JPS63286405A - Method for purifying cationic water-soluble polymer - Google Patents
Method for purifying cationic water-soluble polymerInfo
- Publication number
- JPS63286405A JPS63286405A JP12285387A JP12285387A JPS63286405A JP S63286405 A JPS63286405 A JP S63286405A JP 12285387 A JP12285387 A JP 12285387A JP 12285387 A JP12285387 A JP 12285387A JP S63286405 A JPS63286405 A JP S63286405A
- Authority
- JP
- Japan
- Prior art keywords
- solution
- soluble polymer
- monomer
- cationic
- cationic water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 125000002091 cationic group Chemical group 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims abstract description 25
- 229920003169 water-soluble polymer Polymers 0.000 title claims abstract description 21
- 239000000178 monomer Substances 0.000 claims abstract description 51
- 239000012535 impurity Substances 0.000 claims abstract description 17
- 239000007864 aqueous solution Substances 0.000 claims abstract description 14
- 238000000909 electrodialysis Methods 0.000 claims abstract description 12
- 239000003014 ion exchange membrane Substances 0.000 claims abstract description 12
- 238000010528 free radical solution polymerization reaction Methods 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 abstract description 19
- 238000000746 purification Methods 0.000 abstract description 7
- 230000000379 polymerizing effect Effects 0.000 abstract description 6
- 238000001704 evaporation Methods 0.000 abstract description 5
- 229920000083 poly(allylamine) Polymers 0.000 abstract description 5
- GQOKIYDTHHZSCJ-UHFFFAOYSA-M dimethyl-bis(prop-2-enyl)azanium;chloride Chemical compound [Cl-].C=CC[N+](C)(C)CC=C GQOKIYDTHHZSCJ-UHFFFAOYSA-M 0.000 abstract description 2
- 239000002341 toxic gas Substances 0.000 abstract description 2
- 229920000642 polymer Polymers 0.000 description 17
- 239000012528 membrane Substances 0.000 description 11
- 239000011550 stock solution Substances 0.000 description 10
- 238000006116 polymerization reaction Methods 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 7
- 238000005341 cation exchange Methods 0.000 description 6
- 238000010790 dilution Methods 0.000 description 6
- 239000012895 dilution Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 5
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000003011 anion exchange membrane Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229920002518 Polyallylamine hydrochloride Polymers 0.000 description 2
- 150000003926 acrylamides Chemical class 0.000 description 2
- 229920006317 cationic polymer Polymers 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- XCENPWBBAXQVCG-UHFFFAOYSA-N 4-phenylpiperidine-4-carbaldehyde Chemical compound C=1C=CC=CC=1C1(C=O)CCNCC1 XCENPWBBAXQVCG-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229920000831 ionic polymer Polymers 0.000 description 1
- DYUWTXWIYMHBQS-UHFFFAOYSA-N n-prop-2-enylprop-2-en-1-amine Chemical class C=CCNCC=C DYUWTXWIYMHBQS-UHFFFAOYSA-N 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920002717 polyvinylpyridine Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- VPYJNCGUESNPMV-UHFFFAOYSA-N triallylamine Chemical compound C=CCN(CC=C)CC=C VPYJNCGUESNPMV-UHFFFAOYSA-N 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
【発明の詳細な説明】
(I) 産業上の利用分野
本発明は、溶液重合反応で得られたカチオン性の水溶性
重合体の水溶液中に含まれる未反応の単量体を主成分と
する不純物を、イオン交換膜電気透析法を用いることに
よって除去して、カチオン性水溶性重合体を精製する方
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (I) Industrial Field of Application The present invention is directed to an aqueous solution of a cationic water-soluble polymer obtained by a solution polymerization reaction, whose main component is unreacted monomers. The present invention relates to a method for purifying a cationic water-soluble polymer by removing impurities by using an ion exchange membrane electrodialysis method.
(TI) 従来の技術
例えばモノアリルアミンなどのカチオン性単量体を水中
で溶液重合させてポリアリルアミンなどを製造する場合
には、原料であるカチオン性単量体を無機又は有機酸の
塩として重合させる場合が一般的である。そのため、重
合反応後の水溶性重合体水溶液中には、未重合の単量体
の無機あるいは有IN酸の塩を主成分とする不純物が残
存する。(TI) Conventional technology For example, when producing polyallylamine by solution polymerizing a cationic monomer such as monoallylamine in water, the cationic monomer as a raw material is polymerized as a salt of an inorganic or organic acid. This is common. Therefore, impurities mainly composed of inorganic or organic IN acid salts of unpolymerized monomers remain in the water-soluble polymer aqueous solution after the polymerization reaction.
