Nothing Special   »   [go: up one dir, main page]

JPS6328520B2 - - Google Patents

Info

Publication number
JPS6328520B2
JPS6328520B2 JP56209607A JP20960781A JPS6328520B2 JP S6328520 B2 JPS6328520 B2 JP S6328520B2 JP 56209607 A JP56209607 A JP 56209607A JP 20960781 A JP20960781 A JP 20960781A JP S6328520 B2 JPS6328520 B2 JP S6328520B2
Authority
JP
Japan
Prior art keywords
region
layer
semiconductor layer
active layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56209607A
Other languages
Japanese (ja)
Other versions
JPS58114476A (en
Inventor
Katsuyuki Uko
Kazuo Sakai
Shigeyuki Akiba
Juichi Matsushima
Yukitoshi Kushiro
Yukio Noda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP56209607A priority Critical patent/JPS58114476A/en
Publication of JPS58114476A publication Critical patent/JPS58114476A/en
Publication of JPS6328520B2 publication Critical patent/JPS6328520B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • H01S5/1032Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/1064Comprising an active region having a varying composition or cross-section in a specific direction varying width along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 本発明は半導体レーザに係り、特に集積レーザ
に不可欠な活性層と導波路層間において、高い結
合効率を与える構造を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser, and in particular provides a structure that provides high coupling efficiency between an active layer and a waveguide layer, which are essential for integrated lasers.

同一基板上に、半導体レーザなどの光素子を複
数個集積化させるためには、光活性素子に低損失
な導波路が結合した構造を成していることが必須
であり、これらの素子を高性能で動作させるため
には、活性層と導波路の結合が十分大きいことが
重要である。これまで、このような集積レーザを
目的とし、活性層と導波路層の高結合化を目指し
た構造の1つとして、図1に示したテーパ結合が
ある。図において、1は1nPの如き半導体基板、
2は導波路層、3は活性層、4はクラツド層、6
はキヤツプ層である。光は領域Aにおいて発生せ
しめられて領域Cに結合されるが、上記領域A,
C間の領域Bにおいて、活性層の層厚が一様に変
化するテーパ領域を有している。図2に図1の
―a断面及び光分布を示すが如く、領域Aにお
ける光分布に散乱が生じないように、テーパ領域
において光分布を一様にかつ徐々に変化させて領
域Cにおける光分布に一致させて高結合を図ろう
というものであり、通常90%程度の高い結合効率
が得られるという利点を有している。しかし、上
記テーパ結合構造は、徐々に活性層3の厚みを変
化させる必要があり、多くは液相成長により作製
されるが、作製するためには装置に特別な工夫を
必要とし、かつ、作製されたテーパの形状の再現
性に問題があつた。すなわち、液相成長によるテ
ーパ領域の作製方法は図3に示すごとく導波路層
2の上に活性層3を成長する際に黒鉛ボート9中
のメルト7が遮へい板8の下から流出して成長す
ることを利用している。従つて、メルト7の温度
や粘度に応じて遮へい板8の設定高hを調整しな
ければならず、この作業が困難なためテーパ形状
の再現性に問題を残していた。さらに、図3から
わかるように、テーパ領域Bと領域Aの成長のた
めの雰囲気が大きく異なるため、それぞれの組成
が異なつてしまうという欠点を有していた。
In order to integrate multiple optical devices such as semiconductor lasers on the same substrate, it is essential to have a structure in which a low-loss waveguide is coupled to a photoactive device. In order to operate at high performance, it is important that the coupling between the active layer and the waveguide is sufficiently large. Until now, one of the structures aimed at achieving high coupling between the active layer and the waveguide layer for such an integrated laser is the taper coupling shown in FIG. 1. In the figure, 1 is a semiconductor substrate such as 1nP,
2 is a waveguide layer, 3 is an active layer, 4 is a cladding layer, 6
is the cap layer. Light is generated in region A and coupled to region C;
In region B between C, there is a tapered region in which the thickness of the active layer changes uniformly. As shown in FIG. 2, which shows the -a cross section and light distribution in FIG. The aim is to achieve high binding by matching the 200°C, and it has the advantage of achieving high binding efficiency, usually around 90%. However, the taper bonding structure described above requires gradual changes in the thickness of the active layer 3, and is often fabricated by liquid phase growth, which requires special ingenuity in the equipment and There was a problem with the reproducibility of the taper shape. That is, as shown in FIG. 3, the method for manufacturing the tapered region by liquid phase growth is such that when growing the active layer 3 on the waveguide layer 2, the melt 7 in the graphite boat 9 flows out from under the shielding plate 8 and grows. I'm taking advantage of what I do. Therefore, it is necessary to adjust the set height h of the shielding plate 8 according to the temperature and viscosity of the melt 7, and since this work is difficult, there remains a problem in the reproducibility of the taper shape. Furthermore, as can be seen from FIG. 3, since the atmospheres for growing tapered region B and region A are significantly different, there is a drawback that the compositions of each region are different.

