JPS63285273A - Liquid pneumatic power generating method - Google Patents
Liquid pneumatic power generating methodInfo
- Publication number
- JPS63285273A JPS63285273A JP11857287A JP11857287A JPS63285273A JP S63285273 A JPS63285273 A JP S63285273A JP 11857287 A JP11857287 A JP 11857287A JP 11857287 A JP11857287 A JP 11857287A JP S63285273 A JPS63285273 A JP S63285273A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- pressure
- air
- cycle
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims description 22
- 238000007906 compression Methods 0.000 claims abstract description 39
- 230000006835 compression Effects 0.000 claims abstract description 36
- 238000010586 diagram Methods 0.000 claims description 18
- 238000010248 power generation Methods 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 239000008207 working material Substances 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000002918 waste heat Substances 0.000 claims description 2
- 230000004308 accommodation Effects 0.000 claims 1
- 238000011084 recovery Methods 0.000 abstract description 12
- 238000006243 chemical reaction Methods 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- FNYLWPVRPXGIIP-UHFFFAOYSA-N Triamterene Chemical compound NC1=NC2=NC(N)=NC(N)=C2N=C1C1=CC=CC=C1 FNYLWPVRPXGIIP-UHFFFAOYSA-N 0.000 description 19
- 238000011069 regeneration method Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 230000005611 electricity Effects 0.000 description 8
- 230000008929 regeneration Effects 0.000 description 7
- 239000000446 fuel Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005381 potential energy Methods 0.000 description 3
- 102220137239 rs35929540 Human genes 0.000 description 3
- 241000883306 Huso huso Species 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 101710126559 Endoglucanase EG-II Proteins 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 102220065988 rs139034501 Human genes 0.000 description 1
- 102220091149 rs145688699 Human genes 0.000 description 1
- 102220012699 rs2233264 Human genes 0.000 description 1
- 102220042941 rs35992331 Human genes 0.000 description 1
- 102220295519 rs779762640 Human genes 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Description
【発明の詳細な説明】
((産業上の利用分野))
本発明は、本発明に密接に関連する本出願人の併願発明
「液本空気製造方法」(以下「併願発明」という。)に
記載された方法に従って、大容量動力(電力)を消費し
て製造・貯蔵された液本空気を使用して熱機関を稼動し
、外部熱源からの供給熱量を最大限に有効な機械的仕事
に転換する動力発生方法に関する。DETAILED DESCRIPTION OF THE INVENTION ((Industrial Application Field)) The present invention is based on a jointly filed invention "liquid air manufacturing method" (hereinafter referred to as "jointly filed invention") of the applicant, which is closely related to the present invention. According to the method described, a heat engine is operated using the produced and stored liquid air at the expense of a large amount of power (electricity) to maximize the amount of heat supplied from an external heat source into useful mechanical work. This article relates to a converting power generation method.
((従来の技術))
近年わが国では、高効率の大容量発電所の建設が積極的
に進められる中で、電力需要が激減する深夜電力の最適
な貯蔵・再生方法の早期確立が切望されている。((Prior Art)) In recent years, in Japan, with the active construction of high-efficiency large-capacity power plants, there is an urgent need to quickly establish an optimal storage and regeneration method for late-night electricity when demand for electricity is drastically reduced. There is.
しかし従来、動力貯蔵・再生用として考案された一般的
な方式は、動力を一旦は機械的・科学的・物理的エネル
ギーその他に変換・貯蔵し、必要に応じて貯蔵エネルギ
ーそのものを機械的仕事に転換しようとするものであっ
て、専ら小容量動力への適用に限られ、大容量動力(電
力)の貯蔵・再生用として実用化されたものは、代表的
なポンプ水車システムが挙げられるに過ぎない。この方
式はポンプ行程で電気的エネルギーを水の位置エネルギ
ーに変換・貯蔵し、水車行程で位置エネルギーそのもの
を機械的仕事に転換するものである。However, in the past, the general methods devised for power storage and regeneration were to first convert and store power into mechanical, scientific, physical energy, etc., and then convert the stored energy itself into mechanical work as needed. The only type of system that has been put into practical use for storing and regenerating large-capacity power (electricity) is the typical pump-turbine system, which is limited to application to small-capacity power. do not have. This method converts and stores electrical energy into water potential energy during the pump stroke, and converts the potential energy itself into mechanical work during the water wheel stroke.
((発明が解決しようとする問題点))しかしながら、
上述のような従来の大容量電力貯蔵・再生を行うポンプ
水車システムでは、電力発生源の発電所も含めた総合的
な評価検討は後述の((発明の効果))の項に譲るとし
て、単純に電気的エネルギー■貯蔵媒体(水)位置エネ
ルギーの往復過程の交換効率をそれぞれ85%と仮定し
ても、消費電力の72%が再生時に回収されるに過ぎな
い。実際には往復変換途中の各種機器の電気的・機械的
・水力学的損失を考慮に入れると、この値を可成り下廻
るものと予想され、このような電力貯蔵・再生方式は著
しく非生産的であると言わざるを得ない。それにも拘ら
ず、大容量電力に適合する他の高性能の方式が未開発で
あるがために、依然として本方式を採用せざるを得ない
のが現状である。機器の効率を如何に向上させ、如何に
各種損失を少くしても、貯蔵媒体の持つ物理的エネルギ
ーそのものを動力に再転換しようとする旧来方式に依存
する限り、消費動力それ自体を再び取り返すことは原理
的に不可能であり、宿命的とも言えるのである。((Problem that the invention seeks to solve)) However,
In the conventional pump-turbine system that stores and regenerates large-capacity electric power as described above, a comprehensive evaluation including the power generation source of the power plant will be deferred to the section ((Effects of the invention)) below. Even assuming that the exchange efficiency of the round trip process of electric energy, storage medium (water) and potential energy is 85%, only 72% of the power consumption is recovered during regeneration. In reality, if we take into account the electrical, mechanical, and hydraulic losses of various devices during round-trip conversion, it is expected that this value will be considerably lower, and this type of power storage and regeneration method will be extremely unproductive. I have to say that it is accurate. Nevertheless, since other high-performance methods suitable for large-capacity power have not yet been developed, the present method still has no choice but to be adopted. No matter how much you improve the efficiency of equipment and reduce various losses, as long as you rely on the old method of converting the physical energy of the storage medium itself into power, you will not be able to regain the power consumed. It is impossible in principle, and it can be said that it is fateful.
本発明は、このような従来の問題点を全く新らしい観点
から解決を図ろうとするものであり、動力再生熱機関へ
の供給熱量から、動力貯蔵時の消費動力を大巾に上廻る
動力を極めて効率良く取り出す優れた液本空気動力発生
方法を提供することを目的とするものである。The present invention attempts to solve these conventional problems from a completely new perspective, and aims to generate power that greatly exceeds the power consumed during power storage from the amount of heat supplied to the power regenerative heat engine. The object of the present invention is to provide an excellent method for generating liquid air power that can be extracted extremely efficiently.
《問題を解決するための手段》
本発明は、上記目的を達成するために、高温度■0(上
位・高温熱源温度)と大気圧空気液化温度T00(低温
熱源温度)ならびに所与の高圧力P20と大気圧P■の
区間において液本空気自身を作業物質とする開放型ガス
タービンサイクル、常温T0(下位・高温熱源温度)と
低温度T3(T0>T3>T00)ならびに所与の圧力
P10(P20>P10>P0)と大気圧P■の区間に
おいて循環空気を作業物質とする密閉型ガスタービンサ
イクルおよび常温T0(下位・高温熱源温度)と低温度
T1(T0>T1>T3)ならびに所与の圧力■0(P
10■0>P0)と大気圧P0の区間において循環空気
を作業物資とする補助密閉型ガスタービンサイクルを組
み合せた混成サイクルにおいて、
イ.開放型サイクルは液本空気の供給から断熱圧縮(P
0→P20)・定圧膨張(P=P20)・等温膨脹(P
20→P0)・定圧圧縮(P=P0)等の諸行程を経て
大気中排出に至るまでを包含し、極低温T00・圧力P
0の状態で供給された液本空気が、所与の高圧力P20
まで断熱圧縮された後の定圧膨張行程において、密閉型
サイクルの等温圧縮時に循環空気に加えられる圧縮熱エ
ネルギーを吸収し、さらに補助密閉型サイクルの定圧圧
縮時の循環空気を冷却し、当該液本空気は蒸発・加熱さ
れて常温T0に達し、引き続き排空気との向流熱交換に
よって排熱を回収しつつ高温度■0まで加熱されて高温
高圧空気となり、
ロ.高温度■0・圧力P20の状態に達した前記高温高
圧空気は、続く開放型サイクルの等温膨脹行程において
、上位・高温熱源から膨張熱エネルギーの供給を受けな
がら大気圧P0まで等温膨脹を行い、次の定圧圧縮行程
において常温T0から高温度■0まで定圧膨張中の前記
高圧空気との向流熱交換によって、排熱を吐き出しなが
ら冷却され、常温T0・圧力P0の状態で大気中に排出
されハ.密閉型サイクルは循環空気の定圧圧縮(P=P
0)・等温圧縮(P0→P10)・定圧膨張(P=P1
0)・等温膨脹(P10=P0)等の諸行程によって構
成され、低温下での大気圧P0から所与の圧力P10に
至る等温圧縮行程において、循環空気に加えられる圧縮
熱エネルギーは、開放型サイクルで定圧膨張される前記
液本空気の全冷熱と当該循環空気自身の一部冷熱によっ
て吸収され、また当該サイクルの定圧圧縮、定圧膨張行
程相互の向流熱交換によって、当該循環空気の冷却と加
熱が同時に進行し、
ニ.密閉型サイクルの常温T0・圧力P10の状態から
大気圧P0に至る等温膨脹行程において、当該循環空気
に対し常温T0の下位・高温熱源から膨張熱エネルギー
が供給され、
ホ.補助密閉型サイクルは循環空気の定圧圧縮(P=P
0)・断熱圧縮(P0→P0)・等温膨脹(P0→P0
)等の諸行程によって構成され、定圧圧縮行程における
当該循環空気の冷却は、開放型、密閉型サイクルそれぞ
れの定圧膨張空気との向流熱交換によって行われ、常温
T0・圧力■0の状態から大気圧P0に至る等温膨脹行
程において、当該循環空気に対し常温T0の下位・高温
熱源から膨張熱エネルギーが供給され、
本サイクルは、おおむね上記過程の順序で進行し、T−
■(温度−エントロピ)線図上では、開放型、密閉型、
補助密閉型サイクルのいづれも、作業物質(空気)が時
計の回転方向と同じ右回りに流れるように、サイクル構
造に工夫を凝らしている。<<Means for Solving the Problem>> In order to achieve the above object, the present invention provides high temperature An open gas turbine cycle in which liquid air itself is used as a working substance in the interval between P20 and atmospheric pressure P■, normal temperature T0 (lower/higher heat source temperature), lower temperature T3 (T0>T3>T00), and given pressure P10 (P20>P10>P0) and atmospheric pressure P■. Applied pressure■0(P
In a hybrid cycle that combines an auxiliary closed gas turbine cycle using circulating air as a working material in the section of 10■0>P0) and atmospheric pressure P0, a. The open cycle consists of adiabatic compression (P
0→P20), constant pressure expansion (P=P20), isothermal expansion (P
20→P0), constant pressure compression (P=P0), and exhaust into the atmosphere.
