JPS6327540A - Hydrophilization of hydrophobic porous membrane - Google Patents
Hydrophilization of hydrophobic porous membraneInfo
- Publication number
- JPS6327540A JPS6327540A JP17250086A JP17250086A JPS6327540A JP S6327540 A JPS6327540 A JP S6327540A JP 17250086 A JP17250086 A JP 17250086A JP 17250086 A JP17250086 A JP 17250086A JP S6327540 A JPS6327540 A JP S6327540A
- Authority
- JP
- Japan
- Prior art keywords
- porous membrane
- copolymer
- membrane
- hydrophilic
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 72
- 230000002209 hydrophobic effect Effects 0.000 title claims abstract description 20
- 229920001577 copolymer Polymers 0.000 claims abstract description 47
- 239000011148 porous material Substances 0.000 claims abstract description 28
- 239000000178 monomer Substances 0.000 claims abstract description 24
- 238000004132 cross linking Methods 0.000 claims abstract description 23
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims abstract description 7
- 229920002554 vinyl polymer Polymers 0.000 claims abstract description 7
- OMNKZBIFPJNNIO-UHFFFAOYSA-N n-(2-methyl-4-oxopentan-2-yl)prop-2-enamide Chemical compound CC(=O)CC(C)(C)NC(=O)C=C OMNKZBIFPJNNIO-UHFFFAOYSA-N 0.000 claims abstract description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 25
- 230000000717 retained effect Effects 0.000 claims description 8
- -1 alkali metal salt Chemical class 0.000 claims description 7
- 238000006482 condensation reaction Methods 0.000 claims description 5
- NCQCQZXQBYAHBZ-UHFFFAOYSA-N 4-hydroxy-2-methylbut-2-enoic acid Chemical compound OC(=O)C(C)=CCO NCQCQZXQBYAHBZ-UHFFFAOYSA-N 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 2
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 claims description 2
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052783 alkali metal Inorganic materials 0.000 claims description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims 1
- XBACSBFKXGHTIS-UHFFFAOYSA-N 2-methyl-5-sulfopent-2-enoic acid Chemical compound OC(=O)C(C)=CCCS(O)(=O)=O XBACSBFKXGHTIS-UHFFFAOYSA-N 0.000 claims 1
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 abstract description 14
- 238000006243 chemical reaction Methods 0.000 abstract description 10
- 125000000524 functional group Chemical group 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- UACSZOWTRIJIFU-UHFFFAOYSA-N hydroxymethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCO UACSZOWTRIJIFU-UHFFFAOYSA-N 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 34
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- 230000035699 permeability Effects 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- 239000012510 hollow fiber Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 5
- 239000003431 cross linking reagent Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000011549 displacement method Methods 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002715 modification method Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- JBJKYOYCKIXOQM-UHFFFAOYSA-N CC(C(=O)O)=C.[S] Chemical compound CC(C(=O)O)=C.[S] JBJKYOYCKIXOQM-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000003745 detangling effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0088—Physical treatment with compounds, e.g. swelling, coating or impregnation
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は水処理や血液浄化等の分野で使用される疎水性
多孔質膜の親水化法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for hydrophilizing a hydrophobic porous membrane used in fields such as water treatment and blood purification.
ポリオレフィン等の疎水性多孔質膜は機械的性質や耐薬
品性が優れているためにその適用分野が急速に拡大して
いる。しかし、疎水性多孔質膜はそのままでは水を透過
させることが難しく、水を始めとする親水性液体を透過
させるためには親水化処理が必要である。ポリオレフィ
ン等の疎水性物質の表面改質による親水化法については
種々の方法が検討されているが、表面形状が複雑な多孔
質膜の親水化に対して表面が滑らかなフィルム状物等の
親水化法を単純に適用することは出来ない。Hydrophobic porous membranes such as polyolefins have excellent mechanical properties and chemical resistance, so the fields of their application are rapidly expanding. However, it is difficult for hydrophobic porous membranes to allow water to pass through them as they are, and hydrophilic treatment is required to allow water and other hydrophilic liquids to pass through them. Various methods have been studied to make hydrophilic substances such as polyolefins hydrophilic by surface modification. It is not possible to simply apply the conversion method.