このような不純物を含有する重合体を原料として各種の
誘導体を製造する場合には、純度の低下により誘導体の
収率低下の要因となるため、できるだけこれら不純物を
除去した高純度の重合体が要求されている。When producing various derivatives using polymers containing such impurities as raw materials, it is necessary to obtain high-purity polymers from which these impurities have been removed as much as possible, as the decrease in purity will cause a decrease in the yield of the derivatives. has been done.
ところが、この未反応の単量体を主成分とする不純物は
一般に毒性が強いため、製品重合体の取扱いには注意を
要し、特に、これら重合体を加熱する必要がある場合に
は、単量体が蒸発する危険があり、その取扱いは極めて
煩雑である。However, since impurities mainly composed of unreacted monomers are generally highly toxic, product polymers must be handled with care, especially if these polymers need to be heated. There is a risk that the polymer will evaporate, and its handling is extremely complicated.
従来、この未反応の単1体を主成分とする不純物を除去
する方法としては、重−合反応後、無機又は有機の塩基
で該不純物を含む高分子重合体溶液を中和し、残留する
カチオン性単量体を揮発可能な遊離の状態に変化させた
後、蒸発等により残留単量体を主成分とする不純物を除
去する方法がある。この方法は、多量の中和剤を必要と
し、かつ、重合した重合体の熱変性の危険、さらには、
自前な単量体の蒸発により作業環境が悪化するため、安
全対策を充分に講する必要があるなどの欠点があった。Conventionally, the method for removing impurities mainly composed of unreacted monomers is to neutralize the high molecular weight polymer solution containing the impurities with an inorganic or organic base after the polymerization reaction, and to remove the remaining impurities. There is a method of converting the cationic monomer into a volatile free state and then removing impurities mainly composed of the residual monomer by evaporation or the like. This method requires a large amount of neutralizing agent, and there is a risk of thermal denaturation of the polymerized polymer.
This method had drawbacks such as the need to take sufficient safety measures because the working environment deteriorated due to the evaporation of the proprietary monomer.
別法としては、重合反応溶液中の重合体だけを沈澱させ
る再沈澱溶媒を用いて重合体を沈澱させ、溶媒中に溶解
している単量体を主成分とする不純物を分離する方法も
あるが、溶媒の再回収や沈澱の濾過を行なう必要があり
、操作が煩雑となり、多大の運転経費を要するなどの欠
点があった。さらに、近年、逆浸透膜や限外濾過膜を用
いて低分子重合体とともに不純物を透過除去する方法や
分子の大きさでふるい分けるゲル濾過払による分離も研
究されているが、重合体濃度を下げる必要があったり、
装置規模が非常に大きくなったりするために、工業的に
は実用化が、いまだ検討段階である。Another method is to precipitate the polymer using a reprecipitation solvent that precipitates only the polymer in the polymerization reaction solution, and then separate impurities mainly composed of monomers dissolved in the solvent. However, it is necessary to re-collect the solvent and filter the precipitate, making the operation complicated and requiring a large amount of operating cost. Furthermore, in recent years, research has been conducted on methods that use reverse osmosis membranes or ultrafiltration membranes to permeate and remove impurities along with low-molecular-weight polymers, and separation using gel filtration that sieves based on molecular size. It may be necessary to lower
Since the scale of the device becomes very large, industrial application is still under consideration.
また、以上の如き単1体を除去する方法とは別に、原料
である単量体を重合反応後に残存させ、ない方法として
、重合時間を長くしたり、重合開始剤や触媒の量を多く
したり、反応を完結させるために高温・高圧をかけて反
応させる等の操作を行なうことも提案されている。しか
しながら、これらの方法も、その操作自体が煩雑で多大
な費用を要するという欠点がある。In addition to the above-mentioned method of removing monomers, there are other methods that allow the raw material monomer to remain after the polymerization reaction, such as prolonging the polymerization time or increasing the amount of polymerization initiator or catalyst. It has also been proposed to perform operations such as applying high temperature and high pressure to complete the reaction. However, these methods also have the disadvantage that the operations themselves are complicated and require a large amount of cost.