The liquid main air supplied in the state of 0 has a given high pressure P20
In the constant pressure expansion stroke after being adiabatically compressed to The air is evaporated and heated to reach the room temperature T0, and then is heated to a high temperature ■0 while recovering exhaust heat through countercurrent heat exchange with the exhaust air, becoming high-temperature, high-pressure air, and b. The high-temperature, high-pressure air that has reached the state of high temperature ■0 and pressure P20 undergoes isothermal expansion to atmospheric pressure P0 while receiving expansion heat energy from the upper high-temperature heat source in the isothermal expansion stroke of the subsequent open cycle, In the next constant-pressure compression stroke, the air is cooled while expelling waste heat through countercurrent heat exchange with the high-pressure air that is expanding at constant pressure from room temperature T0 to high temperature ■0, and is discharged into the atmosphere at room temperature T0 and pressure P0. C. A closed cycle is a constant pressure compression of circulating air (P=P
0)・Isothermal compression (P0→P10)・Constant pressure expansion (P=P1
0)・Isothermal expansion (P10=P0), etc. In the isothermal compression process from atmospheric pressure P0 at low temperature to a given pressure P10, the compression heat energy added to the circulating air is The total cooling heat of the liquid air expanded at constant pressure in the cycle and a part of the cold heat of the circulating air itself are absorbed, and the cooling of the circulating air is achieved by countercurrent heat exchange between the constant pressure compression and constant pressure expansion strokes of the cycle. Heating proceeds at the same time, d. In the isothermal expansion process of the closed cycle from normal temperature T0 and pressure P10 to atmospheric pressure P0, expansion heat energy is supplied to the circulating air from a low-temperature, high-temperature heat source below normal temperature T0, e. The auxiliary closed cycle uses constant pressure compression of circulating air (P=P
0)・Adiabatic compression (P0→P0)・Isothermal expansion (P0→P0
), etc. In the constant pressure compression stroke, the circulating air is cooled by countercurrent heat exchange with the constant pressure expanded air of the open type and closed type cycles, and from the state of normal temperature T0 and pressure ■0 In the isothermal expansion process leading to atmospheric pressure P0, expansion heat energy is supplied to the circulating air from a high temperature heat source below room temperature T0, and this cycle proceeds roughly in the order of the above steps, T-
■On the (temperature-entropy) diagram, open type, closed type,
All of the auxiliary closed cycles have a unique cycle structure so that the working substance (air) flows clockwise, in the same direction as the clock rotates.
《作用》
このように、本発明は、大気圧状態で貯蔵された液本空
気の熱エネルギーそのものを動力に転換するのではなく
、液本空気が持つ熱的性質の冷熱と物理的性質の非圧縮
性を活用しながら、液本空気自身を作業物質として熱機
関を稼動し、外部の上位・下位高温熱源から有償(燃料
の燃焼)・無償(常温)の熱エネルギーの供給を受けて
、それらを極めて効率良く機械的仕事に転換するもので
ある。<<Operation>> As described above, the present invention does not convert the thermal energy of liquid air stored at atmospheric pressure itself into power, but instead converts the thermal property of liquid air, which is cold, and the physical property, which is non-conductive. Utilizing its compressibility, a heat engine is operated using liquid air itself as a working substance, receiving paid (fuel combustion) and free (normal temperature) thermal energy from external upper and lower high-temperature heat sources. It converts work into mechanical work extremely efficiently.
すなわち、まづ液本空気の非圧縮性を利用して、開放型
サイクル液本空気の高圧断熱圧縮仕事を大巾に低減し、
さらに低温熱源活用の一手段として、極低温T00に近
い温度の開放型サイクル高圧液本空気の冷熱に大気圧低
温空気の圧縮熱エネルギーを吸収させることによって、
低温下での密閉型サイクル大気圧低温空気の等温圧縮を
可能にして圧縮仕事を低減し、その一方で常温(下位・
高温熱源)下では無償の熱量の供給を受けながら進行す
る密閉型、補助密閉賀態サイクル圧縮空気の等温膨脹に
よって膨張仕事を生み出し、また高温(上位・高温熱源
)下では有償の熱量の供給を受けながら進行する開放型
サイクル高圧縮空気の等温膨脹によって大きな膨張仕事
を生み出すなど、顕著なこれらの作用の相乗効果によっ
て、上位・下位高温熱源からの有償・無償の供給熱量を
最大限に有効な機械的仕事に転換するものである。That is, first, by utilizing the incompressibility of liquid air, the high-pressure adiabatic compression work of open cycle liquid air is drastically reduced.
Furthermore, as a means of utilizing low-temperature heat sources, the compressed heat energy of atmospheric pressure low-temperature air is absorbed by the cold energy of open cycle high-pressure liquid air at a temperature close to the cryogenic temperature T00.
Closed cycle at low temperature Enables isothermal compression of atmospheric pressure low temperature air to reduce compression work, while at room temperature (lower and lower temperature)
Under high-temperature heat sources), the closed type, auxiliary closed-circuit cycle generates expansion work through isothermal expansion of compressed air while receiving free heat supply, and under high temperatures (upper/high-temperature heat sources), it generates expansion work while receiving free heat supply. The synergistic effect of these actions, such as the isothermal expansion of open cycle highly compressed air that progresses while receiving heat, produces large expansion work, making it possible to maximize the amount of paid and unpaid heat supplied from the upper and lower high temperature heat sources. It is a conversion to mechanical work.
《実施例》
第1図は、空気を作業物質とし、開放型ガスタービンサ
イクルと密閉型、補助密閉型ガスタービンサイクルを組
み合せた混成サイクルのT−■線図である。第2図は本
サイクルの機器構成を示し、各回路の添番号は第1図の
各状態の番号と対応している。<<Example>> FIG. 1 is a T-■ diagram of a hybrid cycle in which air is used as a working substance and an open type gas turbine cycle is combined with a closed type and an auxiliary closed type gas turbine cycle. FIG. 2 shows the equipment configuration of this cycle, and the numbers attached to each circuit correspond to the numbers of each state in FIG.
Veは液本空気貯槽、Pは液本空気ポンプ、C3、2、
1はそれぞれ冷熱回収用の等温圧縮機、C´1は補助断
熱圧縮機、SEは常温で作動する等温坊長期、E´1は
同じく補助等温坊長期、MEは高温で作動する等温坊長
期、SHは常温の加熱機、H´1は同じく補助過熱器、
MHは高温の加熱器、HEit−1、2、3はそれぞれ
等温圧縮機の吐き出し熱量を冷熱によって吸収する熱交
換器、HE´cf−1は同じく補助向流型熱交換器、M
HEcfは排熱回収用の向流方熱交換器、MGは駆動電
動機兼発電機である。Ve is liquid main air storage tank, P is liquid main air pump, C3, 2,
1 is an isothermal compressor for cold heat recovery, C'1 is an auxiliary adiabatic compressor, SE is an isothermal compressor that operates at room temperature, E'1 is also an auxiliary isothermal compressor, ME is an isothermal compressor that operates at high temperature, SH is a room temperature heating machine, H'1 is also an auxiliary superheater,
MH is a high-temperature heater, HEit-1, HEit-2, and HEit-3 are heat exchangers that absorb the heat discharged from the isothermal compressor with cold heat, HE'cf-1 is also an auxiliary countercurrent heat exchanger, and M
HEcf is a countercurrent heat exchanger for exhaust heat recovery, and MG is a drive motor/generator.
