層及び表面層をスパッタし
て、球面型として完成させたものであり、このときの表
面粗さは30ARであった。実験例10〜15はシリコ
ン力aX
−バイト焼結体をあらかじめ最終形状に近い非球面形状
に砥石加工し、中間層及び表面層をスパッタ法により成
膜した後、表面層を最終非球面形状に加工して仕上げた
ものである。Experimental Examples 7 to 9 were based on a silicon carbide sintered body coated with silicon carbide using the CVD method, and after mirror-finishing this into a spherical surface, the intermediate layer and surface layer were sputtered to complete the spherical mold. The surface roughness at this time was 30AR. In Experimental Examples 10 to 15, the silicon force aX-bite sintered body was processed with a grindstone in advance into an aspherical shape close to the final shape, the intermediate layer and the surface layer were formed by sputtering, and then the surface layer was made into the final aspherical shape. It is processed and finished.
次に、このようにして作製した成形型を用いたプレス成
形例を第2図を参照しながら説明する。Next, an example of press molding using the mold thus produced will be described with reference to FIG. 2.
まず、上型1、下型2、案内型3からなる本発明の成形
型内に、ガラス組成がwt%でS i O227,8、
Na O1,8、K、、01.2’、Pb0 65.
2、A夕2032.0.Ti022.0である光学ガラ
ス(転移温度435℃)の直径10mの球状の被成形ガ
ラス塊4を入れて、支持環の上に支持台10を介して配
置し、N2雰囲気にして、石英管11の外周に巻き付け
たヒーター12により、成形型と共に被成形ガラス塊4
を加熱し、押し捧13を下降させて、500℃で、80
Kg/crR2の圧力で30秒間プレスした。その後圧
力を解き、プレス成形されたガラス成形体を、上型1お
よび下型2と接触させた状態のまま上記転移温度まで徐
冷し、次いで室温付近まで急冷して、ガラス成形体を成
形型から取り出した。First, in a mold of the present invention consisting of an upper mold 1, a lower mold 2, and a guide mold 3, a glass composition of SiO227,8, with a glass composition of wt%,
Na O1,8, K, 01.2', Pb0 65.
2, A evening 2032.0. A spherical to-be-molded glass lump 4 of optical glass (transition temperature 435° C.) made of Ti022.0 (transition temperature 435° C.) and having a diameter of 10 m is placed on a support ring via a support stand 10, and in an N2 atmosphere, a quartz tube 11 is placed. A heater 12 wrapped around the outer periphery of the glass block 4 to be formed together with the mold
is heated, the pushpiece 13 is lowered, and the temperature is increased to 500°C and 80°C.
It was pressed for 30 seconds at a pressure of Kg/crR2. Thereafter, the pressure is released, and the press-molded glass molded body is slowly cooled to the above transition temperature while in contact with the upper mold 1 and the lower mold 2, and then rapidly cooled to around room temperature, and the glass molded body is transferred to the mold. I took it out.
実験例1〜15の成形型を用いて、それぞれ1000回
ずつプレス成形を繰り返した結果、いずれの実験例につ
いても、ガラス成形体は離型性が良好で、型との接触面
において化学反応した様子が認められず、面粗度は10
0AR以下でaX
あり、透明度も良好であった。また、いずれの型も表面
層又は中間層の剥離は起こらず、面粗度及び鏡面状態が
維持された。上記効果は、ガラス中間層が複数層からな
る実験例4〜6及び実験例10〜15において特に著し
かった。As a result of repeating press molding 1,000 times using the molds of Experimental Examples 1 to 15, in all experimental examples, the glass molded product had good mold releasability and a chemical reaction occurred at the contact surface with the mold. No appearance was observed, and the surface roughness was 10.
The aX was below 0AR, and the transparency was also good. In addition, no peeling of the surface layer or intermediate layer occurred in any of the molds, and the surface roughness and mirror finish were maintained. The above effect was particularly remarkable in Experimental Examples 4 to 6 and Experimental Examples 10 to 15, in which the glass intermediate layer was composed of multiple layers.