疎水性多孔質膜の親水化法としては、水との相溶性が良
好なアルコールやケトン等の有機溶剤によって多孔質膜
の微細孔部分を含めた表面全体を湿潤処理した後、該有
機溶剤を仮で置換する有機溶剤湿潤・水置換法、ポリエ
チレングリコールや界面活性剤等の親水性物質を多孔質
膜の表面に吸着させて多孔・質膜に親水性を付与する物
理的吸着法(特開昭54−153872号、特開昭59
−24732号)、あるいは親水性単量体を多孔質フィ
ルムの表面に保持させた状態で放射線を照射する方法(
特開昭56−38333号)や疎水性樹脂多孔性構造物
に水溶性高分子や界面活性剤を含浸させた状態でプラズ
マ処理する方法(特開昭56−157457号)等の化
学的表面変性法が知られている。A method for making a hydrophobic porous membrane hydrophilic is to wet the entire surface of the porous membrane, including the micropores, with an organic solvent such as alcohol or ketone that has good compatibility with water, and then remove the organic solvent. Organic solvent wetting/water displacement method for temporary substitution, physical adsorption method for adsorbing hydrophilic substances such as polyethylene glycol or surfactants onto the surface of the porous membrane to impart hydrophilicity to the porous membrane (Unexamined Japanese Patent Publication No. No. 54-153872, JP-A-59
-24732), or a method in which radiation is irradiated while the hydrophilic monomer is held on the surface of the porous film (No.
Chemical surface modification methods such as JP-A No. 56-38333) and plasma treatment of a hydrophobic resin porous structure impregnated with a water-soluble polymer or surfactant (JP-A No. 56-157457) The law is known.
しかし、有機溶剤湿潤・水置換法では保存中や使用中に
一旦細孔内の水が抜けるとその部分は疎水性に戻り水を
透過できなくなるので、多孔質膜の周囲に常時水を充た
しておくことが必要でちシ、取り扱いが煩雑である。物
理的吸着法は操作は簡単であるが、長時間に亘って使用
しているうちに該親水性物質が脱離するので必ずしも十
分な親水化法であるとは言えない。また、従来の化学的
表面変性法において、放射線を照射する場合は多孔質膜
基材の機械的強度の上
低下が不可避であり、プラズマ処理採用する場合は親水
性被膜の厚みが薄すぎて細孔表面の全体に亘って親水性
を付与することが矯しく多孔質膜細孔内部の親水化が充
分に達成できない点等が問題であった。However, in the organic solvent wetting/water displacement method, once the water in the pores escapes during storage or use, the area returns to hydrophobicity and becomes unable to pass through, so the area around the porous membrane must be constantly filled with water. It is necessary to store it, and handling is complicated. Although the physical adsorption method is easy to operate, it cannot necessarily be said to be a sufficient hydrophilic method because the hydrophilic substance is desorbed during long-term use. In addition, in conventional chemical surface modification methods, when irradiating with radiation, the mechanical strength of the porous membrane base material inevitably decreases, and when plasma treatment is used, the thickness of the hydrophilic coating is too thin and fine. Problems include the fact that it is difficult to impart hydrophilicity to the entire pore surface, and it is not possible to achieve sufficient hydrophilicity within the pores of the porous membrane.
本発明の目的は、従来技術の問題点を解消し多孔質膜の
基質を損傷することなく疎水性多孔質膜の細孔表面に耐
久性の優れた親水性を付与することを可能にした疎水性
多孔質膜の親水化法を提供することにある。The purpose of the present invention is to solve the problems of the prior art and to provide a hydrophobic membrane that makes it possible to impart highly durable hydrophilicity to the pore surface of a hydrophobic porous membrane without damaging the substrate of the porous membrane. An object of the present invention is to provide a method for making a porous membrane hydrophilic.
本発明の要旨はビニル型の親水性モノマー囚及びビニル
型の架橋性上ツマ−(A))からなる縮合反応によって
架橋可能な共重合体を疎水性多孔質膜の少なくとも一部
の細孔表面に保持せしめた状態で架橋させることを特徴
とする疎水性多孔質膜の親水化方法にある。The gist of the present invention is to apply a crosslinkable copolymer consisting of a vinyl-type hydrophilic monomer and a vinyl-type crosslinkable polymer (A) to at least part of the pore surface of a hydrophobic porous membrane. A method for making a hydrophobic porous membrane hydrophilic, characterized by crosslinking the membrane in a state in which the membrane is maintained in a hydrophobic state.