第1図の開放型サイクル0−20´−20−■■−0に
おいて、まづ極低温T00に近い温度の液本空気の冷熱
回収を考える。液本空気貯槽Veから供給された液本空
気G0は、温度T00・圧力P0の状態■から液本空気
ポンプPによって圧力P20の状態20´まで断熱圧縮
されて熱交換器HEit−3に入る。一方温度区間T0
■T3と圧力区間P0■P10で作動する密閉型サイク
ル0−3−13−10−0において、循環空気G3を温
度T3・圧力P0の状態3から等温線3−13に沿って
圧力P0の状態13まで等温圧縮する際に吐き出される
熱量Q3が、熱交換器HEit−3において前述の空気
G0に吸収され、空気G0は等圧線20−23に沿って
加熱されて温度T3の状態23に至る(Q3=Q´20
)。次に温度T2・圧力P0の状態2から状態3まで等
圧冷却される前述の循環空気G3は、等圧線13−12
に沿って状態13から温度T2の状態12まで等圧加熱
すべき循環空気G3の一部分■3によって(G3=■3
+■G3)、熱交換器HEcf−3において熱量■23
が奪われる(P23=Q13)。状態23にある空気G
0と状態13に残る部分の空気■G3は、温度区間T0
■T2と圧力区間P0■P10で作動する密閉型サイク
ル0−2−12−10−0の循環空気G2が、等温線2
−12に沿って状態2から状態12まで等温圧縮される
際に吐き出される熱量Q2を熱交換器HEit−2にお
いて受け取り、空気G0は等圧線23−22に沿って状
態22まで等圧加熱され、空気■G3は等圧線13−1
2に沿って状態12まで等圧加熱される(Q2=Q23
+■Q13)。次に温度T1・圧力P0の状態1から状
態2まで等圧線1−2に沿って冷却される空気(G3+
G2)は、状態12から温度T1・圧力P10の状態1
1まで等圧線12−11に沿って加熱される空気G3と
G2の一部分■2によって(G2=■2+■G2)、熱
交換器HEcf−2において熱量■12が奪われる(P
12=■12)。状態22にある空気G0と状態12に
残る部分の空気■G2は、温度区間T0■T1と圧力区
間P0■P10で作動する密閉型サイクル0−1−11
−10−0の循環空気G1が、等圧線1−11に沿って
状態1から状態11まで等温圧縮される際に吐き出され
る熱量Q12を熱交換器HEit−1において受け取り
、その結果G0、■G2はそれぞれ等圧線22−21、
12−11に沿って加熱され状態21、11に達する(
Q1=Q22+■Q12)。次に温度T0・圧力P2の
大気状態0から等圧線0−1に沿って状態1まで冷却さ
れる空気(G3+G2+G1)は、状態11から温度t
0・圧力P10の状態10まで等圧線11−10に沿っ
て加熱される空気(G3+G2)とG1の一部分■1に
よって(G1=■1+■G1)、熱交換器HEcf−1
において熱量■01が奪われる(P01=■11)。最
後に状態21にある空気G0と状態11に残る一部の空
気■G1には、温度区間T0■T1と圧力区間P0■■
0で作動する補助密閉型サイクル0−1−1−0におい
て、等圧線0−1に沿って状態0から1まで冷却される
循環空気G1から補助熱交換器HEcf−1において熱
量Q01が伝達され、G0、■G1はそれぞれ等圧線2
1−20,11−10に沿って加熱されて状態20,1
0に達する(Q01=Q21+■Q11)。状態1の空
気G1は等エントロピ線1−0に沿って断熱圧縮されて
温度T0・圧力P0の状態0に達する。こうして最終的
に状態10に集合した循環空気(G3+G2+G1)と
状態0に達した循環空気G1は、それぞれ常温加熱器S
Hおよび補助加熱器H1′を介して常温水(下位・高温
熱源)から熱量Q10およびQ0を受け取って、等温線
10−0および0−0に沿って等音膨張を行い、大気状
態0に戻って液本空気G0の冷熱回収を完了する。In the open cycle 0-20'-20-■■-0 of FIG. 1, first consider the recovery of cold energy from liquid main air at a temperature close to the cryogenic temperature T00. The liquid air G0 supplied from the liquid air storage tank Ve is adiabatically compressed from state 2 of temperature T00 and pressure P0 to state 20' of pressure P20 by the liquid air pump P, and enters the heat exchanger HEit-3. On the other hand, temperature section T0
■ In a closed cycle 0-3-13-10-0 that operates in T3 and pressure section P0 ■ P10, circulating air G3 is moved from state 3 of temperature T3 and pressure P0 to state of pressure P0 along isothermal line 3-13. The amount of heat Q3 discharged during isothermal compression to 13 is absorbed by the aforementioned air G0 in the heat exchanger HEit-3, and the air G0 is heated along the isobar line 20-23 to reach the state 23 of temperature T3 (Q3 =Q'20
). Next, the above-mentioned circulating air G3, which is isobarically cooled from state 2 of temperature T2 and pressure P0 to state 3, is
By part ■3 of the circulating air G3 to be heated isobarically from state 13 to state 12 at temperature T2 along
+■G3), heat quantity ■23 in heat exchanger HEcf-3
is taken away (P23=Q13). Air G in state 23
0 and the part of air remaining in state 13 ■G3 is in the temperature range T0
■ Circulating air G2 of the closed cycle 0-2-12-10-0 operating in T2 and pressure section P0 ■ P10 is the isothermal line 2
The heat Q2 discharged when being isothermally compressed from state 2 to state 12 along -12 is received in heat exchanger HEit-2, and air G0 is isobarically heated to state 22 along isobar line 23-22. ■G3 is isobar line 13-1
2 to state 12 (Q2=Q23
+■Q13). Next, the air (G3+
G2) changes from state 12 to state 1 with temperature T1 and pressure P10.
The heat amount ■12 is taken away in the heat exchanger HEcf-2 by the air G3 heated along the isobars 12-11 to 1 and the part ■2 of G2 (G2=■2+■G2) (P
12=■12). The air G0 in state 22 and the air G2 remaining in state 12 are in a closed cycle 0-1-11 that operates in temperature range T0 *T1 and pressure range P0 *P10.
-10-0 circulating air G1 is isothermally compressed from state 1 to state 11 along the isobar line 1-11, and the heat exchanger HEit-1 receives the amount of heat Q12, and as a result, G0 and ■G2 are isobar lines 22-21, respectively;
12-11 and reaches state 21, 11 (
Q1=Q22+■Q12). Next, air (G3+G2+G1) is cooled from atmospheric state 0 at temperature T0 and pressure P2 to state 1 along the isobar line 0-1, from state 11 to temperature t.
By the air (G3 + G2) heated along the isobar line 11-10 and the part of G1 ■1 (G1 = ■1 + ■G1) to the state 10 of 0・pressure P10, the heat exchanger HEcf-1
The amount of heat ■01 is taken away at (P01=■11). Finally, the air G0 in state 21 and the part of the air G1 remaining in state 11 have a temperature zone T0■T1 and a pressure zone P0■■
In the auxiliary closed cycle 0-1-1-0 operating at 0, an amount of heat Q01 is transferred in the auxiliary heat exchanger HEcf-1 from the circulating air G1 cooled from state 0 to 1 along the isobars 0-1, G0 and ■G1 are each equal pressure line 2
Heated along 1-20, 11-10 to state 20, 1
It reaches 0 (Q01=Q21+■Q11). Air G1 in state 1 is adiabatically compressed along the isentropic line 1-0 and reaches state 0 at temperature T0 and pressure P0. In this way, the circulating air (G3+G2+G1) that has finally gathered in state 10 and the circulating air G1 that has reached state 0 are placed in the room temperature heater S.
It receives heat quantities Q10 and Q0 from room temperature water (lower/high temperature heat source) through H and auxiliary heater H1', performs isophonic expansion along isothermal lines 10-0 and 0-0, and returns to atmospheric state 0. The cold recovery of the liquid main air G0 is completed.
開放型サイクルにおいて冷熱を全て回収されて状態20
にある高圧空気G0は、熱交換器MHEcfにおいて、
等温線20−0に沿って等音膨張を終えて圧力P0に状
態0にある排出空気G0(後述)と向流熱交換を行い、
排出空気G0は等圧線0−0に沿って熱量Q0が奪われ
て冷却され、一方状態20の空気G0は等圧線20−2
0に沿って熱量Q20を受け取り温度T0・圧力P20
の状態20まで加熱される(Q20=Q0)。状態20
で等音膨張機MEに入った空気G0は、加熱機MHを介
して上位・高温熱源から熱量Q20が供給されて、等温
線20−0に沿って等音膨張を続けて状態0に到達して
排出空気G0となり、前述のような経過を辿って状態0
で大気中に排出され、本混成サイクルを完結する。In the open cycle, all the cold energy is recovered and the state is 20.
The high pressure air G0 in the heat exchanger MHEcf is
Countercurrent heat exchange is performed with the exhaust air G0 (described later) which is in a state of 0 at a pressure P0 after completing iso-sonic expansion along the isothermal line 20-0,
The exhaust air G0 is cooled by removing the amount of heat Q0 along the isobar line 0-0, while the air G0 in state 20 is cooled along the isobar line 20-2.
Receives heat amount Q20 along 0, temperature T0, pressure P20
is heated to state 20 (Q20=Q0). condition 20
The air G0 that entered the iso-sonic expander ME is supplied with heat Q20 from the upper high-temperature heat source via the heater MH, and continues iso-sonic expansion along the isotherm line 20-0, reaching state 0. The exhaust air becomes G0, and the state 0 follows the process described above.
is discharged into the atmosphere, completing the hybrid cycle.
ここで本発明サイクルが熱力学的に問題なく成立するこ
とを、以下の解析例によって立証する。Here, the following analytical example proves that the cycle of the present invention is thermodynamically established without any problem.
いま第1図において定常運転状態を考え、前提条件とし
て
P0=1kg/cm2,P10=20kg/cm2,P
20=200kg/cm2T0=300°K=27℃,
T0=773°K=500℃T1=240°K,T2=
180°K,T3=120°Kを与えm這う膳と谷下の
空気線図から、ただしT≦300°K)P=P0:i0
=122.2l/kg,i1=107.5,i2=93
.1i3=78.6,i0′=22.7
s0=0.900kcal/Kkg,s1=0.828
,s2=0.787s2=0.683
P=P10:i10=121.2,i11=106.2
,i12=90.0、i13=70.6s10=0.7
00,s11=0.646,s12=0.572,s1
3=0.442P=P20:i20=113.3,i2
1=93.3,i22=70.0、i23=41.7i
20′=26.4
(谷下の空気線図から、ただしT≧300°K)P=P
0:i0=37.8,i0=165.1P=P20:i
20=37.8,i0=165.1,s0−s10=0
.34896が得られる。さらに状態1から11まで空
気1kgを等音圧縮するときに外部に吐き出す熱量q1
はである。したがって等音圧縮に要する仕事l1−11
はとなる。ここにAは熱の仕事当量の逆数である。同様
にして
q20−l2−12:状態2から12まで空気1kgを
等音圧縮するときに吐き出す熱量と圧縮仕事
q30−l3−13:状態3から13まで空気1kgを
等音圧縮するときに吐き出す熱量と圧縮仕事
q10−l10−0:状態10から0まで空気1kgが
等音膨張するときに供給される熱量と膨張仕事
q00−l0−0:状態0から0まで空気1kgが等音
膨張するときに供給される熱量と膨張仕事
q20−l20−0:状態20から0まで空気1kgが
等音膨張するときに供給される熱量と膨張仕事
とすると、それぞれ
q2=38.700, al2−12=35.600
q3=28.920, al3−13=20.920
q10=60.000, al0−0=59.000q
0=21.600, al0−0=21.600q2
0=269.746,al20−0=271.146が
得られる。Now consider the steady operating state in Figure 1, and the preconditions are P0 = 1kg/cm2, P10 = 20kg/cm2, P
20=200kg/cm2T0=300°K=27℃,
T0=773°K=500°CT1=240°K, T2=
Given 180°K, T3 = 120°K, from the psychrometric diagram of m-crawling Zen and Tanishita, where T≦300°K) P=P0:i0
=122.2l/kg, i1=107.5, i2=93
.. 1i3=78.6, i0'=22.7 s0=0.900kcal/Kkg, s1=0.828
, s2=0.787s2=0.683 P=P10:i10=121.2,i11=106.2
, i12=90.0, i13=70.6s10=0.7
00, s11=0.646, s12=0.572, s1
3=0.442P=P20:i20=113.3,i2
1=93.3, i22=70.0, i23=41.7i
20' = 26.4 (From the psychrometric diagram of Tanishita, however, T≧300°K) P = P
0:i0=37.8,i0=165.1P=P20:i
20=37.8, i0=165.1, s0-s10=0
.. 34896 is obtained. Furthermore, from states 1 to 11, when 1 kg of air is compressed isotonically, the amount of heat q1 is discharged to the outside.
