Nothing Special   »   [go: up one dir, main page]

JPS6324493B2 - - Google Patents

Info

Publication number
JPS6324493B2
JPS6324493B2 JP58127875A JP12787583A JPS6324493B2 JP S6324493 B2 JPS6324493 B2 JP S6324493B2 JP 58127875 A JP58127875 A JP 58127875A JP 12787583 A JP12787583 A JP 12787583A JP S6324493 B2 JPS6324493 B2 JP S6324493B2
Authority
JP
Japan
Prior art keywords
hfib
ketene
reaction
hfw
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58127875A
Other languages
Japanese (ja)
Other versions
JPS6023334A (en
Inventor
Katsumi Takeshita
Toshihiro Nakamichi
Yutaka Katsuhara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP58127875A priority Critical patent/JPS6023334A/en
Priority to GB08417178A priority patent/GB2143526B/en
Priority to IT21820/84A priority patent/IT1174602B/en
Priority to DE19843425907 priority patent/DE3425907A1/en
Priority to FR8411194A priority patent/FR2549039B1/en
Publication of JPS6023334A publication Critical patent/JPS6023334A/en
Publication of JPS6324493B2 publication Critical patent/JPS6324493B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は3.3.3―トリフルオロ―2―トリフル
オロメチルプロペン(以下HFIBと略称する)の
製造法および精製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing and purifying 3.3.3-trifluoro-2-trifluoromethylpropene (hereinafter abbreviated as HFIB).

HFIBはポリマー原料としてまた種々の含フツ
素化合物の中間原料として有用であり、種々の方
法によつて製造することができ、例えばヘキサ
フルオロアセトンとケテン発生化合物との反応
(特開昭50−142504号)、オクタフルオロイソブ
チル低級アルキルエーテルの加水分解、還元、脱
水による方法(特開昭56―90026号)などが提案
されているが、しかしにおいては有毒ガスであ
るヘキサフルオロアセトンを取扱わなければなら
ないといつた不利があり、においては原料の人
手が困難であり、且つ工程が長いといつた不利が
あり、いずれも必ずしも好ましい方法ではなかつ
た。
HFIB is useful as a raw material for polymers and as an intermediate raw material for various fluorine-containing compounds, and can be produced by various methods. Methods using hydrolysis, reduction, and dehydration of octafluoroisobutyl lower alkyl ether (Japanese Unexamined Patent Publication No. 1983-90026) have been proposed, but in this method, hexafluoroacetone, which is a toxic gas, must be handled. There are disadvantages such as difficulty in obtaining the raw materials and a long process, neither of which is necessarily a preferable method.

本発明は取扱いの容易な1.1.1.3.3.3―ヘキサフ
ルオロプロパン―2.2―ジオール・2水和物(沸
点106℃、以下HFWと略称する)とケテン発生
化合物を450〜650℃に保持された反応管内で加熱
するという簡単な工程により、HFIBを収率よく
製造する方法を提供するものである。
The present invention involves the reaction of easily handled 1.1.1.3.3.3-hexafluoropropane-2.2-diol dihydrate (boiling point 106°C, hereinafter abbreviated as HFW) and a ketene-generating compound at a temperature of 450 to 650°C. The present invention provides a method for producing HFIB with high yield through a simple process of heating within a tube.

ケテン発生化合物は酢酸、無水酢酸、アセト
ン、ジケテンより選ばれた少くとも一種の化合物
であり当該化合物は450〜650℃に保持された反応
管内で加熱することによりケテンを発生すると期
待されるものである。ケテンは一般に水と速かに
反応し、酢酸を生成することが知られており、本
発明においてはHFWから水が持ち込まれ、水が
共存する反応系となるにもかかわらず、ケテンが
常圧において効率よく反応に供されるという特異
な事実を見い出すことによつてなされたものであ
る。
The ketene-generating compound is at least one type of compound selected from acetic acid, acetic anhydride, acetone, and diketene, and this compound is expected to generate ketene when heated in a reaction tube maintained at 450 to 650°C. be. It is known that ketene generally reacts rapidly with water to produce acetic acid, and in the present invention, water is brought in from HFW and although water coexists in the reaction system, ketene is reacted with water at normal pressure. This was achieved by discovering the unique fact that it can be efficiently used in reactions.

反応機構の詳細については不明部分を残すが、
次のような機構と推定される(式1)。
Although details of the reaction mechanism remain unclear,
The mechanism is estimated to be as follows (Formula 1).