本発明は、上述した従来技術の欠点を改善する
もので、活性層厚を変化させるのではなく、活性
層幅を変化させることによりテーパ領域を形成
し、高い結合効率を得ることができかつ平面プロ
セスにより作製できる構造を有する半導体レーザ
を提供するものである。
The present invention improves the above-mentioned drawbacks of the prior art, and forms a tapered region by changing the width of the active layer instead of changing the thickness of the active layer, thereby achieving high coupling efficiency and a flat surface. The present invention provides a semiconductor laser having a structure that can be manufactured by a process.

以下、図面により本発明を詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

GaInAsP結晶を用いた本発明の実施例の斜視
図を図4aに、その―a断面図を図4bに、
また、ストライプ部分を露出させたときの上面図
を図4cに各々示す。図において、11はn型
InP基板、12はn型GauIn1uAsvP1vから成
る導波路層、13はアンドーブGaxIn1xAsy
P1yから成る活性層、14はp型InPクラツド
層、15はp型InP埋め込み層、16はp型
GaInAsPから成るキヤツプ層であり、導波路層
12と活性層13とはx>u,y>vなる関係を
持つ。なお、図には他端は明示していないが、図
示したと同じ構成もしくは、へき開面であつても
よく、どのような素子を結合するかによつて決定
される。これらの半導体層は液相エピタキシヤル
法,気相エピタキシヤル法,分子線エピタキシヤ
ル法などにより形成することができる。17及び
18は各々p側及びn側の電極である。ここに、
領域Aは幅が一定なストライブ状活性層13と導
波路層12からなり、領域Cはストライプ状導波
路12のみから成り、また、領域Bは本発明の特
徴である活性層13の幅が連続的に変化するテー
パ領域である。領域Aで発生した光は、該領域A
の屈折率分布で決まる固有の光分布を有するが、
光がZ方向に伝搬する際、領域Bにおいて活性層
幅が一様に減少するため、上記光分布はほとんど
散乱されることなく一様に変形し、領域Cと領域
Bの境界においては、上記変形した光分布は領域
Cに固有の光分布に一致して領域C内を伝搬す
る。すなわち、テーパ領域Bにおける光の散乱は
極めて小さいため、高い効率で光を領域Aから領
域Cに結合させることができる。上記はZ方向に
光が伝搬する例について述べたが、一Z方向、す
なわち光が領域Cから領域Aに伝搬する場合も同
様である。
A perspective view of an embodiment of the present invention using GaInAsP crystal is shown in FIG. 4a, and a sectional view taken along the line-a is shown in FIG.
Moreover, a top view when the stripe portion is exposed is shown in FIG. 4c. In the figure, 11 is an n-type
InP substrate, 12 is a waveguide layer consisting of n-type Ga u In 1 - u As v P 1 - v , 13 is an undoped Ga x In 1 - x As y
Active layer consisting of P 1 - y , 14 is p-type InP cladding layer, 15 is p-type InP buried layer, 16 is p-type
This is a cap layer made of GaInAsP, and the relationship between the waveguide layer 12 and the active layer 13 is x>u, y>v. Although the other end is not clearly shown in the figure, it may have the same configuration as shown or a cleavage plane, and is determined depending on what kind of elements are to be coupled. These semiconductor layers can be formed by a liquid phase epitaxial method, a vapor phase epitaxial method, a molecular beam epitaxial method, or the like. 17 and 18 are p-side and n-side electrodes, respectively. Here,
Region A consists of a striped active layer 13 and a waveguide layer 12 with a constant width, region C consists only of a striped waveguide 12, and region B has a striped active layer 13 with a constant width. It is a continuously changing taper region. The light generated in area A is
It has a unique light distribution determined by the refractive index distribution of
When light propagates in the Z direction, the active layer width uniformly decreases in region B, so the above-mentioned light distribution is uniformly deformed with almost no scattering, and at the boundary between region C and region B, the above-mentioned The deformed light distribution propagates within region C in accordance with the light distribution specific to region C. That is, since the scattering of light in the tapered region B is extremely small, light can be coupled from the region A to the region C with high efficiency. Although an example in which light propagates in the Z direction has been described above, the same applies to the case in which light propagates in one Z direction, that is, from region C to region A.