It is. Therefore, the work required for isophone compression l1-11
Hato becomes. Here, A is the reciprocal of the work equivalent of heat. Similarly, q20-l2-12: Amount of heat and compression work released when 1 kg of air is isotonically compressed from states 2 to 12 q30-l3-13: Amount of heat released when 1 kg of air is isotonically compressed from states 3 to 13 and compression work q10-l10-0: Amount of heat and expansion work supplied when 1 kg of air expands isotonically from state 10 to 0 q00-l0-0: When 1 kg of air expands isotonically from state 0 to 0 Amount of heat supplied and work of expansion q20-l20-0: Assuming the amount of heat and expansion work supplied when 1 kg of air expands isotonically from state 20 to state 0, q2=38.700 and al2-12=35. 600
q3=28.920, al3-13=20.920
q10=60.000, al0-0=59.000q
0=21.600, al0-0=21.600q2
0=269.746, al20-0=271.146 are obtained.
次に密閉型サイクル 0−3−13−10−0において
,熱交換授受の関係Q3=Q20′から
G3×q3=G0×(i23−i20′)∴G0=1k
gとするとG3=0.52905kgを得る。同じく熱
量授受の関係Q23=Q13,ただしQ13=Q13+
■Q13から
G3×(i2−i3)=G3×(i12−i13)∴G
3=0.39542kg
∴■G3=G3−G3=0.13363kgとなる。Next, in the closed cycle 0-3-13-10-0, the relationship of heat exchange transfer Q3 = Q20', G3 x q3 = G0 x (i23-i20')∴G0 = 1k
g, we get G3=0.52905kg. Similarly, the relationship of heat exchange Q23=Q13, however, Q13=Q13+
■From Q13 G3×(i2-i3)=G3×(i12-i13)∴G
3=0.39542kg ∴■G3=G3-G3=0.13363kg.
密閉型サイクル0−2−12−10−0において、熱量
授受の関係Q2=Q23+■Q13からG2×q2=G
0×(i22−i23)+■G3(i12−i13)∴
G2=0.79825kg
∴G3+G2=1.32729kg
を得る。同じく熱量授受の関係Q12=Q12、だだし
Q12=Q12+■Q12から
(G3+G2)×(i1−i2)=(G3+G2)×(
i11−i12)∴G3+G2=0.88889kg
∴■G2=(G3+G2)−(G3+G2)=0.43
840kgが得られる。In the closed cycle 0-2-12-10-0, the relationship of heat exchange Q2=Q23+■Q13 to G2×q2=G
0×(i22-i23)+■G3(i12-i13)∴
We obtain G2=0.79825kg ∴G3+G2=1.32729kg. Similarly, the relationship of heat exchange Q12 = Q12, Dashi Q12 = Q12 + ■ From Q12, (G3 + G2) x (i1 - i2) = (G3 + G2) x (
i11-i12) ∴G3+G2=0.88889kg ∴■G2=(G3+G2)-(G3+G2)=0.43
840 kg is obtained.
密閉型サイクル0−1−11−10−0において、熱量
授受の関係Q1=Q22+■Q12からG1×p1=G
0×(i21−i22)+■G2×(i11−i22)
∴G1=0.69602kg、
∴G3+G2+G1=2.02332kgを得る。同じ
く熱量授受の関係Q01=Q11、だだしQ11=Q1
1+■Q11から
(G3+G2+G1)×(i0−i1)=(G3+G2
+G1)×(i10−i11)∴G3+G2+G1=1
.98285kg∴■G1=(G3+G2+G1)−(
G3+G2+G1)=0.04047kgが得られる。In the closed cycle 0-1-11-10-0, the relationship of heat exchange Q1=Q22+■Q12 to G1×p1=G
0×(i21-i22)+■G2×(i11-i22)
Obtain ∴G1=0.69602kg, ∴G3+G2+G1=2.02332kg. Similarly, the relationship of heat exchange Q01=Q11, dashi Q11=Q1
1+■Q11 to (G3+G2+G1)×(i0-i1)=(G3+G2
+G1)×(i10-i11)∴G3+G2+G1=1
.. 98285kg∴■G1=(G3+G2+G1)-(
G3+G2+G1)=0.04047kg is obtained.
さらに補助密閉型サイクル0−1−1−0において、熱
量授受の関係Q01=Q21+■Q11からG1×(i
0−i1)=G2×(i20−i21)+■G1×(i
10−i11)∴G3=1.40184kg
を得る。Furthermore, in the auxiliary closed cycle 0-1-1-0, from the relationship of heat exchange Q01=Q21+■Q11, G1×(i
0-i1)=G2×(i20-i21)+■G1×(i
10-i11) ∴G3=1.40184kg is obtained.
以上の結果から、供給された液本空気G0(=1kg)
の冷熱量によって、常温T0の下位・高温熱源から供給
された熱量のうち動力として回収されるものを、上述の
サイクルの順に、それぞれALIII、ALII、AL
I、AL′Iとすれば
ALIII=AL(3)10−0−AL3−13=G3
×(Al10−0−Al3−13)=20.146kc
alALII=AL(2)10−0−AL2−12=G
2×(Al10−0−Al2−1)=18.679kc
alALI=AL(1)10−0−AL1−11=G1
×(Al10−0−Al1−11)=13.712kc
alAL′I=AL0−0−AL1−0=G1×(Al
0−0−(i0−i1))=9.673kcalを得る
。From the above results, the supplied liquid main air G0 (=1 kg)
The amount of heat supplied from the low-temperature/high-temperature heat source at room temperature T0 is recovered as power by the amount of cooling energy of
If I, AL'I, then ALIII=AL(3)10-0-AL3-13=G3
×(Al10-0-Al3-13)=20.146kc
alALII=AL(2)10-0-AL2-12=G
2×(Al10-0-Al2-1)=18.679kc
alALI=AL(1)10-0-AL1-11=G1
×(Al10-0-Al1-11)=13.712kc
alAL'I=AL0-0-AL1-0=G1×(Al
0-0-(i0-i1))=9.673 kcal is obtained.
さらに開放型サイクル0′−20′−20−0において
、高温度T0の上位・高温熱源から供給された熱量Q2
0のうち回収される動力ALMを求めるとALM=AL
20−0−AL0′−20′=G0×(Al20−0−
(i′20−i′0))=267.446kcal
となるので、結局本発明サイクルの全発生動力ΣALは
ΣAL=ALIII+ALII+ALI+AL′I+A
LM=329.656kcalとなる。したがって、1
kgの液本空気が上位・下位高温熱源からの供給熱量を
有効な機械的仕事に転換する割合、すなわち非発生動力
をAleと書けばAle=ΣAL/G0=329.65
6kcal/kgとなる。ただし、この場合燃料の燃焼
によって上位・高温熱源から供給される有償熱量Q20
はQ20=G0×q20=267.7kcalである。Furthermore, in the open cycle 0'-20'-20-0, the amount of heat Q2 supplied from the high temperature heat source above the high temperature T0
When calculating the recovered power ALM out of 0, ALM=AL
20-0-AL0'-20'=G0×(Al20-0-
(i'20-i'0))=267.446kcal, so the total generated power ΣAL of the cycle of the present invention is ΣAL=ALIII+ALII+ALI+AL'I+A
LM=329.656kcal. Therefore, 1
If kg of liquid air converts the amount of heat supplied from the upper and lower high temperature heat sources into effective mechanical work, that is, the non-generated power is written as Ale, then Ale = ΣAL / G0 = 329.65
It becomes 6kcal/kg. However, in this case, the amount of paid heat Q20 supplied from the upper high-temperature heat source due to fuel combustion
is Q20=G0×q20=267.7kcal.
さて第1図は、主として理想的な等温変化の行程によっ
て構成され、空気を作業物質として作動するサイクルで
あった。しかし、その等温変化は断熱変化で置換するこ
とができる。第3図は、そのように第1図から置換変形
された混成サイクルのT−■線図を示す。第4図は本サ
イクルの機器構成を示し、各回路の添番号は第3図の各
状態の番号と対応している。Veは液本空気貯槽、Pは
液本空気ポンプ、C3、2、1はそれぞれ断熱圧縮機、
HPE、MPE、LPEはそれぞれ高圧、中圧、低圧の
断熱膨張機、SEは補助断熱膨張機、MGは駆動電動機
兼発電機、H3、2、1はそれぞれ高圧、中圧、低圧の
加熱器、H4は補助加熱器、HEcf−0は排熱回収用
の向流型熱交換機、HEcf−3、2、1はそれぞれ冷
熱回収用の向流型熱交換器である。Now, FIG. 1 shows a cycle that is mainly composed of ideal isothermal change processes and operates with air as the working substance. However, the isothermal change can be replaced by an adiabatic change. FIG. 3 shows a T--diagram of the hybrid cycle thus substituted and modified from FIG. FIG. 4 shows the equipment configuration of this cycle, and the numbers attached to each circuit correspond to the numbers of each state in FIG. Ve is a liquid air storage tank, P is a liquid air pump, C3, 2, and 1 are adiabatic compressors, respectively.
HPE, MPE, and LPE are high-pressure, medium-pressure, and low-pressure adiabatic expanders, respectively; SE is an auxiliary adiabatic expander; MG is a drive motor/generator; H3, 2, and 1 are high-pressure, medium-pressure, and low-pressure heaters, respectively; H4 is an auxiliary heater, HEcf-0 is a countercurrent heat exchanger for exhaust heat recovery, and HEcf-3, HEcf-2, and HEcf-1 are countercurrent heat exchangers for cold heat recovery.