本発明においては反応管への原料の導入は必要
であるなら気化器を経ておこなわれる。気化器は
ケテン発生化合物を気化させるに十分な温度即ち
50〜500℃に保たれる。HFWとケテン発生化合
物の混合には次の三方法などをとりうるが、
HFIB生成については何ら相違はなく、特にこれ
らに限定されるものではない。
In the present invention, raw materials are introduced into the reaction tube via a vaporizer, if necessary. The vaporizer is heated to a temperature sufficient to vaporize the ketene-generating compound, i.e.
Maintained at 50-500℃. The following three methods can be used to mix HFW and ketene-generating compounds.
There is no difference in HFIB generation, and it is not particularly limited to these.

(方法 1) 予めHFWとケテン発生化合物を液状のまま混
合し、該混合物を気化器へ導き、ひき続き気化し
た混合物を反応器へ導くことによりHFIBを得
る。本方法ではHFWとケテン発生化合物の量比
を常に一定に保つことが出来る利点がある。
(Method 1) HFW and a ketene-generating compound are mixed in advance in a liquid state, the mixture is introduced into a vaporizer, and the vaporized mixture is subsequently introduced into a reactor to obtain HFIB. This method has the advantage that the ratio of amounts of HFW and ketene generating compound can be kept constant at all times.

(方法 2) HFWとケテン発生化合物を別の気化器で気化
した後、気化した両化合物を混合して反応器へ導
くことによりHFIBを得る方法。
(Method 2) A method for obtaining HFIB by vaporizing HFW and a ketene-generating compound in separate vaporizers, then mixing the vaporized compounds and introducing the mixture to a reactor.

(方法 3) ケテン発生化合物をケテン発生に十分な温度、
即ち450〜650℃に保たれた反応管1へ導入し、反
応管1出口において、気化器で予め気化した
HFWと混合し、混合ガスを反応器2へ導くこと
によりHFIBを得る方法。
(Method 3) A ketene-generating compound is heated at a temperature sufficient for ketene generation.
That is, it was introduced into reaction tube 1 maintained at 450 to 650°C, and was pre-vaporized in a vaporizer at the outlet of reaction tube 1.
A method of obtaining HFIB by mixing with HFW and guiding the mixed gas to reactor 2.

本発明において用いるケテン発生化合物の
HFWに対するモル比は、ケテンとして1〜5倍
モルの範囲、より好ましくは2〜4倍モルを用い
る。
Ketene generating compound used in the present invention
The molar ratio to HFW is in the range of 1 to 5 times the mole of ketene, more preferably 2 to 4 times the mole.