一方、実験例1と11及び表面層が同じであるが、中間
層を介在させなかった比較実験例1Cの成形型では基盤
のタングステンカーバイドのバンイダーであるコバルト
が拡散して表面に達し、表面が顕著に肌荒れした。On the other hand, in the mold of Experimental Examples 1 and 11 and Comparative Experimental Example 1C, which had the same surface layer but no intermediate layer, cobalt, which is a binder for the tungsten carbide base, diffused and reached the surface. My skin became noticeably rough.
また実験例2及び9とそれぞれ313及び表面層が同じ
であるが、中間層を介在させなかった比較実験例2C及
び9Cの成形型では、中間層がないため、いずれも10
〜20回のプレス成形で表面層が111を起こした。In addition, the molds of Comparative Experiment Examples 2C and 9C, which had the same 313 and surface layer as Experiment Examples 2 and 9, but did not have an intermediate layer, had no intermediate layer, so both had 10
The surface layer developed 111 after press molding ~20 times.
また、第2表には示していないが、タングステンカーバ
イドにシリコンカーバイドを0.3μmスパッタした後
、中間層を設けることなく本発明の表面層を2μmスパ
ッタしたものも10〜20回のプレス成形で表面層が剥
離を起した。Although not shown in Table 2, tungsten carbide is sputtered with silicon carbide to a thickness of 0.3 μm, and then the surface layer of the present invention is sputtered to a thickness of 2 μm without providing an intermediate layer. The surface layer peeled off.
さらに、これも第2表には示していないが、本発明の表
面層材料に含まれない白金−ロジウムおよび白金−イリ
ジウムの各合金のコーテイング膜からなる表面層を本発
明の中間層を介してそれぞれ形成した成形型を使用して
、同様にプレス成形を行なったところ、最初のプレス成
形時からガラス成形体の離型性が悪かった。Furthermore, although this is also not shown in Table 2, a surface layer consisting of a coating film of each alloy of platinum-rhodium and platinum-iridium, which is not included in the surface layer material of the present invention, is coated through the intermediate layer of the present invention. When press molding was carried out in the same manner using the respective molds, the releasability of the glass molded product was poor from the first press molding.
なお、上述の実験例において成形型の表面層はわずかに
酸化されることがあったが、プレス成形時のガラス成形
体の離型性や表面粗さに対して影響はないことが判明し
た。In addition, although the surface layer of the mold was slightly oxidized in the above-mentioned experimental example, it was found that this did not affect the mold releasability or surface roughness of the glass molded product during press molding.
実施例■
実施例■と同様に、案内型3はシリコンカーバイドから
なる同一形状のものを用いたが、実施例■と異なり、上
型1及び下型2の材料としてシリコンを用い、これを加
工して外径14#、高さ約20mの上型1及び下型2を
作り、一端面を単結晶のダイヤモンドバイトを用いて凹
形の非球面形状に精密に切削加工した。ここではシリコ
ンとして、軸方向が<111>のシリコン単結晶を用い
たが、必ずしもその必要はない。一方、第1表に示す3
種類の組成のガラス■、■及び■を用意し、中間層形成
用のターゲラ1〜とした。第1表には中間層用ガラスの
熱膨張係数及び転移温度も示しである。第3表に本実施
例の各中間層に用いられたガラスの種類と膜厚及び表面
層の組成と膜θが一括して示しである。例えば実験例2
8の成形型の製作例について詳述すると、第1図に示す
ように非球面形状に精密に切削ll11丁シたシリコン
(熱膨張係数4.2xlO−6/℃)の基15の上に、
スパッタリング装置を用いて成膜するに先だって、逆ス
パツタリングにより表面を清浄化し、第1表に示すガラ
ス■(熱膨張係数6.3X’10’/℃)をターゲット
とし、所定の成膜条件(アルゴンガス圧1 x 10−
3torr、成膜速110.05μm/min >で第
1中間層6を形成しく膜厚0.3μIR)、その上にガ
ラス■(熱膨張係fi7.9X10’/℃)をターゲッ
トとして同一条件で第2中間層7を形成しく膜厚0.3
μll1)、@後に白金(70wt%)−ニッケル(1
5wt%)−クロム(15wt%)合金(熱膨張係数9
.6X10−6層℃)をターゲットとして、はぼ同一条
件で膜厚0.3μmの表面層8の成膜を行なった。この
ときの表面粗さは100AR48xであった。他の実験