第3図の開放型サイクル0′−3′−3−3−23−2
−12−1−01−0において、まづ液本空気貯槽Ve
から供給された液本空気G0は温度T00・大気圧P0
の状態0′から液本空気ポンプPによって断熱圧縮され
て高圧P3の状態3′に達し、直ちに熱交換器HEcf
−3(後述)に入る。一方圧力区間P4←→P0で作動
する冷熱回収用の密閉型サイクル0−08−7−4−0
における循環空気G3は上述の熱交換器HEcf−3に
反対方向から入って、温度T07・圧力P3の状態07
から温度T08・圧力P0の状態08まで等圧線07−
08に沿って熱量Q′08が奪われてて冷却され、空気
G■は等圧線3′−37に沿って熱量Q′3を受け取っ
て温度T07・圧力P3の状態37に達する(Q08=
Q′3)。状態08に達した循環空気G3は、温度T0
7・圧力P4の状態7まで等エントロピ線08−7に沿
って圧縮機C3により断熱圧縮される。また圧力区間P
4■P0で作動する前同様の密閉型サイクル0−07−
6−4−0の循環空気G2と上記循環器G3は、温度T
06・圧力P0の状態06で一緒に熱交換器HEcf−
2に入り、反対方向から入る状態37の空気G0および
状態7の循環空気G3に熱量Q07を伝達して等圧線0
6−07に沿って冷却され、一方状態37の空気G0と
状態7の空気G3はそれぞれ等圧線37−36.7−6
に沿って熱量Q37,Q9を受け取って加熱され、状態
36,6に達する(Q09=Q37+Q7).状態07
の循環空気G2は、温度T07・圧力P4の状態6まで
等エントロピ線07−6に沿って圧縮機C2により断熱
圧縮される。さらに圧力区間P4■P0で作動する前同
様の密閉型サイクル0−06−5−4−0の循環空気G
1と上記循環空気G3,G1は、温度T0・圧力P0の
状態0で一緒に熱交換器HEcf−1に入り、反対方向
から入る状態36の空気G0および状態6の循環空気G
3,G2に熱量Q08を伝達して等圧線0−06に沿っ
て冷却され、一方状態36の空気G0および状態6の循
環空気G3,G2は、それぞれ等圧線36−3,6−4
に沿って熱量Q36,Q6を受け取って加熱され、状態
3,4に達する(Q06=Q36+Q6).状態06の
循環空気G1は、温度T5・圧力P4の状態5まで等エ
ントロピ線06−5に沿って圧縮機C1により断熱圧縮
される。最後に状態4の循環空気G3,G2と状態5の
循環空気G1は、補助加熱器H4において下位・高温熱
源から熱量Q4が供給されて、それぞれ等圧線4−4,
5−4に沿って加熱され、温度T4・圧力P4の状態4
に達すると同時に補助断熱膨張機SEに導かれて等エン
トロピ線4−0に沿って断熱膨張を続け、温度T0・圧
力P0の大気状態0の戻り、それぞれの密閉型サイクル
を一周し、液本空気の冷熱回収が収束する。Open type cycle 0'-3'-3-3-23-2 in Figure 3
-12-1-01-0, first, the liquid main air storage tank Ve
The liquid main air G0 supplied from is at a temperature T00 and an atmospheric pressure P0.
is adiabatically compressed by the liquid main air pump P and reaches the state 3' of high pressure P3, and immediately the heat exchanger HEcf
-3 (described later). On the other hand, a closed cycle 0-08-7-4-0 for cold recovery that operates in the pressure section P4←→P0
The circulating air G3 enters the above-mentioned heat exchanger HEcf-3 from the opposite direction, and enters the state 07 of temperature T07 and pressure P3.
From isobar line 07- to state 08 of temperature T08 and pressure P0
The amount of heat Q'08 is taken away along the line 08 and is cooled, and the air G receives the amount of heat Q'3 along the isobar line 3'-37 and reaches the state 37 where the temperature is T07 and the pressure is P3 (Q08=
Q'3). The circulating air G3 that has reached state 08 has a temperature T0
7. Adiabatic compression is performed by compressor C3 along isentropic line 08-7 up to state 7 at pressure P4. Also, pressure section P
4 ■ Closed cycle 0-07- similar to before operating at P0
The circulating air G2 of 6-4-0 and the circulator G3 have a temperature T
06・Heat exchanger HEcf- together in state 06 of pressure P0
2 and transfers the amount of heat Q07 to the air G0 in state 37 entering from the opposite direction and the circulating air G3 in state 7, and the isobar line 0
6-07, while air G0 in state 37 and air G3 in state 7 are cooled along isobars 37-36.7-6, respectively.
It receives heat amounts Q37 and Q9 along the line and is heated, reaching state 36 and 6 (Q09=Q37+Q7). Status 07
The circulating air G2 is adiabatically compressed by the compressor C2 along the isentropic line 07-6 to a state 6 of temperature T07 and pressure P4. Furthermore, the circulating air G of the same closed type cycle 0-06-5-4-0 before operating in the pressure section P4■P0
1 and the above-mentioned circulating air G3, G1 enter the heat exchanger HEcf-1 together in state 0 with temperature T0 and pressure P0, and air G0 in state 36 and circulating air G in state 6 enter from the opposite direction.
3, G2 is cooled along the isobar line 0-06 by transferring the amount of heat Q08, while the air G0 in state 36 and the circulating air G3, G2 in state 6 are cooled along the isobar line 36-3, 6-4, respectively.
It receives heat amounts Q36 and Q6 along the line and is heated, reaching states 3 and 4 (Q06=Q36+Q6). Circulating air G1 in state 06 is adiabatically compressed by compressor C1 along isentropic line 06-5 to state 5 at temperature T5 and pressure P4. Finally, the circulating air G3, G2 in state 4 and the circulating air G1 in state 5 are supplied with heat amount Q4 from the lower high temperature heat source in the auxiliary heater H4, and the isobars 4-4,
5-4, state 4 of temperature T4 and pressure P4
At the same time, it is guided by the auxiliary adiabatic expander SE and continues adiabatic expansion along the isentropic line 4-0, returns to the atmospheric state of 0 with temperature T0 and pressure P0, completes each closed cycle, and returns to the liquid level. Cooling and heat recovery of the air is converged.
他方、開放型サイクルにおいて状態3に到達した空気G
0は、排熱回収用の熱交換器HEcf−3(後述)にお
いて温度T01・圧力P0の状態01で断熱膨張を終え
に空気G0(後述)と向■熱交換を行い、状態3の空気
G0は等圧線3−301に沿って熱量Q3を受け取って
加熱され、状態01の空気G0は等圧線01−0に沿っ
て熱量Q0が奪われて冷却され、それぞれ状態301,
0に達する(Q0=Q3).温度T301・圧力P3の
状態301にある空気G0は、高圧加熱器H3に導かれ
て上位・高温熱源から熱量Q3の供給を受けて、等圧線
301−3に沿って加熱されて温度T0・圧力P3の状
態3に到達する。On the other hand, the air G that has reached state 3 in the open cycle
After completing adiabatic expansion in state 01 of temperature T01 and pressure P0 in heat exchanger HEcf-3 for exhaust heat recovery (described later), air G0 in state 3 undergoes heat exchange with air G0 (described later). is heated by receiving the amount of heat Q3 along the isobar line 3-301, and the air G0 in state 01 is cooled by taking away the amount of heat Q0 along the isobar line 01-0, and becomes in the states 301 and 301, respectively.
reaches 0 (Q0=Q3). Air G0 in a state 301 with a temperature T301 and a pressure P3 is guided to a high-pressure heater H3, receives a supply of heat Q3 from an upper high-temperature heat source, and is heated along an isobar line 301-3 to a temperature T0 and a pressure P3. state 3 is reached.
次いで直ちに等圧膨張機HPEにおいて等エントロピ線
3−23に沿って断熱膨張を行い、圧力P2の状態23
に至る。同様にして状態23の空気G0は、中圧加熱器
H2において上位・高温熱源から熱量Q2の供給を受け
て等圧線23−2に沿って加熱され、温度T0・圧力P
2の状態2に達すると直ちに中圧膨張機MPEに導かれ
て等エントロピ線2−12の沿って圧力P2からP1ま
で断熱膨張を行って状態12に達する。最後に状態12
の空気G0は、低圧加熱器H1において上位・高温熱源
から熱量Q1の供給を受けて等圧線12−1に沿って加
熱され、温度T0・圧力P1の状態1に達すると直ちに
低圧膨張機LPEに導かれ等エントロピ線1−01に沿
って圧力P1からP0まで断熱膨張を行って状態01に
達する。状態01に到達した空気G0は、前述のように
排熱回収用の熱交換器HEcf−0の中で熱量Q■を吐
き出して状態0に達し、大気中に排出されて本サイクル
の全行程を終了する。Then, immediately adiabatic expansion is carried out along the isentropic line 3-23 in the isobaric expander HPE, and the state 23 of pressure P2 is reached.
leading to. Similarly, the air G0 in state 23 is heated along the isobar line 23-2 by receiving heat Q2 from the upper high temperature heat source in the intermediate pressure heater H2, and is heated at a temperature T0 and a pressure P.
Immediately after reaching the state 2 of 2, it is guided to the medium pressure expander MPE and performs adiabatic expansion from the pressure P2 to P1 along the isentropic line 2-12, and reaches the state 12. Finally state 12
In the low-pressure heater H1, the air G0 is heated along the isobar line 12-1 by receiving heat Q1 from the upper high-temperature heat source, and when it reaches state 1 of temperature T0 and pressure P1, it is immediately introduced to the low-pressure expander LPE. He performs adiabatic expansion from pressure P1 to P0 along isentropic line 1-01 and reaches state 01. The air G0 that has reached state 01 discharges the amount of heat Q■ in the heat exchanger HEcf-0 for exhaust heat recovery as described above, reaches state 0, is discharged into the atmosphere, and completes the entire cycle. finish.
ここで本発明サイクルが熱力学的に問題なく成立するこ
とを、以下の解析例によって立証する。Here, the following analytical example proves that the cycle of the present invention is thermodynamically established without any problem.
いま第3図において定常運転状態を考え、前提条件とし
て
P0=1kg/cm2,P1=kg/cm2,P2=5
0kg/cm2,P3=200kg/cm2P4=4k
g/cm2,T0=300゜K=27℃,T06=20
8゜KT07=142゜K,T08=98゜K,T0=
773゜K=500℃を与え、ハウゼンと谷下の空気線
図から各状態のエンタルピを読み取ると
(ハウゼンの空気線図から)
P=P0:i0=122.2kcal/kg,i06=
99.8,i07=83.9 i08=73.