本発明で用いられる疎水性多孔質膜の素材としてはポリ
エチVン、ポリプロピレン、ポリ−4−メチIV−1−
ペンテン、ポリ−3−メチル−1−ブテン等のポリオレ
フィン、ポリフッ化ビニリデン、ポリテトラフルオロエ
チレン等のフッ素系重合体、あるいはこれらの共重合体
等を挙げることができる。Materials for the hydrophobic porous membrane used in the present invention include polyethylene, polypropylene, poly-4-meth
Examples include polyolefins such as pentene and poly-3-methyl-1-butene, fluorine-based polymers such as polyvinylidene fluoride and polytetrafluoroethylene, and copolymers thereof.
又、該多孔質膜としては中空糸膜、平膜、管状膜等の任
意の形態のものを用いることができ、また用途に応じて
種々の細孔径のものを使用することができるが−1好ま
しい例として膜厚が20〜200μm程度、空孔率が2
0〜90%程度、細孔径が(LO1〜5μm程度のもの
を挙げることができる。Further, as the porous membrane, any form such as a hollow fiber membrane, flat membrane, or tubular membrane can be used, and membranes with various pore diameters can be used depending on the purpose. As a preferable example, the film thickness is about 20 to 200 μm and the porosity is 2.
Examples include those with a pore size of about 0 to 90% and a pore diameter of about (LO1 to 5 μm).
本発明においてビニル型の親水性上ツマー囚とは分子内
に重合性のビニル型2重結合を有する水溶性上ツマ−を
いい、その例として、アクリ/I/酸、メタクリル酸、
ヒドロキシメチルメタクリル酸、スμホエチpメタクリ
ル酸、スチレンスルホン酸、又はそれらのアルカリ金属
塩等を挙げることができる。In the present invention, the vinyl-type hydrophilic polymer refers to a water-soluble polymer having a polymerizable vinyl-type double bond in the molecule, examples of which include acrylic/I/acid, methacrylic acid,
Examples include hydroxymethyl methacrylic acid, sulfur methacrylic acid, styrene sulfonic acid, and alkali metal salts thereof.
又、ビニル型の架橋性モノマー(B)とは、分子内に重
合性のビニμ型2重結合を有し、縮合反応による架橋が
可能な官能基としてアセチ)v基、ヒドロキシアルキμ
基等を有するモノマーをいい、その例としてジアセトン
アクリルアミド、ヒドロキシメチルアクリルアミド等を
挙げることができる。これらの架橋性モノマー(B)は
脱水反応、脱ホμムアpデヒド反応等の縮合反応をする
ことが知られているが、該縮合反応を起こさせない条件
で親水性上ツマー囚と共重合させることができるので架
橋反応に関与する官能基を分子内に含んだ未架橋の共重
合体を得ることができる。一方、本願で用いる架橋性上
ツマ−の)の代わりに通常の架橋剤として知られている
2重結合を2つ以上含有する架橋性モノマーを用いて親
水性上ツマ−(A)と共重合体を製造する場合は架橋さ
れた共重合体が得られてしまうので好ましくない。In addition, the vinyl type crosslinkable monomer (B) has a polymerizable vinyl μ type double bond in the molecule, and has an acetyl)v group, a hydroxyalkyl μ group as a functional group that can be crosslinked by a condensation reaction.
It refers to a monomer having a group, etc., and examples thereof include diacetone acrylamide, hydroxymethyl acrylamide, and the like. These crosslinking monomers (B) are known to undergo condensation reactions such as dehydration and deformed apdehyde reactions, but it is necessary to copolymerize them with hydrophilic polymers under conditions that do not allow such condensation reactions to occur. Therefore, it is possible to obtain an uncrosslinked copolymer containing a functional group involved in the crosslinking reaction in the molecule. On the other hand, instead of the crosslinking monomer (A) used in the present application, a crosslinking monomer containing two or more double bonds, which is known as a general crosslinking agent, is used to copolymerize with the hydrophilic monomer (A). In the case of producing a copolymer, a crosslinked copolymer is obtained, which is not preferable.
本発明においては縮合反応によって架橋する共重合体が
用いられるが、これは該共重合体が架橋剤を添加しなく
ても架橋反応を行なうことによる。一方架橋剤を添加し
て架橋反応させる場合は、多孔質膜の細孔内に該架橋剤
が汚染物質として残存するので好ましくない。In the present invention, a copolymer that crosslinks through a condensation reaction is used, and this is because the copolymer performs a crosslinking reaction even without the addition of a crosslinking agent. On the other hand, when a crosslinking agent is added to cause a crosslinking reaction, the crosslinking agent remains as a contaminant in the pores of the porous membrane, which is not preferable.