例についてもほぼ同様の方法で成膜を行なった。Example ■ Similar to Example ■, the guide mold 3 was made of silicon carbide and had the same shape. However, unlike Example ■, silicon was used as the material for the upper mold 1 and the lower mold 2, and this was processed. An upper mold 1 and a lower mold 2 having an outer diameter of 14 # and a height of approximately 20 m were made, and one end surface was precisely cut into a concave aspherical shape using a single crystal diamond cutting tool. Here, a silicon single crystal with an axial direction of <111> was used as the silicon, but this is not necessarily necessary. On the other hand, 3 shown in Table 1
Glasses (1), (2), and (2) having different compositions were prepared and used as Targetera 1 for forming an intermediate layer. Table 1 also shows the thermal expansion coefficient and transition temperature of the glass for the intermediate layer. Table 3 collectively shows the type and thickness of the glass used for each intermediate layer in this example, the composition of the surface layer, and the film θ. For example, experimental example 2
To explain in detail the manufacturing example of mold No. 8, as shown in Fig. 1, on a base 15 of silicon (coefficient of thermal expansion 4.2xlO-6/°C) which has been precisely cut into an aspherical shape,
Before forming a film using a sputtering device, the surface is cleaned by reverse sputtering, and the glass shown in Table 1 (thermal expansion coefficient 6.3X'10'/°C) is targeted, and the specified film forming conditions (argon Gas pressure 1 x 10-
3 torr and a film formation rate of 110.05 μm/min to form the first intermediate layer 6 (thickness: 0.3 μm), and on top of that, a second intermediate layer 6 was formed under the same conditions using glass (coefficient of thermal expansion fi7.9×10'/°C) as a target. 2 to form an intermediate layer 7 with a film thickness of 0.3
μll1), @after platinum (70wt%)-nickel (1
5wt%) - Chromium (15wt%) alloy (thermal expansion coefficient 9
.. A surface layer 8 having a thickness of 0.3 μm was formed under almost the same conditions using a 6×10 −6 layer (° C.) as a target. The surface roughness at this time was 100AR48x. Films were formed using almost the same method for other experimental examples.
このようにして作製した成形型内に、ガラス組成がwt
%rsio 27.8、Na2O1,8、K O1
,2、PbO65,2、Al2O32、O、T i 0
22 、0 テアル光学カラス(転移温度435℃)の
直径10麿の球状の被成形ガラス塊4を入れて、第2図
に主要部を示す成形様の、支持棒9上に支持台10を介
して配置し、N2雰囲気にして、石英管11の外周に巻
きつけたヒーター12により、成形型と共に被成形ガラ
ス塊4を加熱し、押し棒13を下降させて、500℃で
80 Kg / ctn 2の圧力で30秒間プレスし
た。その後圧力を解き、プレス成形された成形体を、上
型1及び下型2と接触させた状態のまま上記転移温度ま
で徐冷し、次いで室温付近まで急冷して、ガラス成形体
を成形型から取り出した。In the mold thus prepared, the glass composition was wt.
%rsio 27.8, Na2O1,8, K O1
,2,PbO65,2,Al2O32,O,T i 0
22,0 A spherical glass lump 4 with a diameter of 10 mm made of Teal Optical Glass (transition temperature 435°C) was placed on a support rod 9 via a support stand 10 in a molding manner whose main part is shown in FIG. The glass lump 4 to be formed is heated together with the mold by the heater 12 wound around the outer periphery of the quartz tube 11 in an N2 atmosphere, and the push rod 13 is lowered to produce 80 kg/ctn 2 at 500°C. It was pressed for 30 seconds at a pressure of Thereafter, the pressure is released, and the press-molded body is slowly cooled to the above transition temperature while in contact with the upper mold 1 and the lower mold 2, and then rapidly cooled to around room temperature, and the glass molded body is removed from the mold. I took it out.