2,i0′=22.7P=P3:i3=113.3,i
36=80.7,i57=52.4 i3′=
26.4
P=P4:i5=123.6,i5=99.3,i7=
83.2(谷下の空気線図から)
P=P0:i01=72.9,i0=46.4P=P1
:i1=164.1,i12=95.3P=P2:i2
=164.1,i23=102.4P=P3:i3=1
65.1,i3=37.8P=P4:i4=80.0,
i5=50.0が得られる。Now consider the steady operating state in Figure 3, and the preconditions are P0 = 1 kg/cm2, P1 = kg/cm2, P2 = 5.
0kg/cm2, P3=200kg/cm2P4=4k
g/cm2, T0=300°K=27°C, T06=20
8゜KT07=142゜K, T08=98゜K, T0=
Given 773°K = 500°C, and reading the enthalpy of each state from the Hausen and Tanishita psychrometric diagram (from the Hausen psychrometric diagram), P = P0: i0 = 122.2 kcal/kg, i06 =
99.8, i07=83.9 i08=73.
2, i0'=22.7P=P3:i3=113.3,i
36=80.7, i57=52.4 i3'=
26.4 P=P4:i5=123.6,i5=99.3,i7=
83.2 (from Tanishita's psychrometric diagram) P=P0:i01=72.9,i0=46.4P=P1
:i1=164.1,i12=95.3P=P2:i2
=164.1, i23=102.4P=P3:i3=1
65.1, i3=37.8P=P4:i4=80.0,
i5=50.0 is obtained.
密閉型サイクル0−08−7−4−0において、熱量授
受の関係Q0■=Q■′から
G3×(i07−i08)=G3×(i39−i■′)
∴G0=1kgとすればG3=2.42990kg、密
閉型サイクルQ07=Q37+Q7から(G3+G2)
×(i06−i07)=G0×(i38−i37)+G
3×(i8−i7) ∴G3+G2=4.24
035kg、密閉型サイクル0−06−5−4−0にお
いて、熱量授受の関係Q06=Q3■+Q■から
(G3+G2+G1)×(i0−i06)=G■×(i
3−i36) +(G3
+G2)×(i1−i5) ∴G3+G2+G
1=5.80928kgなどが得られる。これらの結果
から
G1=1.56894,G2=18.1044,G3=
2.42990が求まる。In the closed cycle 0-08-7-4-0, the relationship of heat transfer and reception is Q0■=Q■', so G3×(i07-i08)=G3×(i39-i■')
∴If G0=1kg, G3=2.42990kg, closed cycle Q07=Q37+Q7 (G3+G2)
×(i06-i07)=G0×(i38-i37)+G
3×(i8-i7) ∴G3+G2=4.24
035 kg, closed cycle 0-06-5-4-0, the relationship of heat exchange Q06 = Q3■ + Q■ (G3 + G2 + G1) × (i0-i06) = G■ × (i
3-i36) +(G3
+G2)×(i1-i5) ∴G3+G2+G
1=5.80928kg etc. are obtained. From these results, G1=1.56894, G2=18.1044, G3=
2.42990 is found.
さらに開放型サイクル0′−3′−3−…‥−1−01
−0において、排熱回収のための熱量授受の関係Q0=
Q3、ただしT01≧T301から
G0×(i301−i3)=G0×(i01
−i0) ∴i301=i01−i■+i3=6
4.3を得る。Furthermore, open type cycle 0'-3'-3-...-1-01
−0, the relationship between heat transfer and reception for exhaust heat recovery Q0=
Q3, but from T01≧T301 G0×(i301-i3)=G0×(i01
-i0) ∴i301=i01-i■+i3=6
We get 4.3.
したがって、状態08から7まで、07から6まで、0
6から5までの空気の断熱圧縮仕事をそれぞれL06−
7,L07−8,L08−5,状態0′から3′までの
液本空気の断熱圧縮仕事をL0′−3′とすればAL0
8−7=G3×(i7−i08)=24.299kca
lAL07−8=G2×(i8−i07)=27.88
1kcalAL08−5=G1×(i5−i06)=3
7.341kcalAL0′3′=G0×(i3′−i
0′)=3.700kcal 全
断熱圧縮仕事=93.921kcalを得る。また、状
態3から23まで,2から12まで,1から01まで,
4から0までの空気の断熱膨張仕事をそれぞれL3−2
3,L2−12,L1−01,L4−0とすればAL3
−23=G0×(i5−i23)=62.700kca
lAL2−12=G0×(i2−i12)=68.80
0kcalAL1−01=G0×(i1−i01)=9
1.200kcalAL4−0=(G1+G2+G3)
×(i4−i0)
=195.192kcal 全
断熱膨張仕事=417.892kcalを得る。したが
って本発明サイクルの全発生動力ΣALは
ΣAL=全断熱膨張仕事−全断熱圧縮仕事 =32
3.971kcal
となる。こうして比発生動力Al■は
Al■=ΣAL/G0=323.971kcal/kg
となる。ただし、この場合上位・下位高温熱源の燃料に
よって供給される全部の有償熱量をΣQと書けば
ΣQ=Q3+Q2+Q1+Q■1
=G0×{(i1−i301)+(i2−i23)
+(i1−i12)}+{(G3+G2)×(i
4−i4) +G1×(i4−i5)}
=231.300+189.544=420.84
4kcalである。Therefore, states 08 to 7, 07 to 6, 0
The work of adiabatic compression of air from 6 to 5 is L06-, respectively.
7, L07-8, L08-5, If the adiabatic compression work of liquid air from state 0' to 3' is L0'-3', then AL0
8-7=G3×(i7-i08)=24.299kca
lAL07-8=G2×(i8-i07)=27.88
1kcalAL08-5=G1×(i5-i06)=3
7.341kcalAL0'3'=G0×(i3'-i
0') = 3.700 kcal Total adiabatic compression work = 93.921 kcal is obtained. Also, from state 3 to 23, from 2 to 12, from 1 to 01,
The work of adiabatic expansion of air from 4 to 0 is L3-2, respectively.
3, L2-12, L1-01, L4-0, then AL3
-23=G0×(i5-i23)=62.700kca
lAL2-12=G0×(i2-i12)=68.80
0kcalAL1-01=G0×(i1-i01)=9
1.200kcalAL4-0=(G1+G2+G3)
×(i4-i0)
= 195.192 kcal Total adiabatic expansion work = 417.892 kcal is obtained. Therefore, the total generated power ΣAL in the cycle of the present invention is ΣAL = total adiabatic expansion work - total adiabatic compression work = 32
It becomes 3.971kcal. Thus, the specific generated power Al■ is Al■ = ΣAL/G0 = 323.971kcal/kg
becomes. However, in this case, if the total amount of paid heat supplied by the fuel of the upper and lower high temperature heat sources is written as ΣQ, then ΣQ=Q3+Q2+Q1+Q■1 =G0×{(i1-i301)+(i2-i23)
+(i1-i12)}+{(G3+G2)×(i
4-i4) +G1×(i4-i5)} =231.300+189.544=420.84
It is 4kcal.
((発明の効果))
本発明の効果をより一層明確に評価するためには、電力
の、そもそもの発生源である火力発電所まで■って、火
力発電設備から電力貯蔵設備そして電力再生設備までを
包含する全体システムを考案し、そのシステム全体に供
給される燃料の燃焼による全有償熱量の何%が、最終的
に有効な電力として転換され得るかを検討しなければな
らない。((Effects of the invention)) In order to more clearly evaluate the effects of the present invention, it is necessary to go back to the thermal power plant, which is the original source of electricity, and start with the thermal power generation equipment, power storage equipment, and power regeneration equipment. It is necessary to devise an overall system that includes the above, and consider what percentage of the total amount of paid heat generated by combustion of fuel supplied to the entire system can be ultimately converted into useful electricity.
そこで本節は、火力発電系列に直結して大電力貯蔵再生
法として代表的なポンプ水車方式を導入した所謂「火力
発電所・ポンプ・水車システム」(以下「PTシステム
」という。)と、火力発電系列に直結して併願発明・空
気液化電力貯蔵方式および本願発明・液本空気電力再生
方式を連携導入した「火力発電所・空気液化機関・液本
空気機関システム」(以下「LAシステム」という。)
を、上述の解析結果に基づいて比較検討することにする
。Therefore, this section will introduce the so-called "thermal power plant/pump/water turbine system" (hereinafter referred to as "PT system"), which is directly connected to a thermal power generation system and introduces a representative pump-turbine system as a large power storage and regeneration method, and the thermal power generation system. ``Thermal power plant/air liquefaction engine/liquid air engine system'' (hereinafter referred to as the ``LA system''), which is directly connected to the series and jointly introduces the parallel invention, air liquefaction power storage system, and the claimed invention, liquid air power regeneration system. )
will be compared and studied based on the above analysis results.
第5図はPTシステムの概念図を示し、PSは火力発電
所、■はその発電端効率、Pはポンプ、■Pはポンプ効
率、WTは水車、■Tは水車効率、Gは発電機、KPS
は入力側のポンプ回転軸連結・開放器、KTは出力側の
水車回転軸連結・開放器、VI,IIはそれぞれ水量閉
止・開放弁を表わし、KPS,KT,VI,IIの操作
は、
(1)電力貯蔵時:(KPS連結・VI開放)
+(KT開放・VII閉止)(2)
電力再生時:(KPS開放・VI閉止)
+(KT連結・VII開放)のように目
的別に切換へが行われる。Figure 5 shows a conceptual diagram of the PT system, where PS is the thermal power plant, ■ is its generating efficiency, P is the pump, ■ P is the pump efficiency, WT is the water turbine, ■ T is the efficiency of the water turbine, G is the generator, KPS
indicates the pump rotating shaft connection/release device on the input side, KT indicates the water turbine rotation shaft connection/release device on the output side, and VI and II represent the water flow shutoff and release valves, respectively.The operations of KPS, KT, VI, and II are as follows: 1) During power storage: (KPS connection/VI open)
+ (KT open/VII closed) (2)
During power regeneration: (KPS open/VI closed)
Switching is performed according to purpose, such as + (KT connection/VII release).