反応管を出た反応ガス(含HFIBガス)は空冷
トラツプ、水洗浄、アルカリ洗浄を経て冷却トラ
ツプ(−78℃)へ導かれる。当該反応ガス中に含
まれる水および酢酸といつた高沸点物は空冷トラ
ツプおよび水洗浄にて、炭酸ガスはアルカリ洗浄
にて除去される。冷却トラツプには粗HFIBが凝
縮、滞留するが、本粗HFIBは数種ないし十数種
の低沸点、副生不純物(例えば3.3.3―トリフル
オロプロペン)を含有している。これらの低沸点
不純物は原理的には低温蒸留もしくは加圧蒸留に
よりHFIBより分離可能なものであることが見い
出された。しかしさまざまの沸点を持つ多種の不
純物の分離を蒸留のみでおこなうことは、蒸留精
製工程におけるHFIBの損失を伴ない、また不純
物の量の増大は可及的にこの蒸留精製工程におけ
るHFIBの損失の増大を招く。このため蒸留精製
工程前にHFIBの純度をHFIBの損失を伴なうこ
となく可能なかぎり高める方法が強く望まれる。
本発明者らは、かかる低沸点不純物をHFIBから
分離除去する方法を種々検討した結果、粗HFIB
ガスを濃硫酸で洗浄することによりHFIBのなん
らの損失を伴うことなくHFIBの純度の大幅な向
上がもたらされることを見い出した。さらに好都
合なことには、濃硫酸による反応ガスの洗浄は、
水洗浄および/またはアルカリ洗浄により反応ガ
ス中に同伴される水分の除去にも大きな効果を示
す。濃硫酸による反応ガスの洗浄は、通常のガス
洗浄方法例えば充填塔型式や気泡塔型などを用い
ることにより簡単におこなえる。また硫酸の温度
は特に指定されないが、常温でおこなうことが簡
便である。濃硫酸の濃度は不純物および同伴水分
の吸収により当初濃度(工業用濃硫酸98重量%)
から除々に低下するが、70重量パーセントに低下
した時点で、不純物除去能力が若干低下してくる
ことが見い出された。
The reaction gas (containing HFIB gas) exiting the reaction tube is led to a cooling trap (-78°C) through an air-cooled trap, water washing, and alkali washing. High-boiling substances such as water and acetic acid contained in the reaction gas are removed by an air-cooled trap and water washing, and carbon dioxide gas is removed by alkali washing. Crude HFIB condenses and stagnates in the cooling trap, but this crude HFIB contains several to more than ten types of low-boiling point, by-product impurities (for example, 3.3.3-trifluoropropene). It has been found that these low boiling point impurities can in principle be separated from HFIB by low temperature distillation or pressure distillation. However, separating various impurities with various boiling points by distillation alone involves a loss of HFIB in the distillation purification process, and an increase in the amount of impurities is likely to result in a loss of HFIB in the distillation purification process. cause an increase. Therefore, there is a strong desire for a method to increase the purity of HFIB as much as possible without causing loss of HFIB before the distillation purification process.
The present inventors investigated various methods for separating and removing such low-boiling point impurities from HFIB, and found that crude HFIB
It has been found that washing the gas with concentrated sulfuric acid results in a significant increase in the purity of HFIB without any loss of HFIB. More advantageously, scrubbing the reaction gas with concentrated sulfuric acid
Water washing and/or alkaline washing also shows a great effect in removing water entrained in the reaction gas. Cleaning of the reaction gas with concentrated sulfuric acid can be easily carried out by using a conventional gas cleaning method such as a packed column type or a bubble column type. Although the temperature of sulfuric acid is not particularly specified, it is convenient to use room temperature. The concentration of concentrated sulfuric acid is reduced to the initial concentration (industrial concentrated sulfuric acid 98% by weight) due to the absorption of impurities and accompanying moisture.
It was found that the impurity removal ability gradually decreased from 70% by weight, but when it decreased to 70% by weight, the impurity removal ability began to decrease slightly.

本発明により製造および精製したHFIBは、低
温蒸留もしくは加圧蒸留により簡単に分留され、
さらに高度に精製されたHFIBを提供する。
HFIB produced and purified according to the present invention can be easily fractionated by low temperature distillation or pressure distillation.
We also provide highly purified HFIB.

反応管は450〜650℃において十分な強度を保持
することが要求されるが、良好な結果をもたらす
材料としては、ガラス、アルミナ、磁製、銅、黄
銅などである。鉄、ステンレス銅、ニツケルでは
HFWの分解およびケテン発生化合物の好ましく
ない分解反応が促進されることが認められ、
HFIBの収率、純度ともに可及的に低下する。
The reaction tube is required to maintain sufficient strength at 450 to 650°C, and materials that give good results include glass, alumina, porcelain, copper, and brass. In iron, stainless copper, and nickel
It has been recognized that the decomposition of HFW and the undesirable decomposition reactions of ketene-generating compounds are accelerated;
Both the yield and purity of HFIB are reduced as much as possible.

以下本発明を実施例を挙げて更に詳細に説明す
る。
The present invention will be explained in more detail below with reference to Examples.