実験例21〜34の成形型を用いて、それぞれ1000
回ずつプレス成形を繰り返した結果、いずれの実験例に
ついても、ガラス成形体は離型性が良好で、型との接触
面において化学反応した様子が認められず、面粗度は1
00ARIIlax以下であり、透明度も良好であった
。また、いずれの型も表面層又は中間層の剥離は起こら
ず、面精度及び鏡面状態が維持された。これらの効果は
、ガラス中間層が2層からなる実験例27〜34におい
て特に著しかった。Using the molds of Experimental Examples 21 to 34, each
As a result of repeating the press molding process, in all experimental examples, the glass molded product had good mold releasability, no chemical reaction was observed on the contact surface with the mold, and the surface roughness was 1.
00ARIIlax or less, and the transparency was also good. In addition, no peeling of the surface layer or intermediate layer occurred in any of the molds, and the surface precision and mirror surface state were maintained. These effects were particularly remarkable in Experimental Examples 27 to 34 in which the glass intermediate layer consisted of two layers.
一方、実験例28と基盤及び表面層は同じであるが、中
間層を介在させなかった比較実験例28Cの成形型では
数回のプレス成形で表面層が剥離を起こした。また、第
3表には示さなかったが、実験例28と同一の2層の中
間層を介して、表面層として、本発明の表面層に含まれ
ない白金−ロジウム及び白金−イリジウムの各合金から
なるコーテイング膜を形成した成形体を使用して、同様
にプレス成形を行なったところ、最初のプレス成形時か
らガラス成形体の離型性が悪かった。On the other hand, in the mold of Comparative Experimental Example 28C, which had the same base and surface layer as Experimental Example 28 but did not include an intermediate layer, the surface layer peeled off after several press moldings. Although not shown in Table 3, platinum-rhodium and platinum-iridium alloys that are not included in the surface layer of the present invention may be formed as a surface layer through the same two-layer intermediate layer as in Experimental Example 28. When press molding was performed in the same manner using a molded article on which a coating film was formed, the mold release properties of the glass molded article were poor from the first press molding.
なお、本実施例で基盤材料として用いられたシリコンは
比較的酸化されやすい材料であり、スパッタリングを行
なう前に既に若干酸化されていることがあるが、このよ
うな基盤にコーティングしても支障はないし、あらかじ
め若干酸化させてからコーティングしても構わない。Note that the silicon used as the base material in this example is a material that is relatively easily oxidized, and may already be slightly oxidized before sputtering, but there is no problem with coating such a base. Alternatively, it may be slightly oxidized before coating.
なお、上述の実施例■及び■においては、いずれも被成
形ガラスとしてプレス温度が540℃付近のS i 0
2−8203−L、120−CaO−1a OT i
OZr ONb2O5系ガラスを使用し、中間層のガ
ラスとして、転移温度が600℃以上のものを使用した
が、被成形ガラス及び中間層のガラスはこれ等に限定さ
れるものではない。被成形ガラスとしては、プレス温度
、即ちガラス粘度がほぼ108−1010ポアズになる
温度が650℃以下が好ましい。又、中間層のガラスと
しては、その転移温度が被成形ガラスのプレス温度より
も高いものを選べばよい。例えば、被成形ガラスが、プ
レス温度400℃位の低軟化点ガラスである場合は中間
層のガラスの選択範囲は非常に広くなる。In addition, in the above-mentioned Examples (■) and (■), the glass to be formed was S i 0 with a pressing temperature of around 540°C.
2-8203-L, 120-CaO-1a OT i
Although OZr ONb2O5 glass having a transition temperature of 600° C. or higher was used as the glass for the intermediate layer, the glass to be formed and the glass for the intermediate layer are not limited to these. The pressing temperature of the glass to be formed, that is, the temperature at which the glass viscosity becomes approximately 108-1010 poise, is preferably 650°C or less. Further, as the glass for the intermediate layer, a glass whose transition temperature is higher than the pressing temperature of the glass to be formed may be selected. For example, if the glass to be formed is a low softening point glass with a pressing temperature of about 400° C., the selection range of the glass for the intermediate layer is very wide.