また膜汚染を考慮すると多孔質膜の細孔表面上での共重
合体の縮合架橋反応時に生成する物質が水のみであるジ
アセトンアクリルアミドを架橋性七ツマ−(B)として
用いることがより好ましい。In addition, in consideration of membrane contamination, it is more preferable to use diacetone acrylamide as the crosslinkable hexamer (B) since the only substance produced during the condensation crosslinking reaction of the copolymer on the pore surface of the porous membrane is water. .
本発明において用いられる共重合体としては、親水性モ
ノマー囚/架橋性モノマー(B)の重量組成比がおよそ
99.5/CL5〜50150程度であることが好まし
く、分子量が1〜50万程度であることが好咳しい。The copolymer used in the present invention preferably has a hydrophilic monomer/crosslinkable monomer (B) weight composition ratio of approximately 99.5/CL5 to 50,150, and a molecular weight of approximately 1 to 500,000 to 500,000. Something makes me feel bad.
架橋性モノマーの)の量が前記範囲より少ないと共重合
体の架橋が不充分となり多孔質膜に対して耐久性の優れ
た親水性を付与することができないので好ましくない。If the amount of the crosslinking monomer () is less than the above range, the crosslinking of the copolymer will be insufficient and it will not be possible to impart hydrophilicity with excellent durability to the porous membrane, which is not preferred.
また、この量が前記範囲より多いと多孔質膜に対して充
分な親水性を付与することができないので好ましくない
。Moreover, if this amount is larger than the above range, sufficient hydrophilicity cannot be imparted to the porous membrane, which is not preferable.
親水性七ツマ−cA)/架橋性モノマー(B)の比はL
L7!=〜7 o/s ofhhtとh=zり好iしい
。The ratio of hydrophilic monomer (cA)/crosslinking monomer (B) is L
L7! =~7 o/s ofhht and h=z is preferable.
前記共重合体の分子量が前記範囲より小さいと、後述す
るようにたとえば共重合体溶液によって多孔質膜の細孔
表面に共重合体を保持させた後脱溶媒する際に共重合体
が外表面層に移動しやすいので多孔質膜の細孔表面に架
橋共重合体を均一に保持させることが困難であり好まし
くない。また、分子量が前記範囲を越えると共重合体溶
液の粘度が高すぎて多孔質膜の細孔内部に共重合体を侵
入させることが困難であシ、充分な親水性を付与するこ
とが難しいので好ましくない。共重合体の分子量は5〜
30万程度であることがより好ましい。If the molecular weight of the copolymer is smaller than the above range, as will be described later, for example, when the copolymer is retained on the pore surface of the porous membrane with a copolymer solution and the solvent is removed, the copolymer will be removed from the outer surface. Since the crosslinked copolymer tends to migrate to the layer, it is difficult to maintain the crosslinked copolymer uniformly on the pore surface of the porous membrane, which is not preferable. Furthermore, if the molecular weight exceeds the above range, the viscosity of the copolymer solution is too high, making it difficult to infiltrate the copolymer into the pores of the porous membrane, and making it difficult to impart sufficient hydrophilicity. So I don't like it. The molecular weight of the copolymer is 5~
More preferably, it is about 300,000.
本発明の共重合体は架橋性モノマー(B)の架橋に関与
する官能基が架橋反応しない緩やかな条件で親水性モノ
マー囚及び架橋化ツマ−の)を共重合することにより製
造することができる。The copolymer of the present invention can be produced by copolymerizing the hydrophilic monomer (B) and the crosslinking polymer under mild conditions in which the functional groups involved in crosslinking of the crosslinking monomer (B) do not undergo a crosslinking reaction. .
このような条件としてはたとえばアセトン、メチルエチ
ルケトン等の良溶媒を用い、モノマー濃度を1〜10重
量−程度としてラジカル開始剤を七ツマ−に対して(1
01〜1重flチ程度加え、温度を30〜60℃程度と
した溶液重合法を挙げることができる。また、溶媒を用
いないでその他は前記条件とほぼ同様とする塊状重合法
を採用してもよく、光重合開始剤を用いて光重合させて
もよい。Such conditions include, for example, using a good solvent such as acetone or methyl ethyl ketone, with a monomer concentration of about 1 to 10% by weight, and adding a radical initiator to 7 units (1
A solution polymerization method in which about 0.01 to 1 fold is added and the temperature is about 30 to 60°C can be mentioned. Alternatively, a bulk polymerization method may be employed in which no solvent is used and the other conditions are substantially the same as those described above, or photopolymerization may be carried out using a photopolymerization initiator.