第6図はLAシステムの概念図を示し、PSは火力発電
所、■はその発電端効率、EGIは併願発明・空気液化
機関、GIIは主発電機、KPSは入力側の機関回転軸
連結・開放器、KI,IIはそれぞれ出力側の機関回転
軸の補助連結・開放器と主連結・開放器、VI,IIは
それぞえ液本空気量閉止・開放弁を表わし、KPS,K
I,II,VI,IIの操作は、(1)電力貯蔵時:(
KPS連結・KI開放・VI開放)
+(KII開放・VII閉止)(2)電力再生
時:(KPS開放・KI開放・VI閉止)
+(KII連結・VII開放)(3)電
力発生 :(KPS開放・KI連結・VI開放)
常 時 +(KII連結・VII開放)の
ように目的別に切換へが行われるが、操作(3)の電力
発生常時が本システムの特徴なところである(後述)。Figure 6 shows a conceptual diagram of the LA system, where PS is a thermal power plant, ■ is its generating efficiency, EGI is a co-private invention/air liquefaction engine, GII is the main generator, and KPS is the engine rotation shaft connection on the input side. The openers, KI and II respectively represent the auxiliary connection/opener and the main connection/opener of the engine rotating shaft on the output side, VI and II respectively represent the liquid main air amount closing/opening valves, and KPS, K
The operations of I, II, VI, and II are as follows: (1) When storing electricity: (
KPS connection/KI release/VI release)
+ (KII open/VII closed) (2) During power regeneration: (KPS open/KI open/VI closed)
+ (KII connection/VII release) (3) Power generation: (KPS release/KI connection/VI release)
Switching is performed according to purpose, such as always + (KII connected/VII opened), but the feature of this system is that power is always generated in operation (3) (described later).
いま、有効発生電力Leff,Leffを、それぞれP
TシステムおよびLAシステムにおいて、最終的に有効
な電力としてシステム外部に取り出される電力
と定義し、有効電力転換率■■,■■を、それぞれPT
システムおよびLAシステムにおいて、燃料燃焼による
高温熱源からの有償供給熱量に対する有効発生電力の比
と定義すれば、
〔A〕
PTシステムの場合
Leff=Q×η×ηP×ηT
η※=Leff/Q=η×ηP×ηT
〔B〕LAシステムの場合
Leff=Ale,ただし Alc>0のときLeff
=Ale+(−Alc),ただしAlc<0のとき
(注)Alcは比消費動力(電力)であり、併願発明に
おいて、空気液化機関EGIが1kgの液本空気を製造
するためにひつような動力(電力)と定義されている。Now, the effective generated power Leff and Leff are respectively P
In the T system and LA system, it is defined as the power that is finally taken out to the outside of the system as active power, and the active power conversion rate ■■ and ■■ are respectively PT
In the system and LA system, if it is defined as the ratio of the effective generated power to the amount of paid heat supplied from the high-temperature heat source through fuel combustion, then [A] For the PT system, Leff=Q×η×ηP×ηT η*=Leff/Q= η×ηP×ηT [B] For LA system, Leff=Ale, but when Alc>0, Leff
=Ale+(-Alc), however, when Alc<0 (Note) Alc is the specific power consumption (electric power), and in the joint invention, the air liquefaction engine EGI is the required power to produce 1 kg of liquid air. (electricity).
(i)Alc>0の場合、Q(q)=Alc/ηだから
(ii)Alc<の場合、Q(q)=0だからが得られ
、さらに
〔A〕PTシステムにおいて、火力発電所の発電端効率
η=40%,ポンプ効率ηP=85%,水車効率ηT=
85% と仮定すれば、第5図の(1)電力貯蔵時と(
2)電力再生時を継続した場合、η※=0.4×0.8
5×0.85=0.289〔B〕LAシステムにおいて
、
(1)本願発明第1図解析例と併願発明第1図解析例を
連携導入すると、
Ale=329.656、Alc=−58.327<0
Q20=q20=267.7
であるから、第6図の(3)電力発生常時に相当し、
(2)本願発明第3図解析例と併願発明第7図解析例を
連携導入すると、
Ale=323.971、Alc=−113.239<
0ΣQ=Σq=420.844
であるから、この場合も第6図の(3)電力発生常時に
相当し、
が得られる。したがって結局、PTシステムとLAシス
テムの有効電力転換率の比較係数値は(1)η※=5.
013η※,(2)η※=3.595η※となる。(i) When Alc > 0, Q(q) = Alc/η, so (ii) When Alc <, Q(q) = 0, so we obtain, and [A] In the PT system, the power generation of a thermal power plant End efficiency η = 40%, pump efficiency ηP = 85%, water turbine efficiency ηT =
Assuming 85%, the difference between (1) power storage and (
2) If power regeneration is continued, η*=0.4×0.8
5×0.85=0.289 [B] In the LA system, (1) When the analysis example of the present invention in Figure 1 and the analysis example of the concurrent invention in Figure 1 are introduced in conjunction, Ale = 329.656, Alc = -58. 327<0
Since Q20=q20=267.7, this corresponds to (3) in FIG. 6 when power is always generated. (2) When the analysis example of the claimed invention in FIG. 3 and the analysis example of the concurrent invention in FIG. 7 are introduced in conjunction, Ale= 323.971, Alc=-113.239<
Since 0ΣQ=Σq=420.844, this case also corresponds to (3) when power is always generated in FIG. 6, and the following is obtained. Therefore, in the end, the comparison coefficient value of the active power conversion rate of the PT system and LA system is (1) η*=5.
013η*, (2) η*=3.595η*.
すなわち、本願発明と併願発明を連携導入したLAシス
テムは、適当な運転条件において空気液化機関EGIお
よび液本空気機関EGIIの双方で常時動力を発生し、
それが従来のPTシステムの優に3.5倍以上の有効電
力転換率を与える。換言すれば、本LAシステムは、そ
もそもの電力発生源である火力発電所までを含めたシス
テム全体に供給される全有償熱量(燃料の燃焼熱)から
、従来方式の優に3.5倍以上の有効電力を外部に取り
出すことが可能であり、本願発明が、そのシステムにと
って、不可欠の重要な構成要素であることは、Aleが
η※式の支配的因子の一つであることから一目瞭然であ
ろう。In other words, the LA system in which the claimed invention and the co-filed invention are introduced in combination can constantly generate power from both the air liquefaction engine EGI and the liquid air engine EGII under appropriate operating conditions.
It provides an active power conversion rate well over 3.5 times that of conventional PT systems. In other words, this LA system uses more than 3.5 times the total amount of paid heat (fuel combustion heat) supplied to the entire system, including the thermal power plant, which is the original power generation source, compared to conventional systems. The fact that Ale is one of the dominant factors in the η* equation makes it obvious that the present invention is an essential and important component for that system. Probably.
また議論をさらに一歩進めれば、発生動力の過半を自家
消費しながら大気圧空気を高圧に圧縮した後に、有償熱
量を供給する通常の単純ガスタービン発電方式を、併願
発明によって空気を一旦液化し、しかる後個動力貯蔵を
省略して直ちに、本願発明をに従って高圧液本空気とな
し、これに有償熱量を供給するという新らしいガスター
ビン発電方式に転換するならば、空気液化のための動力
消費の有無に拘らず、出力の飛躍的増大と高効率を期待
できるであろう。Taking the discussion one step further, the invention proposed in conjunction with the patent application could replace the conventional simple gas turbine power generation system, which compresses atmospheric air to high pressure and then provides paid heat while consuming most of the generated power internally, by liquefying the air once. If we then omit individual power storage and immediately convert to a new gas turbine power generation system that uses the present invention to generate high-pressure liquid air and supply paid heat to it, the power consumption for air liquefaction will be reduced. Regardless of the presence or absence of this, a dramatic increase in output and high efficiency can be expected.
これは第6図の典型的な一応用例と言える。This can be said to be a typical application example of FIG.
なお、本発明サイクルの密閉型サイクルは、開放型サイ
クルに置換できることを付記する。It should be noted that the closed cycle of the cycle of the present invention can be replaced with an open cycle.
第1図は、等温圧縮、等温膨脹、断熱圧縮、向流熱交換
等の諸工程から成る開放型、密閉型、補助密閉型ガスタ
ービンサイクルを組み合せた混成サイクルのT−s線図
、第2図は、第1図サイクルの機器構成図、第3図は、
第1図サイクルの等温変化のすべてを断熱変化に置換し
た開放がt・密閉型ガスタービンサイクルのT−s線図
、第4図は、第3図サイクルの機器構成図.第5図は.
PTシステムの概念図、第6図は、LAシステムの概念
図である。Figure 1 is a T-s diagram of a hybrid cycle that combines open, closed, and auxiliary closed gas turbine cycles consisting of various processes such as isothermal compression, isothermal expansion, adiabatic compression, and countercurrent heat exchange; The figure is the equipment configuration diagram of the cycle in Figure 1, and the diagram in Figure 3.
Figure 1 is a T-s diagram of an open and closed gas turbine cycle in which all isothermal changes in the cycle are replaced with adiabatic changes, and Figure 4 is an equipment configuration diagram of the cycle in Figure 3. Figure 5 is.
A conceptual diagram of the PT system, FIG. 6 is a conceptual diagram of the LA system.