(Ill) 発明が解決しようとする問題点本発明は
単量体を溶液重合して得られるカチオン性水溶性重合体
の水溶液中に残留する単旦体を主成分とする不純物を除
去せしめるにあたり、従来技術の欠点、部ら、中和剤、
溶媒などの副資材を必要とすること、および蒸発、溶媒
回収、沈澱濾過の煩雑な操作を必要とすること、ざらに
、高温で処理する場合に単量体の蒸発により操業の安全
性が心配されること等の問題点を一挙に解決しようとす
るものである。また、単量体が反応後にも残存しないよ
うにする従来技術の方法における不経済性を解消すべく
反応を経済的な範囲で終了させ、残留単量体を極めて簡
単な方法により分離除去回収し、しかも分離回収した残
留単量体は原として再利用することを目的とするもので
ある。(Ill) Problems to be Solved by the Invention The present invention aims to remove impurities mainly composed of monomers remaining in an aqueous solution of a cationic water-soluble polymer obtained by solution polymerization of monomers. Disadvantages of conventional technology, part et al., neutralizing agent,
Requires auxiliary materials such as solvents, and requires complicated operations such as evaporation, solvent recovery, and precipitation filtration.Furthermore, there are concerns about operational safety due to evaporation of monomers when processing at high temperatures. This is an attempt to solve all the problems such as the fact that the In addition, in order to eliminate the uneconomical nature of conventional methods in which monomers do not remain after the reaction, the reaction is completed within an economical range, and the residual monomers are separated and recovered using an extremely simple method. Moreover, the separated and recovered residual monomer is intended to be reused as a raw material.
(rV) 問題点を解決するための手段本発明は、こ
れまで一般的にはイオン性の重合体水溶液をイオン交換
膜と接触させると重合体が膜面に付着し、膜汚染が起こ
ると考えられていたために使用されなかったイオン交換
膜電気透析法を特にカチオン性の水溶性重合体水溶液中
の未反応単量体を主成分とする不純物の除去に用いるこ
とにより、前記した問題点を解決し、カチオン性水溶性
重合体を工業的に極めて有利に精製するものである。(rV) Means for Solving the Problems The present invention has been based on the conventional wisdom that when an aqueous solution of an ionic polymer is brought into contact with an ion exchange membrane, the polymer adheres to the membrane surface, causing membrane contamination. The above-mentioned problems were solved by using the ion exchange membrane electrodialysis method, which had not been used because of the conventional This method allows industrially very advantageous purification of cationic water-soluble polymers.
即ち、本発明は、カチオン性の単量体を溶液重合させて
得られたカチオン性水溶性重合体水溶液を、イオン交換
lI電気透析に付し未反応の単量体を主成分とする不純
物を除去することにより精製することを特徴とするカチ
オン性水溶性重合体の精製方法である。That is, in the present invention, an aqueous cationic water-soluble polymer solution obtained by solution polymerizing a cationic monomer is subjected to ion exchange lI electrodialysis to remove impurities mainly composed of unreacted monomers. This is a method for purifying a cationic water-soluble polymer, characterized by purification by removal.
本発明の精製方法を用いるカチオン性水溶性重合体とし
ては、カチオン性単量体を溶液重合して得られる、水に
溶解しているカチオン性の重合体で未反応の単量体を主
成分とする不純物を含む重合体水溶液である。これら重
合体及び単量体とも酸塩を形成しているもの、あるいは
これらの酸塩が完全又は部分中和されているものは、全
て本発明を用いることが出来る。The cationic water-soluble polymer to be used in the purification method of the present invention is obtained by solution polymerizing cationic monomers and is mainly composed of unreacted cationic polymers dissolved in water. This is an aqueous polymer solution containing impurities. The present invention can be used in any of these polymers and monomers that form acid salts, or in which these acid salts are completely or partially neutralized.