実施例 1 1.1.1.3.3.3―ヘキサフルオロプロパン―2.2―ジ
オール・2水和物(HFW)220g(1モル)と
無水酢酸224g(2モル)の混合物を定量ポンプ
により毎時13gの速度で内径31mm長さ450mmの銅
製反応管に導入した(SV=180Hr-1)。反応管の
前部1/3は気化器部として200〜250℃に保持され、
後部2/3は反応器部として550〜570℃に保持され
た。反応管内には7mmの磁製ラヒツシリングを充
填した(空隙率70%)。反応器より出た反応ガス
は空冷トラツプ、水洗浄、アルカリ洗浄、硫酸洗
浄を経て冷却トラツプ(−78℃)に導びかれた。
22時間の反応により原料混合物283gを送入し、
生成物280g(回収率98.9%)を得た。このうち、
冷却トラツプに有機物(粗HFIB:純度98.5%)
93.2gが凝縮した(収率87.8%:送入HFWを基
準とする)。このものの蒸留により75gのHFIB
(純度99.998%)が得られた。
Example 1 A mixture of 220 g (1 mol) of 1.1.1.3.3.3-hexafluoropropane-2.2-diol dihydrate (HFW) and 224 g (2 mol) of acetic anhydride was pumped with an inner diameter of 31 mm at a rate of 13 g/hour using a metering pump. It was introduced into a copper reaction tube with a length of 450 mm (SV = 180 Hr -1 ). The front 1/3 of the reaction tube is kept at 200-250℃ as a vaporizer section.
The rear 2/3 was maintained at 550-570°C as a reactor section. The inside of the reaction tube was filled with a 7 mm porcelain Rahitsuri ring (porosity 70%). The reaction gas discharged from the reactor was led to a cooling trap (-78°C) through an air-cooled trap, water washing, alkali washing, and sulfuric acid washing.
After 22 hours of reaction, 283g of the raw material mixture was introduced,
280 g of product (98.9% recovery) was obtained. this house,
Organic matter in the cooling trap (crude HFIB: purity 98.5%)
93.2 g was condensed (yield 87.8%, based on feed HFW). Distillation of this yields 75 g of HFIB
(purity 99.998%) was obtained.

実施例 2 1.1.1.3.3.3―ヘキサフルオロプロパン―2.2―ジ
オール・2水和物(HFW)とジケテンを各々定
量ポンプにより170℃に保持されたそれぞれのガ
ラス製気化器に導びいた〔HFW14.8g/時、ジ
ケテン7.5g/時、ジケテン/HFW(モル比)=
1.3〕。気化器を出たHFW、ジケテン両ガスは550
〜570℃に保持されたガラス製反応器(内径21.5
mm、長さ300mm)に直ちに導びかれ(SV=300時
-1)、反応器から出た反応ガスは空トラツプ、水
洗浄、アルカリ洗浄を経て冷却トラツプ(−78
℃)に導びかれた。15時間の反応により
HFW220g(1モル)、ジケテン112g(1.33モ
ル)を送入し、生成物322g(回収率97%)を得
た。このうち冷却トラツプに有機物(粗HFIB:
純度80%)172gが凝縮した(収率84%)。この粗
HFIBを蒸留をおこなう前に硫酸により精製をお
こなつた。すなわち、粗HFIBをガス状(20℃)
で、濃硫酸300gを入れたガス洗浄びんを通した
ところ、137gの有機物が回収された。回収され
た有機物中のHFIB純度は98.3%まで向上し、ま
たこの硫酸によるガス洗浄操作においてHFIBの
損失は事実上なかつた。この粗HFIBを2Kg/cm
Gで加圧蒸留(塔頂温度17℃、スチル温度80℃)
することにより115gの精製されたHFIB(純度
99.9998%)が得られた。
Example 2 1.1.1.3.3.3-hexafluoropropane-2.2-diol dihydrate (HFW) and diketene were each introduced into respective glass vaporizers maintained at 170°C by metering pumps [HFW14. 8g/hour, diketene 7.5g/hour, diketene/HFW (mole ratio) =
1.3]. Both HFW and diketene gases coming out of the vaporizer are 550
Glass reactor (inner diameter 21.5
mm, length 300 mm) (when SV = 300
-1 ), the reaction gas coming out of the reactor goes through an empty trap, water washing, and alkali washing, and then goes to a cooling trap (-78
℃). By 15 hours reaction
220 g (1 mol) of HFW and 112 g (1.33 mol) of diketene were introduced to obtain 322 g of product (recovery rate 97%). Of these, organic matter (crude HFIB:
172 g (purity 80%) was condensed (yield 84%). This coarse
HFIB was purified with sulfuric acid before distillation. i.e. crude HFIB in gaseous state (20℃)
When the water was passed through a gas washing bottle containing 300 g of concentrated sulfuric acid, 137 g of organic matter was recovered. The purity of HFIB in the recovered organic matter was improved to 98.3%, and there was virtually no loss of HFIB during this gas scrubbing operation with sulfuric acid. This crude HFIB is 2Kg/cm
Pressure distillation with G (top temperature 17℃, still temperature 80℃)
115g of purified HFIB (purity
99.9998%) was obtained.