図5に光が伝搬する様子を示す。図5bは光結
合部分の拡大図であり、―,―,―
,―,―は切断面を示し、図5aに各
切断面に対応してその断面,,,,と
光分布とを示している。光閉込め効果は層の屈折
率と断面積とにより決まる。活性層13の有する
屈折率は導波路層12の屈折率より大きい。従つ
て、断面―の位置においては光は主として活
性層13内に閉込められているが、活性層13の
断面積が小さくなるのに従つて、光は導波路層1
2内に閉込められる量が多くなり、断面―の
位置においては領域C固有の光分布となつてい
る。
Figure 5 shows how light propagates. Figure 5b is an enlarged view of the optical coupling part.
, -, - indicate cut planes, and FIG. 5a shows the cross sections, , , and light distribution corresponding to each cut plane. The light confinement effect depends on the refractive index and cross-sectional area of the layer. The refractive index of the active layer 13 is greater than the refractive index of the waveguide layer 12. Therefore, at the position of the cross section, the light is mainly confined within the active layer 13, but as the cross-sectional area of the active layer 13 becomes smaller, the light is confined within the waveguide layer 1.
The amount of light trapped within 2 increases, and the light distribution becomes unique to region C at the position of the cross section.

なお、図4においてテーパ領域Bの具体的な形
状寸法例として、導波路層12が2μm程度テーパ
領域Bの長さは50μm程度であるとき、テーパ部
の先端は0.5μm以下において本発明の効果が顕著
である。
In addition, as a specific example of the shape and size of the tapered region B in FIG. 4, when the waveguide layer 12 is about 2 μm and the length of the tapered region B is about 50 μm, the effect of the present invention is obtained when the tip of the tapered portion is 0.5 μm or less. is remarkable.

図4の実施例の作製行程の一例を図6に示す。
ウエハは2回の結晶成長により作製される。ま
ず、第1回目の成長により、InP基板11上に導
波路層12、活性層13,InPクラツド層14を
順次成長する〔図6a〕。次に、テーパ状を有す
るくさび形のストライプが残るようにクラツド層
14と活性層13をエツチングにより除去する
〔図6b〕。さらに、上記くさび形ストライプに重
畳するように再度直線状ストライプマスクをほど
こし、、InP基板1までエツチングを行なう〔図
6c〕。次に、第2回目の成長によりテーパ形状
を有するストライプをInPにより完全に埋め込む
〔図6d〕。このように、活性層13の幅をテーパ
状にすることは、図1に示したように活性層厚を
テーパ状にするのと比べて、結晶成長装置に特別
な工夫なしに平面プロセス行程で作製が可能であ
り、その形状も再現性よく作製することができ
る。
An example of the manufacturing process of the embodiment shown in FIG. 4 is shown in FIG.
The wafer is fabricated by two rounds of crystal growth. First, in the first growth, a waveguide layer 12, an active layer 13, and an InP cladding layer 14 are sequentially grown on an InP substrate 11 (FIG. 6a). Next, the cladding layer 14 and the active layer 13 are removed by etching so that tapered wedge-shaped stripes remain [FIG. 6b]. Furthermore, a linear stripe mask is applied again so as to overlap the wedge-shaped stripes, and etching is performed up to the InP substrate 1 [FIG. 6c]. Next, in the second growth, the tapered stripes are completely filled with InP [FIG. 6d]. In this way, tapering the width of the active layer 13 is easier than tapering the thickness of the active layer as shown in FIG. It can be manufactured, and its shape can be manufactured with good reproducibility.

なお、共振器としては、、図7aに示した領域
Aに周期的な凹凸19を設けたDFB(分布帰還)
型、もしくは、図7bに示した双対する領域Cに
周期的凹凸19を設けたDBR(分布反射)型とす
ることにより実現することができる。
Note that the resonator is a DFB (distributed feedback) in which periodic unevenness 19 is provided in the region A shown in FIG. 7a.
This can be realized by using a DBR (distributed reflection) type in which periodic unevenness 19 is provided in the dual regions C shown in FIG. 7b.

上記の実施例は、活性層13と導波路層12が
直接接合した構造を用いて示したが、活性層13
と導波路層12間にInPなどの低屈折率の層が介
在する構造などにも適用が可能である。また、
GaInAsP/InP結晶を用いた実施例について示し
たがAlGaAs系の混晶などについても適用可能で
ある。
Although the above embodiment has been shown using a structure in which the active layer 13 and the waveguide layer 12 are directly bonded, the active layer 13
It is also applicable to a structure in which a low refractive index layer such as InP is interposed between the waveguide layer 12 and the waveguide layer 12. Also,
Although an example using GaInAsP/InP crystals has been shown, it is also applicable to AlGaAs-based mixed crystals.