かかるカチオン性の水溶性重合体としては、モノアリル
アミンを重合させて得られるポリアリルアミン、あるい
はモノアリルアミンの酸塩を重合させて得られるポリア
リルアミン塩酸塩、ポリアリルアミン臭化水素酸塩等の
ポリアリルアミンの同族体に関するものは全て本発明に
言うカチオン性の水溶性重合体である。また、これらの
完全又は、部分中和したものにも本発明を採用すること
が出来る。ざらに、α、β−エポキシーγ−ハ0アルカ
ン等の架橋剤を用いたポリアリルアミンの架橋重合体、
また、ジアリルアミン塩酸塩やトリアリルアミン塩酸塩
との共重合体、ポリジメチルアミノエチルメタアクリル
アミドのようなポリN−アルキル置換(メタ)アクリル
アミド類、ポリジエチルアミノプロビルアクリレートの
ようなボリN−フルキル置換(メタ)アクリル酸エステ
ル類、ジメチルジアリルアンモニウムクロライドのよう
なN−アルキル置換ジアリルアミン類、ポリビニルピリ
ジン、ポリアミノスチレン等のカチオン性の水溶性重合
体の単独重合体、又は共重合体にも本発明を用いること
が出来る。Such cationic water-soluble polymers include polyallylamine obtained by polymerizing monoallylamine, or polyallylamine hydrochloride and polyallylamine hydrobromide obtained by polymerizing an acid salt of monoallylamine. All homologs of are cationic water-soluble polymers referred to in the present invention. The present invention can also be applied to completely or partially neutralized products. A cross-linked polymer of polyallylamine using a cross-linking agent such as α, β-epoxy γ-halo alkane,
In addition, copolymers with diallylamine hydrochloride and triallylamine hydrochloride, polyN-alkyl substituted (meth)acrylamides such as polydimethylaminoethylmethacrylamide, polyN-furkyl substituted (meth)acrylamides such as polydiethylaminopropylacrylate, etc. The present invention is also applicable to homopolymers or copolymers of cationic water-soluble polymers such as meth)acrylic acid esters, N-alkyl-substituted diallylamines such as dimethyldiallylammonium chloride, polyvinylpyridine, and polyaminostyrene. I can do it.
本発明のイオン交換膜電気透析法による精製方法の実施
態様を第1図により説明する。電槽9は、陽イオン交換
膜Cと陰イオン交換膜へとが交互に並行に配列され、膜
により区画された希釈室3、濃縮室4および電極室5よ
り成立しており、電槽9の両端の1lri極室5には、
それぞれ陽極と陰極の電穫板6が設備されている。原液
槽1に投入された未反応単量体を含むカチオン性の水溶
性重合体水溶液は、ポンプP1により電槽9の希釈室3
に送られる。ここで、未反応単量体は゛陽イオン交換W
ACを通して濃縮室4へ移動し、未反応単量体あるいは
重合体と塩を構成している無機又は、有機の酸は陰イオ
ン交!lA膜Aを通過し濃縮室4へ移動する。この時、
カチオン性の水溶性重合体は陽イオン交換I!lICに
よりa断され、希釈室3には未反応単量体が除去された
水溶性重合体がそのまま残留する。一方、濃縮液槽2及
び電極室5には、濃縮液たる電解液が投入され1〜2%
のNaC1溶液又は、Na2SO4溶液等が一般的に用
いられるが、これらに限定されず電解質溶液であればい
ずれを用いてもよい。この濃縮液はポンプP2により濃
縮室4へ送られる。通常カチオン性の重合体溶液には固
形分ベースで数パーセントから十数パーセントの未反応
単口体が含まれてい゛るがこの原液、濃縮液、及び電極
液をそれぞれ、希釈室、濃縮室、電極室へ循環させ、電
極板6に直流電圧を印加することにより、原液槽1に投
入された未反応単量体を含む重合体水溶液からは、徐々
に未反応単量体が透析除去され、濃縮液中に透析された
未反応単量体は濃縮液槽2に濃縮されることにより、つ
いには、原液槽1には精製された重合体水溶液が、濃縮
液槽2には未反応単量体が濃縮貯蔵されることになる。An embodiment of the purification method using ion exchange membrane electrodialysis according to the present invention will be explained with reference to FIG. The battery container 9 is composed of a dilution chamber 3, a concentration chamber 4, and an electrode chamber 5, in which cation exchange membranes C and anion exchange membranes are arranged alternately in parallel, and are partitioned by the membranes. In the 1lri polar chamber 5 at both ends of
An anode and a cathode galvanic plate 6 are respectively provided. The cationic water-soluble polymer aqueous solution containing unreacted monomers put into the stock solution tank 1 is transferred to the dilution chamber 3 of the battery tank 9 by the pump P1.
sent to. Here, the unreacted monomer is "cation exchange W"
It moves to the concentration chamber 4 through AC, and the inorganic or organic acid forming the salt with the unreacted monomer or polymer exchanges anions! It passes through the lA membrane A and moves to the concentration chamber 4. At this time,
Cationic water-soluble polymers are cation exchange I! It is cut off by IC, and the water-soluble polymer from which unreacted monomers have been removed remains in the dilution chamber 3 as it is. On the other hand, the concentrated liquid tank 2 and the electrode chamber 5 are filled with an electrolytic solution of 1 to 2% concentration.