Claims (2)
気液化温度T_0_0(低温熱源温度)ならびに所与の
高圧力P_2_0と大気圧P_0の区間において液体空
気自身を作業物質とする開放型ガスタービンサイクル、
常温T_0(下位・高温熱源温度)と低温度T_3(T
_0>T_3>T_0_0)ならびに所与の圧力P_1
_0(P_2_0>P_1_0>P_0)と大気圧P_
0の区間において循環空気を作業物質とする密閉型ガス
タービンサイクルおよび常温T_0(下位・高温熱源温
度)と低温度T_1(T_0>T_1>T_3)ならび
に所与の圧力@P@_0(P_1_0>@P@_0>P
_0)と大気圧P_0の区間において循環空気を作業物
質とする補助密閉型ガスタービンサイクルを組み合せた
混成サイクルにおいて、 イ、開放型サイクルは、液体空気の供給から断熱圧縮(
P_0→P_2_0)・定圧膨張(P=P_2_0)・
等温膨脹(P_2_0→P_0)・定圧圧縮(P=P_
0)等の諸工程を経て大気中排出に至るまでを包含し、
極低温T_0_0・圧力P_0の状態で供給された液本
空気が、所与の高圧力P_2_0まで断熱圧縮された後
の定圧膨張行程において、密閉型サイクルの等温圧縮時
に循環空気に加えられる圧縮熱エネルギーを吸収し、さ
らに補助密閉型サイクルの定圧圧縮時の循環空気を冷却
し、当該液体空気は蒸発・加熱されて常温T_0に達し
、引き続き排空気との向流熱交換によって、排熱を回収
しつつ高温度■_0まで加熱されて高温高圧空気となり
、 ロ、高温度■_0・圧力P_2_0の状態に達した前記
高温高圧空気は、続く開放型サイクルの等温膨張行程に
おいて、上位・高温熱源から膨張熱エネルギーの供給を
受けながら大気圧P_0まで等温膨張を行い、次の定圧
圧縮行程において、常温T_0にから高温度■_0まで
定圧膨張中の前記高圧空気との向流熱交換によって、排
熱を吐き出しながら冷却されて常温T_0・圧力P_0
の状態で大気中に排出され、 ハ、密閉型サイクルは、循環空気の定圧圧縮(P=P_
0)・等温圧縮(P_0→P_1_0)・定圧膨張(P
=P_1_0)・等温膨張(P_1_0→P_0)等の
諸行程によって構成され、低温下での大気圧P_0から
所与の圧力P_1_0に至る等温圧縮行程において、循
環空気に加えられる圧縮熱エネルギーは、開放型サイク
ルにおいて定圧膨張される前記液体空気の全冷熱と当該
循環空気自身の一部冷熱によつて吸収され、また当該サ
イクルの定圧圧縮行程、定圧膨張行程相互の向流熱交換
によつて、当該循環空気の冷却と加熱が同時に進行し、 二、密閉型サイクルの常温T_0・圧力P_1_0の状
態から大気圧P_0に至る等温膨張行程において、当該
循環空気に対し常温T_0の下位・高温熱源から膨張熱
エネルギーが供給され、 ホ、補助密閉型サイクルは、循環空気の定圧圧宿(P=
P_0)・断熱圧縮(P_0→@P@_0)・等温膨張
(@P@_0→P_0)等の諸行程によって構成され、
定圧圧縮行程における当該循環空気の冷却は、開放型サ
イクル、密閉型サイクルそれぞれの定圧膨張空気との向
流熱交換によって行われ、常温T_0・圧力@P@_0
の状態から大気圧P_0に至る等温膨張行程において、
当該循環空気に対し常温T_0の下位・高温熱源から膨
張熱エネルギーが供給され、 本サイクルは、おおむね上記過程の順序で進行し、温度
−エントロピ線図上では、作業物質(空気)が時計の回
転方向と同じ右回りに流れることを特徴とする液体空気
動力発生方法。(1) Open type in which liquid air itself is used as the working material in the interval between high temperature ■_0 (upper/high temperature heat source temperature), atmospheric pressure air liquefaction temperature T_0_0 (low temperature heat source temperature), and given high pressure P_2_0 and atmospheric pressure P_0. gas turbine cycle,
Normal temperature T_0 (lower/high temperature heat source temperature) and low temperature T_3 (T
_0>T_3>T_0_0) and given pressure P_1
_0 (P_2_0>P_1_0>P_0) and atmospheric pressure P_
A closed gas turbine cycle with circulating air as the working substance in the section 0, normal temperature T_0 (lower/higher heat source temperature), lower temperature T_1 (T_0>T_1>T_3), and given pressure @P@_0 (P_1_0>@ P@_0>P
In a hybrid cycle that combines an auxiliary closed gas turbine cycle that uses circulating air as the working material in the section between
P_0→P_2_0)・Constant pressure expansion (P=P_2_0)・
Isothermal expansion (P_2_0→P_0)/constant pressure compression (P=P_
0) and other processes up to release into the atmosphere,
Compression thermal energy added to circulating air during isothermal compression in a closed cycle in the constant pressure expansion stroke after liquid air supplied at extremely low temperature T_0_0 and pressure P_0 is adiabatically compressed to a given high pressure P_2_0. The liquid air is evaporated and heated to reach room temperature T_0, and then the exhaust heat is recovered by countercurrent heat exchange with the exhaust air. The high-temperature, high-pressure air that has reached the state of high temperature ■_0 and pressure P_2_0 is expanded from the upper high-temperature heat source in the isothermal expansion stroke of the subsequent open cycle. It expands isothermally to atmospheric pressure P_0 while receiving thermal energy, and in the next constant-pressure compression process, waste heat is removed by countercurrent heat exchange with the high-pressure air that is expanding at constant pressure from normal temperature T_0 to high temperature ■_0. While exhaling, it is cooled down to room temperature T_0 and pressure P_0.
The closed cycle is a constant pressure compression of circulating air (P=P_
0)・Isothermal compression (P_0→P_1_0)・Constant pressure expansion (P
=P_1_0) and isothermal expansion (P_1_0→P_0), and in the isothermal compression process from atmospheric pressure P_0 at low temperature to a given pressure P_1_0, the compression heat energy added to the circulating air is It is absorbed by the total cold heat of the liquid air expanded at constant pressure in the mold cycle and a part of the cold heat of the circulating air itself, and by countercurrent heat exchange between the constant pressure compression stroke and constant pressure expansion stroke of the cycle. Cooling and heating of the circulating air proceed at the same time, and 2. In the isothermal expansion process from normal temperature T_0 and pressure P_1_0 to atmospheric pressure P_0 in a closed cycle, expansion heat is transferred to the circulating air from a low-temperature/high-temperature heat source below normal temperature T_0. The energy is supplied, e. The auxiliary closed cycle is a constant pressure accommodation of circulating air (P=
It is composed of various processes such as P_0), adiabatic compression (P_0→@P@_0), and isothermal expansion (@P@_0→P_0),
Cooling of the circulating air in the constant pressure compression stroke is performed by countercurrent heat exchange with the constant pressure expanded air of the open type cycle and the closed type cycle, and the temperature is normal temperature T_0 and pressure @P@_0.
In the isothermal expansion process from the state to atmospheric pressure P_0,
Expansion thermal energy is supplied to the circulating air from a low-temperature, high-temperature heat source at room temperature T_0, and this cycle proceeds roughly in the order of the above processes, and on the temperature-entropy diagram, the working material (air) is rotated by the rotation of a clock. A liquid air power generation method characterized by flowing clockwise in the same direction as the liquid air power generation method.
ぞれ断熱圧縮、断熱膨張に置換して得られることを特徴
とする特許請求範囲の第1項に記載された液体空気動力
発生方法。(2) The method for generating liquid air power according to claim 1, wherein part or all of isothermal compression and isothermal expansion are replaced with adiabatic compression and adiabatic expansion, respectively.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11857287A JPS63285273A (en) | 1987-05-15 | 1987-05-15 | Liquid pneumatic power generating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11857287A JPS63285273A (en) | 1987-05-15 | 1987-05-15 | Liquid pneumatic power generating method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63285273A true JPS63285273A (en) | 1988-11-22 |
Family
ID=14739916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11857287A Pending JPS63285273A (en) | 1987-05-15 | 1987-05-15 | Liquid pneumatic power generating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63285273A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0913918A (en) * | 1995-07-03 | 1997-01-14 | Mitsubishi Heavy Ind Ltd | Liquid air utilizing power generating facility |
JP2012520973A (en) * | 2009-03-18 | 2012-09-10 | エクスパンション エナジー, エルエルシー | Systems and methods for liquid air generation, power storage and release |
US8907524B2 (en) | 2013-05-09 | 2014-12-09 | Expansion Energy Llc | Systems and methods of semi-centralized power storage and power production for multi-directional smart grid and other applications |
-
1987
- 1987-05-15 JP JP11857287A patent/JPS63285273A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0913918A (en) * | 1995-07-03 | 1997-01-14 | Mitsubishi Heavy Ind Ltd | Liquid air utilizing power generating facility |
JP2012520973A (en) * | 2009-03-18 | 2012-09-10 | エクスパンション エナジー, エルエルシー | Systems and methods for liquid air generation, power storage and release |
US8907524B2 (en) | 2013-05-09 | 2014-12-09 | Expansion Energy Llc | Systems and methods of semi-centralized power storage and power production for multi-directional smart grid and other applications |
US9260018B2 (en) | 2013-05-09 | 2016-02-16 | Expansion Energy Llc | Systems and methods of semi-centralized power storage and power production for multi-directional smart grid and other applications |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ghaebi et al. | A novel trigeneration system using geothermal heat source and liquefied natural gas cold energy recovery: Energy, exergy and exergoeconomic analysis | |
US3943719A (en) | Hydride-dehydride power system and methods | |
US4085590A (en) | Hydride compressor | |
WO2024131172A1 (en) | Cascaded energy storage system and energy storage method | |
CN113153449B (en) | Combined heat and power generation system based on high-low temperature heat storage medium | |
Yang et al. | Optimal structure design of supercritical CO2 power cycle for gas turbine waste heat recovery: A superstructure method | |
JPH03215139A (en) | Power generating method | |
CN109854320A (en) | A kind of carbon dioxide energy storage and Organic Rankine Cycle combined generating system | |
Yuan et al. | Multi-mode analysis and comparison of four different carbon dioxide-based combined cooling and power cycles for the distributed energy system | |
CN108252757B (en) | Multistage compression cycle power generation method adopting supercritical carbon dioxide | |
JPS63285273A (en) | Liquid pneumatic power generating method | |
Jiang et al. | Thermodynamic performance comparison and optimization of sCO2 Brayton cycle, tCO2 Brayton cycle and tCO2 Rankine cycle | |
WO2022257856A1 (en) | Rankine cycle system and rankine cycle method | |
KR20210126285A (en) | LNG Regasification process and liquid air energy storage system | |
CN215444171U (en) | Rankine cycle system | |
CN111075528A (en) | Metal hydride low-temperature circulating work-doing and oxygen-generating system | |
US4397153A (en) | Power cycles based upon cyclical hydriding and dehydriding of a material | |
CN221547066U (en) | Liquid air energy storage system coupling natural resources and Stirling generator set | |
CN115013094B (en) | Medium-low temperature heat source recovery power circulation system with direct expansion and circulation method | |
CN221881133U (en) | Liquid air energy storage system based on LNG cold energy utilization and Stirling power generation coupling | |
CN221856816U (en) | Heat energy and pressure potential energy combined energy storage cogeneration system | |
JPS61258907A (en) | Power system | |
Doiphode et al. | An Energetic and Exergoeconomic Analysis of a CCHP System With Micro Gas Turbine, Organic Rankine Cycle and Ammonia-Water Absorption Refrigeration Cycle | |
CN110080904B (en) | Cold energy cascade utilization system based on thermo-acoustic technology | |
Dai et al. | Thermodynamic and advanced exergy analysis of Rankine Carnot battery with cascaded latent heat storage |