本発明においては前記共重合体を疎水性多孔質膜の少な
くとも一部の細孔表面上に保持させるが、少くとも一部
の細孔表面とは細孔表面の一部あるいは全部をいい、多
孔質膜の外表面には共重合体が保持されていてもいなく
てもよい。In the present invention, the copolymer is held on at least some pore surfaces of a hydrophobic porous membrane, and at least some pore surfaces refers to a part or all of the pore surfaces, and The copolymer may or may not be retained on the outer surface of the membrane.
共重合体を多孔質膜の細孔表面上に保持させる方法とし
ては種々の方法を採用することができるが、有機溶剤又
は水等の適当な溶媒に共重合体を溶解させた溶液を稠製
し、多孔質膜をその溶液中に侵漬する方法、あるいは多
孔質膜でモジュールを製作した後この溶液を多孔質膜内
に圧入する方法等を採用することができる。Various methods can be used to retain the copolymer on the pore surface of the porous membrane, but it is possible to prepare a solution in which the copolymer is dissolved in an appropriate solvent such as an organic solvent or water. However, it is possible to adopt a method in which the porous membrane is immersed in the solution, or a method in which a module is manufactured using the porous membrane and then the solution is press-fitted into the porous membrane.
ここで用いられる!8vXとしては共重合体を溶解可能
であることが要求されるが、更に共重合体の架橋反応が
起こらない条件で除去可能な低沸点溶媒でちることが好
ましい。このような条件を満たす溶媒として、水、アセ
トン、メチルエチルケトン、メタノ−μ、エタノ−〃、
イソプロパツール、テトラヒドロフフン等を挙げること
ができるが、これらの溶媒の中でもトル点が60℃以下
のアセトンが特に好ましい。Used here! Although 8vX is required to be able to dissolve the copolymer, it is preferable to use a low boiling point solvent that can be removed under conditions that do not cause a crosslinking reaction of the copolymer. Solvents that meet these conditions include water, acetone, methyl ethyl ketone, methanol-μ, ethanol,
Among these solvents, acetone having a Torr point of 60° C. or lower is particularly preferred.
溶液中の共重合体の含有斌や溶液粘度は、共重合体の分
子量、溶液の界面張力等に、依存し一部に限定できない
が、溶液中の共重合体の含有!
量はおよそ4F〜50m[%程度であることが好ましく
、溶液粘度はおよそ10〜100センチボイスであるこ
とが好ましい。The content of the copolymer in the solution and the solution viscosity depend on the molecular weight of the copolymer, the interfacial tension of the solution, etc., and cannot be limited to a certain part, but the content of the copolymer in the solution! The amount is preferably about 4F to 50m [%], and the solution viscosity is preferably about 10 to 100 centivoice.
このようにして疎水性多孔質膜の細孔内に溶液を侵入さ
せ、続いて乾燥法、減圧法等によって溶媒を除去するこ
とにより未架橋の共重合体を疎水性多孔質膜の少くとも
一部の細孔表面上に保持させることができる。この状帖
で未架乃の共重合体を架橋させることにより架橋共重合
体として疎水性多孔質l劉の細孔表面上に保持させるこ
とができる。In this way, the solution is introduced into the pores of the hydrophobic porous membrane, and then the solvent is removed by a drying method, a reduced pressure method, etc. to remove the uncrosslinked copolymer from at least part of the hydrophobic porous membrane. can be retained on the pore surface of the part. By crosslinking the uncrosslinked copolymer in this state, the crosslinked copolymer can be retained on the pore surface of the hydrophobic porous lion.
架橋条件としては加熱法が好適であシ、温度60〜80
℃程度で時間5分間〜2時間程度の条件を採用すること
ができる。A heating method is suitable as the crosslinking condition, and the temperature is 60 to 80℃.
Conditions of about 5 minutes to 2 hours at about 0.degree. C. can be adopted.
架鳴反応終了後は必要に応じて適当な溶媒によって未架
橋の共重合体を洗浄してもよい。After the crosslinking reaction is completed, the uncrosslinked copolymer may be washed with a suitable solvent if necessary.
このようにして本発明の親水化が実施できるが、親水化
によって多孔質膜の細孔表面に保持される共重合体の量
はおよそ0.5〜3−0重量−程度であることが好まし
く、1〜20重量%程度であることが特に好ましい。Although the hydrophilization of the present invention can be carried out in this manner, it is preferable that the amount of the copolymer retained on the pore surface of the porous membrane by the hydrophilization is approximately 0.5 to 3-0% by weight. , about 1 to 20% by weight is particularly preferable.