実施例 3 ケテン発生化合物として無水酢酸の代りに氷酢
酸をHFWに対して4倍モル使用し、SV=
100Hr-1とする以外は実施例1と全く同様の反応
条件で6.6時間反応をおこない、36.9gの原料混
合物を送入した時点で35.2gの生成物が得られた
(回収率95.3%)。このうち冷却トラツプ(−78
℃)に8.7gの有機物が凝縮し、このものはHFIB
純度98.7%の組成を持つものであつた(収率65.6
%)。
Example 3 Glacial acetic acid was used as a ketene generating compound in place of acetic anhydride by 4 times the mole of HFW, and SV=
The reaction was carried out for 6.6 hours under the same reaction conditions as in Example 1 except that the reaction time was 100 Hr -1 , and 35.2 g of product was obtained when 36.9 g of the raw material mixture was fed (recovery rate 95.3%). Of these, the cooling trap (-78
8.7g of organic matter was condensed at HFIB
It had a composition with a purity of 98.7% (yield 65.6
%).

実施例 4 ケテン発生化合物として無水酢酸の代りにアセ
トンをHFWに対して4倍モル使用し、SV=
180Hr-1とした他は実施例2と全く同様の反応条
件で5.3時間反応し、25.1gの原料混合物を送入
した。生成物は17.5g(回収率69.8%)得られ、
冷却トラツプ(−78℃)に凝縮しない著しい量の
ガスが系外へ排出した。冷却トラツプには9.6g
の有機物が凝縮し、このものはHFIB純度71.9%
の組成のものであつた(収率76%)。
Example 4 Acetone was used as a ketene generating compound in place of acetic anhydride by 4 times the mole of HFW, and SV=
The reaction was carried out for 5.3 hours under the same reaction conditions as in Example 2, except that the reaction temperature was changed to 180 Hr -1 , and 25.1 g of the raw material mixture was fed. 17.5g of product (69.8% recovery) was obtained.
A significant amount of gas that did not condense in the cooling trap (-78°C) was discharged to the outside of the system. 9.6g for cooling trap
of organic matter is condensed, and this material has a HFIB purity of 71.9%
(yield 76%).

Claims (1)

【特許請求の範囲】 1 1.1.1.3.3.3―ヘキサフルオロプロパン―2.2―
ジオール・2水和物とケテン発生化合物を450〜
650℃に保持された反応管内で加熱することを特
徴とする3.3.3―トリフルオロ―2―トリフルオ
ロメチルプロペンの製造法。 2 1.1.1.3.3.3―ヘキサフルオロプロパン―2.2―
ジオール・2水和物とケテン発生化合物を450〜
650℃に保持された反応管内で加熱して得られる
反応生成ガスを濃硫酸で洗浄することにより、有
機副生物を除去することを特徴とする3.3.3―ト
リフルオロ―2―トリフルオロメチルプロペンの
製造にかかわる精製法。
[Claims] 1 1.1.1.3.3.3-hexafluoropropane-2.2-
Diols/dihydrates and ketene-generating compounds from 450 to
A method for producing 3.3.3-trifluoro-2-trifluoromethylpropene, which comprises heating in a reaction tube maintained at 650°C. 2 1.1.1.3.3.3-Hexafluoropropane-2.2-
Diols/dihydrates and ketene-generating compounds from 450 to
3.3.3-Trifluoro-2-trifluoromethylpropene, characterized in that organic by-products are removed by washing the reaction product gas obtained by heating in a reaction tube maintained at 650°C with concentrated sulfuric acid. Purification methods involved in the production of.
JP58127875A 1983-07-15 1983-07-15 Production and purification of 3,3,3-trifluoro-2- trifluoromethylpropene Granted JPS6023334A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58127875A JPS6023334A (en) 1983-07-15 1983-07-15 Production and purification of 3,3,3-trifluoro-2- trifluoromethylpropene
GB08417178A GB2143526B (en) 1983-07-15 1984-07-05 Preparing 3,3,3-trifluoro-2-trifluoromet
IT21820/84A IT1174602B (en) 1983-07-15 1984-07-10 PREPARATION OF 3.3.3-TRIFLUORO-2-TRIFLUOROMETILPROPENE
DE19843425907 DE3425907A1 (en) 1983-07-15 1984-07-13 METHOD FOR PRODUCING 3,3,3-TRIFLUOR-2-TRIFLUORMETHYL PROPEN
FR8411194A FR2549039B1 (en) 1983-07-15 1984-07-13 PROCESS FOR THE PREPARATION OF 3,3,3-TRIFLUORO-2-TRIFLUORO-MEHYLPROPENE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58127875A JPS6023334A (en) 1983-07-15 1983-07-15 Production and purification of 3,3,3-trifluoro-2- trifluoromethylpropene