以上、詳細に説明したように、本発明によれば
簡単な平面プロセスにより、再現性よく高い結合
係数を有するテーパ結合構造が作製でき、従つ
て、低しきい値,高効率な集積レーザの実現が期
待できる。
As described in detail above, according to the present invention, a tapered coupling structure with a high coupling coefficient can be fabricated with good reproducibility through a simple planar process, thereby realizing a low threshold and highly efficient integrated laser. can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は活性層厚が変化する従来のテーパ結合構
造例を示す斜視図、図2は図1の―a断面図
及び光分布の変化の様子を示した図、図3は図1
の従来例を形成する方法を説明するための断面
図、図4aは本発明の実施例を示す斜視図、図4
bは図4aの―a断面図、図4cは図4aの
―a断面の上面図、図5a,bは本発明装置
における光の伝搬を示す断面図及び斜視図、図6
a,b,c,dは本発明の実施例の作製行程を示
す斜視図、図7は本発明をDFB及びDBR構造に
適用した実施例である。 1……InP基板、2……GauIn1uAsvP1v
波路層、3……GaxIn1xAsyP1y活性層、4…
…InPクラツド層、5……InP埋め込み層、6…
…GaInAsPキヤツプ層、7,8……電極、9…
…周期的な凹凸、11……n型InP基板、12…
…n型GauIn1uAsvP1v導波路層、13……
GaxIn1xAsyP1y活性層、14……p型InPク
ラツド層、15……p型InP埋め込み層、16…
…p型GaInAsPキヤツプ層、17……p側電極、
18……n側電極。
FIG. 1 is a perspective view showing an example of a conventional tapered coupling structure in which the active layer thickness changes, FIG. 2 is a cross-sectional view taken along the line a in FIG. 1 and a diagram showing how the light distribution changes, and FIG.
FIG. 4a is a cross-sectional view for explaining a method of forming a conventional example of the present invention, and FIG. 4a is a perspective view showing an embodiment of the present invention.
b is a sectional view taken along the line a in FIG. 4a, FIG. 4c is a top view of the section taken along the line a shown in FIG. 4a, FIGS.
a, b, c, and d are perspective views showing the manufacturing process of an embodiment of the present invention, and FIG. 7 is an embodiment in which the present invention is applied to a DFB and DBR structure. 1...InP substrate, 2...Ga u In 1 - u As v P 1 - v waveguide layer, 3... Ga x In 1 - x As y P 1 - y active layer, 4...
...InP cladding layer, 5...InP buried layer, 6...
...GaInAsP cap layer, 7, 8... electrode, 9...
...Periodic unevenness, 11...n-type InP substrate, 12...
...n-type Ga u In 1 - u As v P 1 - v waveguide layer, 13...
Ga x In 1 - x As y P 1 - y active layer, 14... p-type InP cladding layer, 15... p-type InP buried layer, 16...
... p-type GaInAsP cap layer, 17 ... p-side electrode,
18...n-side electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板上に、第1の半導体層と、該第1
の半導体層より禁制帯幅が小にして導波路として
供される第2の半導体層と、前記第1,第2の半
導体層よりさらに禁制帯幅が小にして活性層とし
て供される第3の半導体層と、前記第1の半導体
層と同程度の禁制帯幅を有する第4の半導体層と
が順次積層され、かつ、一部活性層が除去されて
いることにより前記第1,第2,第3,第4の半
導体層から成る領域Aと、前記第1,第2,第4
の半導体層から成る領域Cとの両方にわたつて光
を伝播させて発振せしめるか、もしくは、領域A
のみにおいて発振せしめ、該発振光を前記領域C
に伝播させるように構成された半導体レーザにお
いて、前記領域Aと領域Cとの中間に位置しかつ
前記第1,第2,第3及び第4の半導体層を有す
る領域Bのうち、層厚及び幅が一定な前記第2の
半導体層上の前記第3の半導体層が層厚一定でか
つ前記領域Aから前記領域Cへ行くに従つて幅が
連続的に減少するように構成されたことを特徴と
する半導体レーザ。
1 a first semiconductor layer on a semiconductor substrate;
a second semiconductor layer whose forbidden band width is smaller than that of the semiconductor layer and serves as a waveguide; and a third semiconductor layer whose forbidden band width is smaller than that of the first and second semiconductor layers and which serves as an active layer. and a fourth semiconductor layer having a forbidden band width comparable to that of the first semiconductor layer are sequentially stacked, and a part of the active layer is removed. , a third, and a fourth semiconductor layer;
Either the light is propagated across both the region C consisting of the semiconductor layer and the region A is oscillated, or
The oscillation light is caused to oscillate only in the region C.
In the semiconductor laser configured to allow propagation to occur, the layer thickness and The third semiconductor layer on the second semiconductor layer, which has a constant width, has a constant thickness and is configured such that the width continuously decreases from the region A to the region C. Features of semiconductor laser.
JP56209607A 1981-12-28 1981-12-28 Semiconductor laser Granted JPS58114476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56209607A JPS58114476A (en) 1981-12-28 1981-12-28 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56209607A JPS58114476A (en) 1981-12-28 1981-12-28 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS58114476A JPS58114476A (en) 1983-07-07
JPS6328520B2 true JPS6328520B2 (en) 1988-06-08