以下実施例により本発明を具体的に説明する。 The present invention will be specifically explained below using Examples.
尚、実施例において透水圧及びアルコール親水化法での
水透過率はそれぞれ有効膜面積が165cm”の試験膜
モジュールを用い次の方法によって測定した。In the Examples, the water permeability and the water permeability by the alcohol hydrophilization method were each measured by the following method using a test membrane module with an effective membrane area of 165 cm.
(1)透水圧:試験膜モジュールの一方(中空糸膜の場
合は中空糸の内(!jj+ )から1分間毎にα1kg
/−の割合で水圧を上げながら25℃の水を供給し、透
過水量が50ゴと50m/になる時の水圧を測定する。(1) Hydraulic pressure: α1kg every minute from one side of the test membrane module (in the case of hollow fiber membranes, from the inside of the hollow fibers (!jj+)
Water at 25° C. is supplied while increasing the water pressure at a rate of /-, and the water pressure is measured when the amount of permeated water reaches 50 g and 50 m/.
続いて横軸に水圧を捷た縦軸に透過水量をプロットし、
プロットしパ°た2点を結ぶ直線が横軸と交わる点の圧
力値を求めその値を透水圧とする。Next, plot the water pressure on the horizontal axis and the amount of permeated water on the vertical axis.
Find the pressure value at the point where the straight line connecting the two plotted points intersects with the horizontal axis, and use that value as the permeability pressure.
(2)アルコ−p親水化法での水透過率;親水化処理し
ていない試験膜モジュールの一方(中空糸膜の場合は中
空糸膜の内側)からエタノ−μを25ゴ/ minの流
量で15分間圧ムして多孔質膜の細孔内部まで充分にエ
タノールで湿潤させた後、水を100ゴ/ minの流
量で15分間流し、細孔内部に存在するエタノールを水
で置換する。続いて試験膜モジュールの一方(中空糸の
場合は中空糸の内側)から25℃の水を流して膜間差圧
が50 tm Hgにおける透過水量を測定し、その憾
から水透過率(1/−・hr−mHg)を求める。(2) Water permeability in the alco-p hydrophilization method; ethanol-μ was flowed at a flow rate of 25 g/min from one side of the test membrane module that had not been hydrophilized (inside the hollow fiber membrane in the case of hollow fiber membranes). After applying pressure for 15 minutes to sufficiently wet the inside of the pores of the porous membrane with ethanol, water was flowed at a flow rate of 100 g/min for 15 minutes to replace the ethanol present inside the pores with water. Next, water at 25°C was poured from one side of the test membrane module (inside the hollow fiber in the case of hollow fibers), the amount of permeated water at a transmembrane pressure difference of 50 tm Hg was measured, and the water permeability (1/ -・hr−mHg).
実施例1
ヒドロキシメチルメタクリμ酸80部、ジアミ
七トンアクリルアシド20部、ペンシイ〃パーオキサイ
ド(LQ5部、アセトン530部からなる溶液を窒素雰
囲気中55℃で5時間加熱し共重合体を得た。Example 1 A solution consisting of 80 parts of hydroxymethyl methacrylic acid, 20 parts of diamineptone acrylamide, 5 parts of pencil peroxide (LQ), and 530 parts of acetone was heated at 55° C. for 5 hours in a nitrogen atmosphere to obtain a copolymer. .
次にこの共重合体を5重−t %含むアセトン溶液を調
製し、空孔率70チ、膜厚42μm、透水圧が4.5
kg7cm”、アルコール親水化法による水透過率が五
5t/rrL2・hr−wIHgであるポリエチレンタ
シ多孔貿平膜をこの溶液中に5秒間浸漬した後、25℃
の空気中で2時間風乾して溶媒を除去し、続いて70℃
で30分間加熱した。Next, an acetone solution containing 5% by weight of this copolymer was prepared, and the porosity was 70 cm, the film thickness was 42 μm, and the water permeability was 4.5.
After immersing a porous plastic membrane of polyethylene with a water permeability of 55 t/rrL2·hr-wIHg in this solution for 5 seconds, it was heated to 25°C.
The solvent was removed by air drying for 2 hours at 70°C.
and heated for 30 minutes.