[梵明の効果]
本発明によれば、白金とニッケル及び/又はクロムを主
成分とする表面層を設けたことにより、プレス成形時に
おけるガラス成形体の離型性が非常に良好となり、又、
基盤と表面層の間に中間層としてガラス賢を設けたこと
により接着性が向上して膜の剥離が発生せず、かつ基盤
の酸化も防止され、寿命の長い成形型が得られる。[Effect of Bonmei] According to the present invention, by providing a surface layer mainly composed of platinum, nickel, and/or chromium, the mold releasability of the glass molded body during press molding becomes very good, and
By providing a glass layer as an intermediate layer between the base and the surface layer, adhesion is improved so that peeling of the film does not occur, and oxidation of the base is also prevented, resulting in a mold with a long life.
また基盤材料としてシリコンを用いた場合には高精度の
非球面切削加工が容易になり、またシリコン以外の、ダ
ンゲステンカーバイドやシリコンカーバイドなどの基盤
材料を用いた場合にも表面層を設けた後に型表面の高精
度加工、特に非球面加工が容易になるという利点を有す
る。In addition, when silicon is used as the base material, high-precision aspherical cutting becomes easy, and even when base materials other than silicon, such as dungesten carbide and silicon carbide, are used, after forming a surface layer. This has the advantage of facilitating high-precision machining of the mold surface, especially aspherical surface machining.
第1図は、基盤、中間層及び表面層の構成を示す本発明
の成形型の部分断面図、第2図は本発明の成形型を収納
したプレス成形機の構造を示す断面図である。
1・・・上型、2・・・下型、3・・・案内型、4・・
・被成形ガラス塊、5・・・基盤、6・・・第1中間層
、7・・・第2中間層、8・・・表面層、9・・・支持
棒、10・・・支持台、11・・・石英管、12・・・
ヒーター、13・・・押し棒、14・・・熱雷対。FIG. 1 is a partial cross-sectional view of a mold according to the present invention showing the structure of a base, an intermediate layer, and a surface layer, and FIG. 2 is a cross-sectional view showing the structure of a press molding machine housing the mold according to the present invention. 1... Upper mold, 2... Lower mold, 3... Guide mold, 4...
・Glass lump to be formed, 5... Base, 6... First intermediate layer, 7... Second intermediate layer, 8... Surface layer, 9... Support rod, 10... Support stand , 11...quartz tube, 12...
Heater, 13... Push rod, 14... Heat lightning pair.
Claims (4)
層上に設けられた表面層とを備え、前記の中間層が少な
くとも1種のガラスで構成され、そして前記の表面層が
50〜95wt%の白金と5〜40wt%のニッケル及
び/又はクロムとを含む少なくとも2種の金属で構成さ
れていることを特徴とするガラス成形体の成形型。(1) comprising a base, an intermediate layer provided on the base, and a surface layer provided on the intermediate layer, the intermediate layer comprising at least one type of glass, and the surface layer 1. A mold for a glass molded article, characterized in that the mold is made of at least two metals containing 50 to 95 wt% of platinum and 5 to 40 wt% of nickel and/or chromium.
する各層のガラスの熱膨張係数が基盤の熱膨張係数と表
面層の熱膨張係数との間にあって、かつ基盤側から表面
層側に向って順次増加する、特許請求の範囲第1項に記
載の成形型。(2) The intermediate layer is composed of multiple layers, and the coefficient of thermal expansion of the glass of each layer constituting the multiple layers is between the coefficient of thermal expansion of the base and the coefficient of thermal expansion of the surface layer, and the surface layer 2. The mold according to claim 1, wherein the number of molds increases gradually from side to side.