A NaCl solution or a Na2SO4 solution is generally used, but the present invention is not limited thereto, and any electrolyte solution may be used. This concentrated liquid is sent to the concentration chamber 4 by pump P2. Normally, a cationic polymer solution contains from several percent to more than ten percent of unreacted monomers based on the solid content, and the stock solution, concentrated solution, and electrode solution are divided into a dilution chamber, a concentration chamber, and a concentration chamber. By circulating the polymer solution to the electrode chamber and applying a DC voltage to the electrode plate 6, unreacted monomers are gradually removed by dialysis from the polymer aqueous solution containing unreacted monomers introduced into the stock solution tank 1. The unreacted monomers dialyzed into the concentrate are concentrated in the concentrate tank 2, and the purified polymer aqueous solution is finally in the concentrate tank 1, and the unreacted monomers are in the concentrate tank 2. The body becomes concentrated and stored.
かくして、未反応単量体が除去された精製水溶性重合体
を得ることができる。In this way, a purified water-soluble polymer from which unreacted monomers have been removed can be obtained.
なお、本発明に用いられる陽イオン交換膜及び陰イオン
交換膜は一般的なイオン交換11(例えば旭硝子社製C
MV、AMV等)でよく、特殊なイオン交換膜を用いる
必要はあえてない。またこれらのイオン交換膜を装着さ
ける電気透析槽も、市販されているものでよく、lI閤
隔、室数、室内透過等を特別に設定しでやる必要はない
。The cation exchange membrane and anion exchange membrane used in the present invention are general ion exchange membranes 11 (for example, C made by Asahi Glass Co., Ltd.).
MV, AMV, etc.), and there is no need to use a special ion exchange membrane. Furthermore, the electrodialysis tank to which these ion exchange membranes are attached may be commercially available, and there is no need to specially set the lI spacing, number of chambers, indoor permeation, etc.
(V) 作用及び効果
このようにカチオン性の水溶性重合体の水溶液を電気透
析処理を行なうことにより、溶液中に含まれていた固形
分ベースで数パーセントから数十パーセントの未反応の
単量体は、0.1パーセントから0.3パ一セント程度
にまで除去することが出来る。これにより、これまで一
般的に用いられてきた重合反応水溶液を中和し、単量体
を遊離の状態にして蒸発除去する必要がなくなったので
、本発明の精製方法の場合には、単量体に熱をかけるこ
とがないので有毒ガスが蒸発することがなく安全性が増
し、かつ、極めて簡便な処理で単口体を除去出来るよう
になった。また、中和剤や溶媒等の副資材も用いる必要
がなくなった。未反応単量体は、電気透析槽の濃縮室側
に単独で移動するので回収し、原料として再利用出来る
等の数々の効果を本発明は生み出した。さらに、これま
でのように、未反応単量体を残存させないように重合率
を高めるために極端な努力をする必要もなく、未反応単
量体が残存する経済的なところで重合反応を停止し、本
発明の処理を行なえばよい。(V) Actions and Effects By electrodialyzing an aqueous solution of a cationic water-soluble polymer, several percent to several tens of percent of unreacted monomers are removed based on the solid content contained in the solution. The body can be removed to the extent of 0.1% to 0.3%. As a result, it is no longer necessary to neutralize the polymerization reaction aqueous solution that has been commonly used so far and evaporate the monomers into a free state, so in the case of the purification method of the present invention, the monomer Since no heat is applied to the body, toxic gases do not evaporate, increasing safety, and the single-mouthed body can now be removed with an extremely simple process. Additionally, there is no need to use auxiliary materials such as neutralizers and solvents. The present invention has produced a number of effects, such as the fact that the unreacted monomer moves independently to the concentration chamber side of the electrodialysis tank, so it can be recovered and reused as a raw material. Furthermore, unlike in the past, there is no need to make extreme efforts to increase the polymerization rate without leaving unreacted monomers, and the polymerization reaction can be stopped at an economical point where unreacted monomers remain. , the processing of the present invention may be performed.
(Vl) 実施例
以下、本発明の代表的実施例を示すが、本発明はこれに
限定されるものではない。(Vl) Examples Representative examples of the present invention will be shown below, but the present invention is not limited thereto.
実施例−1
電気透析装置として旭硝子製−ou−ob槽を用い、こ
の中に、同じく旭硝子製の陽イオン交換膜CMVと陰イ
オン交換膜AMV各11枚を第1図のように配列して希
釈室3、濃縮室4及び電極室5を設け、更に原液槽1、
濃縮液槽2、循環ポンプP、P2を設置した。イオン交
換膜の自効膜面積は0.188TrL2である。Example 1 An ou-ob tank manufactured by Asahi Glass Co., Ltd. was used as an electrodialysis device, and in this tank, 11 each of cation exchange membranes CMV and anion exchange membranes AMV, also manufactured by Asahi Glass, were arranged as shown in Figure 1. A dilution chamber 3, a concentration chamber 4 and an electrode chamber 5 are provided, and a stock solution tank 1,
A concentrated liquid tank 2 and circulation pumps P and P2 were installed. The self-effective membrane area of the ion exchange membrane is 0.188TrL2.