このようにして得られた多孔質膜の重量を測定したとこ
ろ12重量%の重量増が認められ、透水圧はQ、 1
kg7m”であった。まだ、この多孔7ゾ膜をJIS
K676B記載の表面張力54dyne/cn1の儒
れ試薬に浸漬して、その断面を観察したところ、嘆厚方
、向の全面がほぼ均一に染色されていた。When the weight of the porous membrane thus obtained was measured, a weight increase of 12% by weight was observed, and the permeability pressure was Q, 1
kg7m”.This porous 7m membrane is still JIS
When the cross section was observed after being immersed in a reagent with a surface tension of 54 dyne/cn1 described in K676B, it was found that the entire surface in both the thick and thick directions was dyed almost uniformly.
更にこの多孔質膜t o o gを55℃の水10〇−
中に浸漬し50時間後及び200時間後の水中のTOC
を測定したところそれぞれ0.8 ppm及びcL9
ppmであり、水中への溶出成分が微量であυ、多孔質
膜に対して共重合体が強固に保持されていることが確認
された。また、親水化処理前後において引張強度及び伸
度の差はなかった。Furthermore, this porous membrane was soaked in 100-g of water at 55°C.
TOC in water after 50 hours and 200 hours of immersion in
When measured, they were 0.8 ppm and cL9, respectively.
It was confirmed that the copolymer was firmly retained in the porous membrane. Furthermore, there was no difference in tensile strength and elongation before and after the hydrophilic treatment.
実施例2
ヌチレンスμホン酸ナトリウム75部、ヒドロキシメチ
μアクリルアミド25部、ペンシイμフエニμアセチμ
パーオキサイドCL O’3 部、アセトン330部か
らなる溶液を窒素雰囲気中50℃で2時間加熱し共重合
体を得だ。Example 2 Nutilence μ Sodium phonate 75 parts, Hydroxymethyμ acrylamide 25 parts, Pencey μ Phenei μ Acetyl μ
A solution consisting of 3 parts of peroxide CLO'3 and 330 parts of acetone was heated at 50° C. for 2 hours in a nitrogen atmosphere to obtain a copolymer.
次にこの共重合体を3重iチ含むエタノール溶液を調製
し、空孔率50チ、膜厚22μm、内径210μm1透
水圧15 kg/cm”、アルコ−fi/親水化法によ
る水透過率が(L 417m” ・hr −簡Hgでち
るポリプロピレン製多孔質中空糸膜に対しこの溶液を2
kg/cm”で3秒間正大した後、25℃の空気中で
2時間風乾して溶媒を除去し、続いて70℃で30分間
加熱した。Next, an ethanol solution containing three layers of this copolymer was prepared, and the porosity was 50 cm, the membrane thickness was 22 μm, the inner diameter was 210 μm, the water permeability was 15 kg/cm”, and the water permeability by the alcohol-fi/hydrophilization method was (L 417m"・hr - This solution was applied to a porous hollow fiber membrane made of polypropylene, which was easily chilled with Hg, for 2 hours.
kg/cm'' for 3 seconds, air-dried in air at 25°C for 2 hours to remove the solvent, and then heated at 70°C for 30 minutes.
このようにして得られた多孔質膜の重量を測定したとこ
ろ10重量%の重量増が認められ、透水圧は0.5 ’
に9/an2であった。When the weight of the porous membrane thus obtained was measured, it was found that the weight increased by 10% by weight, and the permeability pressure was 0.5'.
It was 9/an2.
また、この多孔質膜をJIS K6768記載の表面
張力54 dyne/αの儒れ試薬に浸漬してその断面
を観察したところ、膜厚方向の全面がほぼ均一に染色さ
れていた。Further, when this porous membrane was immersed in a detangling reagent having a surface tension of 54 dyne/α as specified in JIS K6768 and its cross section was observed, it was found that the entire surface in the thickness direction was dyed almost uniformly.
更にこの多孔質膜1.009を55℃の水10〇−中に
浸漬し50時間後及び200時間後の水中のTOCを測
定したところそれぞれ1.0 ppm及び1.0 pp
mであり、水中への溶出成分が微量であり、多孔質膜に
対して共重合体が強固に保持されていることが確認され
た。また、親水化処理前後において引張強度及び伸度の
差はなかった。Furthermore, this porous membrane 1.009 was immersed in 100 °C of water at 55°C, and the TOC in the water was measured after 50 hours and 200 hours, and it was found to be 1.0 ppm and 1.0 ppm, respectively.
It was confirmed that the amount of components eluted into water was small, and that the copolymer was firmly retained in the porous membrane. Furthermore, there was no difference in tensile strength and elongation before and after the hydrophilic treatment.