Publications (2)

Publication Number Publication Date
JPS6023334A JPS6023334A (en) 1985-02-05
JPS6324493B2 true JPS6324493B2 (en) 1988-05-20

Family

ID=14970798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58127875A Granted JPS6023334A (en) 1983-07-15 1983-07-15 Production and purification of 3,3,3-trifluoro-2- trifluoromethylpropene

Country Status (5)

Country Link
JP (1) JPS6023334A (en)
DE (1) DE3425907A1 (en)
FR (1) FR2549039B1 (en)
GB (1) GB2143526B (en)
IT (1) IT1174602B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4729459A (en) * 1984-10-01 1988-03-08 Nippon Soken, Inc. Adjustable damping force type shock absorber
US5105918A (en) * 1989-10-23 1992-04-21 Nippondenso Co., Ltd. Detection of damping force for shock absorber control
DE4243526C2 (en) * 1992-12-22 1994-11-10 Bayer Ag Methylene perfluorocycloalkanes, process for their preparation and their use in the production of thermoplastic fluororesins
CN1985104B (en) * 2004-07-14 2010-05-05 田纳科自动化操作有限公司 Shock absorber with integrated displacement sensor and the displacement sensor
DE102007028827A1 (en) * 2007-06-20 2009-02-19 Stabilus Gmbh Piston-cylinder assembly
GB201512510D0 (en) * 2015-07-17 2015-08-19 Mexichem Fluor Sa De Cv Process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894097A (en) * 1974-05-10 1975-07-08 Allied Chem Process for the preparation of hexafluoroisobutylene
US4244891A (en) * 1979-12-21 1981-01-13 Allied Chemical Corporation Preparation of hexafluoroisobutylene

Also Published As

Publication number Publication date
FR2549039A1 (en) 1985-01-18
IT1174602B (en) 1987-07-01
IT8421820A1 (en) 1986-01-10
FR2549039B1 (en) 1986-12-26
DE3425907A1 (en) 1985-01-31
GB2143526B (en) 1987-01-21
JPS6023334A (en) 1985-02-05
GB8417178D0 (en) 1984-08-08
GB2143526A (en) 1985-02-13
DE3425907C2 (en) 1987-06-11
IT8421820A0 (en) 1984-07-10

Similar Documents

Publication Publication Date Title
JP3632243B2 (en) Method for producing difluoroacetic acid fluoride and difluoroacetic acid ester
JP4875626B2 (en) Method for the preparation of sevoflurane
US2804473A (en) Production of lower aliphatic peracids
KR101284659B1 (en) Process for production of 1,2,2,2-tetrafluoro ethyl difluoro methyl ether
JPS6324493B2 (en)
US3433838A (en) Purification of perhaloacetones
JP4102188B2 (en) Method for producing fluoromethylhexafluoroisopropyl ether
US5629458A (en) Process for the preparation of 2 2 2 trifluoroethanol
RU2109725C1 (en) Method of purifying fluoromethyl-1,1,1,3,3,3- hexafluoroisopropyl ether
EP0143864B1 (en) Process for the production of 1,1,2-trichloro-2,2-difluoroethane
JP2006514644A (en) Method for producing trioxane
JPS5879948A (en) Manufacture of methacrylic acid from isobutyl aldehyde
US4422913A (en) Process for the production of 1,1,2-trichloro-2,2-difluoroethane
JPH08500600A (en) Method for producing vinyl chloride
JPH05201909A (en) Production of isoflurane
US4642386A (en) Process for the preparation of pure hydrates of fluoral and of hexafluoroacetone from hemiacetals
JP3332207B2 (en) Method for distilling 3,3-dichloro-1,1,1-trifluoroacetone
FR2549041A1 (en) PROCESS FOR PURIFYING 4-FLUOROPHENOL
JPH06298693A (en) Method of vapor-phase chlorination of difluoromethyl methyl ether
JP2756373B2 (en) Method for producing 1,1,1-trifluoro-3-nitro-2-propene
JPH0374381A (en) Production of 1,3-dioxolane
US3557231A (en) Production of chloromethanes
JPH03181432A (en) Purification of fluoral hydrate
JPH0660130B2 (en) Method for producing 1-bromoethylhydrocarbonyl carbonate
JPH08325179A (en) Production of 2-trifluoromethyl-3,3,3-trifluoropropionic acid and 1,1,3,3,3-pentafluoropropane