原液4f11には原液として、ポリアリルアミン塩酸塩
(重聞平均分子場10,000、残留単量体濃度は固形
分ベースで9.93重石パーセント)の10%水溶液3
.000グラムを仕込んだ。また濃縮液槽2と電極室5
には1%NaCl溶液2000グラムを各々仕込んだ。Stock solution 4f11 contains a 10% aqueous solution 3 of polyallylamine hydrochloride (weighted average molecular field 10,000, residual monomer concentration 9.93 weight percent based on solid content) as a stock solution.
.. 000g was prepared. In addition, the concentrated liquid tank 2 and the electrode chamber 5
Each was charged with 2000 grams of 1% NaCl solution.
これらの液を各々150〜1601/Hrの流量で循環
しながら、電極間に16−17ボルトの直流電圧を印加
したところ、1.5時開後に、原液中の残留単量体は固
形分ベースで0.3%であり、pHは9.6となった。When these solutions were circulated at a flow rate of 150 to 1601/Hr and a DC voltage of 16 to 17 volts was applied between the electrodes, after opening at 1.5 o'clock, the residual monomer in the stock solution was reduced to a solid content base. It was 0.3%, and the pH was 9.6.
なお、分析はガスクロマトグラフ法で行なった。Note that the analysis was performed by gas chromatography.
実施例−2
電気透析装置、イオン交換膜、付属設備、運転条件等は
実施例−1と全く同様にし、原液として、アリルアミン
塩酸塩とジアリルアミン塩111塩を4対1のモル比で
、共重合させたものの3%溶液(単量体は固形分ベース
で6.8パーセントを含む)を用いて、電気透析試験を
行なったところ、単量体は0.09パーセントまで除去
することが出来た。Example-2 The electrodialyzer, ion exchange membrane, attached equipment, operating conditions, etc. were completely the same as in Example-1, and as stock solutions, allylamine hydrochloride and diallylamine salt 111 salt were copolymerized at a molar ratio of 4:1. When an electrodialysis test was carried out using a 3% solution (containing 6.8 percent monomer on a solids basis) of the same product, it was possible to remove up to 0.09 percent monomer.
実施例−3
実施例1と同じ装置で、原液としてポリジメチルジアリ
ルアンモニウムクロリドのポリマーの5%水溶液(単量
体として、固形分換粋で3.5%を含む)を用いて電気
透析試験を行ったところ単量体は0.3%まで除去でき
た。Example 3 Using the same equipment as in Example 1, an electrodialysis test was conducted using a 5% aqueous solution of a polymer of polydimethyldiallylammonium chloride (containing 3.5% as a monomer in terms of solid content) as a stock solution. As a result, it was possible to remove up to 0.3% of the monomer.
第1図は本発明の精製方法に用いる電気透析装置の概略
図である。
1:原液槽、2:li縮液槽、3:希釈室、4:濃縮室
、5:電極室、6:電極板、7:11縮液経路、8:1
1縮液経路、9:電櫓、Pl、P2ニボンプ、A:陰イ
オン交換膜、C:陽イオン交換膜。FIG. 1 is a schematic diagram of an electrodialysis apparatus used in the purification method of the present invention. 1: Stock solution tank, 2: Li condensation liquid tank, 3: Dilution chamber, 4: Concentration chamber, 5: Electrode chamber, 6: Electrode plate, 7: 11 Condensation liquid path, 8:1
1 condensation route, 9: electric tower, Pl, P2 nippon, A: anion exchange membrane, C: cation exchange membrane.