カーバイド、シリコンナイトライド、サーメット、ステ
ンレス鋼及びシリコンからなる群から選択される、特許
請求の範囲第1項に記載の成形型。(3) The mold of claim 1, wherein said substrate is selected from the group consisting of tungsten carbide, silicon carbide, silicon nitride, cermet, stainless steel, and silicon.
とともにロジウム、イリジウム、パラジウム及び金から
なる群から選択される少なくとも1種の金属を更に含む
、特許請求の範囲第1項に記載の成形型。(4) The molding according to claim 1, wherein the surface layer further contains at least one metal selected from the group consisting of rhodium, iridium, palladium, and gold in addition to platinum, nickel, and/or chromium. Type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13128187A JPS63297230A (en) | 1987-05-29 | 1987-05-29 | Molding mold for glass moldings |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13128187A JPS63297230A (en) | 1987-05-29 | 1987-05-29 | Molding mold for glass moldings |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63297230A true JPS63297230A (en) | 1988-12-05 |
Family
ID=15054276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13128187A Pending JPS63297230A (en) | 1987-05-29 | 1987-05-29 | Molding mold for glass moldings |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63297230A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03237024A (en) * | 1990-02-13 | 1991-10-22 | Asahi Optical Co Ltd | Optical element forming mold and its regenerating method |
EP1428801A3 (en) * | 2002-12-13 | 2004-06-23 | Sumita Optical Glass, Inc. | A coated moulding die for producing an optical glass element |
US8298354B2 (en) | 2005-10-19 | 2012-10-30 | Tokyo Institute Of Technology | Corrosion and heat resistant metal alloy for molding die and a die therewith |
-
1987
- 1987-05-29 JP JP13128187A patent/JPS63297230A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03237024A (en) * | 1990-02-13 | 1991-10-22 | Asahi Optical Co Ltd | Optical element forming mold and its regenerating method |
EP1428801A3 (en) * | 2002-12-13 | 2004-06-23 | Sumita Optical Glass, Inc. | A coated moulding die for producing an optical glass element |
US8298354B2 (en) | 2005-10-19 | 2012-10-30 | Tokyo Institute Of Technology | Corrosion and heat resistant metal alloy for molding die and a die therewith |
DE112006002822B4 (en) * | 2005-10-19 | 2013-07-25 | Tokyo Institute Of Technology | Corrosion and heat resistant metal alloy for a molding die and die made therefrom |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0768280B1 (en) | Die for press-molding optical elements and methods of manufacturing and using the same | |
KR100428485B1 (en) | Press die for press forming of glass | |
JPS63297230A (en) | Molding mold for glass moldings | |
JP4690100B2 (en) | Mold for glass optical element and method for manufacturing glass optical element | |
JP2001302273A (en) | Mold for molding optical glass element | |
JPS62207726A (en) | Production of pressed lens | |
JP2006225190A (en) | Metallic mold for molding optical element and its manufacturing method | |
JPS62202824A (en) | Production of pressed lens | |
JPH0725557B2 (en) | Method for producing press-molding die for optical element and method for producing optical element | |
JP2003277078A (en) | Die for glass molding and method for manufacturing the sane, method for manufacturing glass optical element, glass optical element and diffraction optical element | |
JP3630375B2 (en) | Mold for glass molding | |
JP2785888B2 (en) | Mold for optical element molding | |
JP2003073134A (en) | Method for forming optical element and mold | |
JPH0455135B2 (en) | ||
JPH11268920A (en) | Forming mold for forming optical element and its production | |
JP2009073693A (en) | Optical element-molding die, and method for producing the same | |
JP4585558B2 (en) | Optical glass element mold | |
JPH11268921A (en) | Press mold for forming glass | |
JP2002220239A (en) | Die for forming glass element and method of producing the same and method of producing optical element using the die | |
JPH01111738A (en) | Molding die for molded glass | |
JP3851383B2 (en) | Optical glass element press mold and method of manufacturing the same | |
JPH02283627A (en) | Mold for forming optical glass element | |
JPH10139453A (en) | Mold for molding optical element and its production | |
JP3185299B2 (en) | Glass lens molding die and glass lens molding device | |
JPH0578145A (en) | Fusing preventing coating film |