Family

ID=16575603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56209607A Granted JPS58114476A (en) 1981-12-28 1981-12-28 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS58114476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826812A (en) * 2015-01-27 2016-08-03 华为技术有限公司 Tunable laser and method of tuning laser

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5119460A (en) * 1991-04-25 1992-06-02 At&T Bell Laboratories Erbium-doped planar optical device
FR2684823B1 (en) * 1991-12-04 1994-01-21 Alcatel Alsthom Cie Gle Electric SEMICONDUCTOR OPTICAL COMPONENT WITH EXTENDED OUTPUT MODE AND MANUFACTURING METHOD THEREOF.
US5844929A (en) * 1994-02-24 1998-12-01 British Telecommunications Public Limited Company Optical device with composite passive and tapered active waveguide regions
WO1995023445A1 (en) * 1994-02-24 1995-08-31 British Telecommunications Public Limited Company Semiconductor device
US5574742A (en) * 1994-05-31 1996-11-12 Lucent Technologies Inc. Tapered beam expander waveguide integrated with a diode laser
US6381380B1 (en) * 1998-06-24 2002-04-30 The Trustees Of Princeton University Twin waveguide based design for photonic integrated circuits
KR100958338B1 (en) * 2007-12-18 2010-05-17 한국전자통신연구원 Optical amplifier integrated super luminescent diode and external cavity laser using this
JP7279658B2 (en) * 2020-02-12 2023-05-23 住友電気工業株式会社 Semiconductor optical device and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183091A (en) * 1981-05-08 1982-11-11 Toshiba Corp Manufacture of optical integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183091A (en) * 1981-05-08 1982-11-11 Toshiba Corp Manufacture of optical integrated circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826812A (en) * 2015-01-27 2016-08-03 华为技术有限公司 Tunable laser and method of tuning laser
CN105826812B (en) * 2015-01-27 2020-04-21 华为技术有限公司 Tunable laser and method of tuning a laser

Also Published As

Publication number Publication date
JPS58114476A (en) 1983-07-07

Similar Documents

Publication Publication Date Title
US4665528A (en) Distributed-feedback semiconductor laser device
CA1100216A (en) Mode control of heterojunction injection lasers and method of fabrication
US6198863B1 (en) Optical filters
JPH04243216A (en) Production of optical waveguide and optical integrated element and production thereof
US4622674A (en) Single longitudinal mode semiconductor laser
US4575851A (en) Double channel planar buried heterostructure laser with periodic structure formed in guide layer
JPH11220212A (en) Optical element and its drive method, and semiconductor laser element
US5319661A (en) Semiconductor double heterostructure laser device with InP current blocking layer
KR100582114B1 (en) A method of fabricating a semiconductor device and a semiconductor optical device
JPS6328520B2 (en)
US4618959A (en) Double heterostructure semiconductor laser with periodic structure formed in guide layer
JPH04397B2 (en)
JPWO2005074047A1 (en) Optical semiconductor device and manufacturing method thereof
JPH0461514B2 (en)
US4644552A (en) Semiconductor laser
JP2950302B2 (en) Semiconductor laser
JP4151043B2 (en) Manufacturing method of optical semiconductor device
JP2907234B2 (en) Semiconductor wavelength tunable device
JP2014090097A (en) Optical semiconductor device
WO2021148121A1 (en) Dfb laser with angled central waveguide section
JPH0449274B2 (en)
JPH09307179A (en) Phase shift type distributed feedback semiconductor laser
EP1309050A1 (en) Laser device and method therefor
JPH07202316A (en) Selectively grown waveguide optical control element
JP2023020996A (en) Semiconductor optical device