Claims (1)
性水溶性重合体水溶液を、イオン交換膜電気透析に付し
未反応の単量体を主成分とする不純物を除去することに
より精製することを特徴とするカチオン性水溶性重合体
の精製方法。A cationic water-soluble polymer aqueous solution obtained by solution polymerization of a cationic monomer is purified by subjecting it to ion exchange membrane electrodialysis to remove impurities mainly composed of unreacted monomers. A method for purifying a cationic water-soluble polymer, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62122853A JPH0768298B2 (en) | 1987-05-20 | 1987-05-20 | Method for purifying cationic water-soluble polymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62122853A JPH0768298B2 (en) | 1987-05-20 | 1987-05-20 | Method for purifying cationic water-soluble polymer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63286405A true JPS63286405A (en) | 1988-11-24 |
JPH0768298B2 JPH0768298B2 (en) | 1995-07-26 |
Family
ID=14846259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62122853A Expired - Lifetime JPH0768298B2 (en) | 1987-05-20 | 1987-05-20 | Method for purifying cationic water-soluble polymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0768298B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0687911A (en) * | 1992-09-07 | 1994-03-29 | Mitsubishi Rayon Co Ltd | Device for purifying polymer solution by ion exchange and method for purifying the same |
JPH06100616A (en) * | 1992-09-16 | 1994-04-12 | Mitsubishi Rayon Co Ltd | Ion-exchange purification apparatus and method of purifying polymer solution |
JPH06100617A (en) * | 1992-09-16 | 1994-04-12 | Mitsubishi Rayon Co Ltd | Ion-exchange purification apparatus and method of purifying polymer solution |
JPH06100615A (en) * | 1992-09-16 | 1994-04-12 | Mitsubishi Rayon Co Ltd | Ion-exchange purification system and method of purifying polymer solution |
EP0648231A1 (en) * | 1992-07-02 | 1995-04-19 | Isp Investments Inc. | Process for rendering amino-group-containing polymer solutions substantially odorless |
WO1999019372A1 (en) * | 1997-10-13 | 1999-04-22 | Nitto Boseki Co., Ltd. | Process for producing low-molecular-weight allylamine polymers or addition salts thereof |
WO2001018073A1 (en) * | 1999-09-03 | 2001-03-15 | The Dow Chemical Company | Process for reducing cohesiveness of polyallylamine polymer gels during drying |
JP2001288209A (en) * | 2000-04-10 | 2001-10-16 | Nof Corp | Preparation method of polymer containing phosphorylcholine analogous group |
US6376578B1 (en) | 1991-06-19 | 2002-04-23 | Akzo Nobel Nv | Epihalohydrin-based resins having a reduced halogen content |
WO2003031501A1 (en) * | 2001-10-09 | 2003-04-17 | Genzyme Corporation | Process for purification and drying of polymer hydrogels |
US6600011B2 (en) | 2001-10-09 | 2003-07-29 | Genzyme Corporation | Process for purification and drying of polymer hydrogels |
JP2006265559A (en) * | 1997-10-13 | 2006-10-05 | Nitto Boseki Co Ltd | Water-resistance-imparting agent for addition to ink, and ink composition |
JP2010043174A (en) * | 2008-08-12 | 2010-02-25 | Nitto Boseki Co Ltd | Method for manufacturing high-purity cation type polymer |
WO2013087237A1 (en) | 2011-12-13 | 2013-06-20 | Synthon Bv | Purification of sevelamer and related polyallylamines |
WO2013087238A1 (en) | 2011-12-13 | 2013-06-20 | Synthon Bv | Preparation of sevelamer with reduced content of allylamine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60115935A (en) * | 1983-11-28 | 1985-06-22 | Fuji Photo Film Co Ltd | Photosensitive material containing polymer latex |
JPS6144188A (en) * | 1984-08-08 | 1986-03-03 | Mitsui Toatsu Chem Inc | Manufacture of aminoethanesulfonic acid |
-
1987
- 1987-05-20 JP JP62122853A patent/JPH0768298B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60115935A (en) * | 1983-11-28 | 1985-06-22 | Fuji Photo Film Co Ltd | Photosensitive material containing polymer latex |
JPS6144188A (en) * | 1984-08-08 | 1986-03-03 | Mitsui Toatsu Chem Inc | Manufacture of aminoethanesulfonic acid |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6376578B1 (en) | 1991-06-19 | 2002-04-23 | Akzo Nobel Nv | Epihalohydrin-based resins having a reduced halogen content |
EP0648231A1 (en) * | 1992-07-02 | 1995-04-19 | Isp Investments Inc. | Process for rendering amino-group-containing polymer solutions substantially odorless |
EP0648231A4 (en) * | 1992-07-02 | 1995-05-17 | Isp Investments Inc. | Process for rendering amino-group-containing polymer solutions substantially odorless. |
JPH0687911A (en) * | 1992-09-07 | 1994-03-29 | Mitsubishi Rayon Co Ltd | Device for purifying polymer solution by ion exchange and method for purifying the same |