実施例の結果から明らかな様に本発明の方法によれば、
多孔質膜の機械的強度を低下させることなく多孔質膜の
細孔表面のほぼ全面に亘って共重合体を保持させること
が可能であり、[討入性の優れた親水性を付与すること
ができる。As is clear from the results of the examples, according to the method of the present invention,
It is possible to retain the copolymer over almost the entire surface of the pores of the porous membrane without reducing the mechanical strength of the porous membrane. can.
また本発明においては縮合架橋可能な共重合体を使用す
るので親水化処理後において多孔質膜の細孔内に残存す
る汚染物質を憧力低下させることができる。Further, in the present invention, since a copolymer capable of condensation and crosslinking is used, it is possible to reduce the amount of contaminants remaining in the pores of the porous membrane after the hydrophilic treatment.
Claims (3)
架橋性モノマー(B)からなる縮合反応によつて架橋可
能な共重合体を疎水性多孔質膜の少なくとも一部の細孔
表面に保持せしめた状態で架橋させることを特徴とする
疎水性多孔質膜の親水化方法。(1) A copolymer that can be crosslinked by a condensation reaction consisting of a vinyl-type hydrophilic monomer (A) and a vinyl-type crosslinkable monomer (B) is applied to the surface of at least some pores of a hydrophobic porous membrane. A method for making a hydrophobic porous membrane hydrophilic, characterized by crosslinking it in a retained state.
メタクリル酸、ヒドロキシメチルメタクリル酸、スルホ
エチルメタクリル酸、スチレンスルホン酸又はそれらの
アルカリ金属塩である特許請求の範囲第1項記載の方法
。(2) The vinyl-type hydrophilic monomer (A) is acrylic acid,
The method according to claim 1, which is methacrylic acid, hydroxymethyl methacrylic acid, sulfoethyl methacrylic acid, styrene sulfonic acid, or an alkali metal salt thereof.
クリルアミド又はヒドロキシメチルアクリルアミドであ
る特許請求の範囲第1項記載の方法。(3) The method according to claim 1, wherein the vinyl crosslinking monomer (B) is diacetone acrylamide or hydroxymethyl acrylamide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17250086A JPS6327540A (en) | 1986-07-22 | 1986-07-22 | Hydrophilization of hydrophobic porous membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17250086A JPS6327540A (en) | 1986-07-22 | 1986-07-22 | Hydrophilization of hydrophobic porous membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6327540A true JPS6327540A (en) | 1988-02-05 |
Family
ID=15943124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17250086A Pending JPS6327540A (en) | 1986-07-22 | 1986-07-22 | Hydrophilization of hydrophobic porous membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6327540A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989004198A1 (en) * | 1987-11-04 | 1989-05-18 | Mitsubishi Rayon Co., Ltd. | Porous membrane and process for its production |
-
1986
- 1986-07-22 JP JP17250086A patent/JPS6327540A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989004198A1 (en) * | 1987-11-04 | 1989-05-18 | Mitsubishi Rayon Co., Ltd. | Porous membrane and process for its production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0186758B1 (en) | Porous membrane having hydrophilic surface and process of its manufacture | |
JP3084292B2 (en) | Porous composite membrane and method | |
JP4677230B2 (en) | Porous membrane substrate with corrosion resistance and low protein binding surface | |
JP4908208B2 (en) | Membrane post-treatment | |
US5209849A (en) | Hydrophilic microporous polyolefin membrane | |
JP2019162625A (en) | Grafted ultra high molecular weight polyethylene microporous membranes | |
CN101678279A (en) | Modified porous membranes, methods of membrane pore modification, and methods of use thereof | |
JP5359868B2 (en) | Composite separation membrane | |
JPH0218695B2 (en) | ||
JP2008508998A5 (en) | ||
JPH03101817A (en) | Hydrophobic membrane | |
US5814372A (en) | Process for forming porous composite membrane | |
WO2002062880A2 (en) | Asymmetric hydrophilic membrane by grafting | |
JPS63190602A (en) | Hydrophilic porous membrane and its manufacture | |
JPS6327540A (en) | Hydrophilization of hydrophobic porous membrane | |
JPH1128466A (en) | Reverse osmosis treatment of water with reverse osmosis composite membrane | |
JP2001017841A (en) | Hydrophilic filtration membrane | |
JP2004154613A (en) | Manufacturing method of functional porous membrane | |
JPH0199606A (en) | Porous membrane | |
AU2004253197B2 (en) | Membrane post treatment | |
JPS6297611A (en) | Method for making porous membrane of polyolefin hydrophilic | |
JPS62114610A (en) | Method for making porous polyolefin membrane hydrophilic |