JPH06100616A (en) * | 1992-09-16 | 1994-04-12 | Mitsubishi Rayon Co Ltd | Ion-exchange purification apparatus and method of purifying polymer solution |
JPH06100617A (en) * | 1992-09-16 | 1994-04-12 | Mitsubishi Rayon Co Ltd | Ion-exchange purification apparatus and method of purifying polymer solution |
JPH06100615A (en) * | 1992-09-16 | 1994-04-12 | Mitsubishi Rayon Co Ltd | Ion-exchange purification system and method of purifying polymer solution |
WO1999019372A1 (en) * | 1997-10-13 | 1999-04-22 | Nitto Boseki Co., Ltd. | Process for producing low-molecular-weight allylamine polymers or addition salts thereof |
AU745232B2 (en) * | 1997-10-13 | 2002-03-14 | Nitto Boseki Co. Ltd. | Process for producing low-molecular-weight allylamine polymers or addition salts thereof |
US6787587B1 (en) | 1997-10-13 | 2004-09-07 | Nitto Boseki Co., Ltd. | Process for the production of low-molecular-weight allylamine polymer or addition salt thereof |
JP2006265559A (en) * | 1997-10-13 | 2006-10-05 | Nitto Boseki Co Ltd | Water-resistance-imparting agent for addition to ink, and ink composition |
KR100465139B1 (en) * | 1997-10-13 | 2005-01-13 | 니토 보세키 가부시기가이샤 | Process for the production of low-molecular-weight allylamine polymer or addition salt thereof |
WO2001018073A1 (en) * | 1999-09-03 | 2001-03-15 | The Dow Chemical Company | Process for reducing cohesiveness of polyallylamine polymer gels during drying |
JP2001288209A (en) * | 2000-04-10 | 2001-10-16 | Nof Corp | Preparation method of polymer containing phosphorylcholine analogous group |
US6600011B2 (en) | 2001-10-09 | 2003-07-29 | Genzyme Corporation | Process for purification and drying of polymer hydrogels |
WO2003031501A1 (en) * | 2001-10-09 | 2003-04-17 | Genzyme Corporation | Process for purification and drying of polymer hydrogels |
JP2010043174A (en) * | 2008-08-12 | 2010-02-25 | Nitto Boseki Co Ltd | Method for manufacturing high-purity cation type polymer |
WO2013087237A1 (en) | 2011-12-13 | 2013-06-20 | Synthon Bv | Purification of sevelamer and related polyallylamines |
WO2013087238A1 (en) | 2011-12-13 | 2013-06-20 | Synthon Bv | Preparation of sevelamer with reduced content of allylamine |
Also Published As
Publication number | Publication date |
---|---|
JPH0768298B2 (en) | 1995-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63286405A (en) | Method for purifying cationic water-soluble polymer | |
US5910611A (en) | Aqueous alkanolamines using an electrodialysis cell with an ion exchange membrane | |
US3933610A (en) | Desalination process by improved multistage electrodialysis | |
US5503729A (en) | Electrodialysis including filled cell electrodialysis (electrodeionization) | |
EP1323460B1 (en) | Method of recovering fluorochemical surfactant | |
US3330749A (en) | Process for treating amino acid solution | |
US20110100913A1 (en) | Water purifier and water purification method | |
US6410672B1 (en) | Ion exchange and electrochemical methods and devices employing one-step quaternized and polymerized anion selective polymers | |
JPS6144833A (en) | Collection of glycerine from brine | |
EP0368203A2 (en) | Method for recovering sulfuric acid from a titanium sulfate waste liquor | |
US6162340A (en) | Membrane filtration of polymer containing solutions | |
JPS6365060B2 (en) | ||
JP2001206964A (en) | Cation-exchange membrane capable of selectively permeating monovalent cation, and method for producing the same | |
JP4140453B2 (en) | Method for producing diallylamine acetate polymer | |
JP3637458B2 (en) | Ammonia nitrogen removal method | |
JP3937287B2 (en) | Method for producing monoallylamine polymer aqueous solution | |
EP0553136A1 (en) | Guard membranes for use in electrodialysis cells | |
JP3151042B2 (en) | Method for producing acid and alkali | |
JPH0622659B2 (en) | Treatment method for surface treatment waste liquid of A1 material | |
JPS59203613A (en) | Method for desalting organic compound by using amphoteric ion exchange membrane | |
JPS6230742A (en) | Recovery of amino acid from amino acid alkali salt | |
CN1218041A (en) | Desalination of aqueous sulph-namide solutions | |
JPH05228471A (en) | Treatment of aluminum phosphate-containing monobasic acid waste liquid | |
JPS62210007A (en) | Method for recovering amino acid from alkali salt of amino acid in high yield | |
JPH0780254A (en) | Removal of ammoniacal nitrogen in condensate desalted regenerated water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |