Nothing Special   »   [go: up one dir, main page]

JPS63236517A - Dehumidification method for mixed gas - Google Patents

Dehumidification method for mixed gas

Info

Publication number
JPS63236517A
JPS63236517A JP62069946A JP6994687A JPS63236517A JP S63236517 A JPS63236517 A JP S63236517A JP 62069946 A JP62069946 A JP 62069946A JP 6994687 A JP6994687 A JP 6994687A JP S63236517 A JPS63236517 A JP S63236517A
Authority
JP
Japan
Prior art keywords
gas
gas separation
water vapor
separation membrane
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62069946A
Other languages
Japanese (ja)
Inventor
Takashi Harada
隆 原田
Masao Kikuchi
政夫 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62069946A priority Critical patent/JPS63236517A/en
Publication of JPS63236517A publication Critical patent/JPS63236517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Drying Of Gases (AREA)

Abstract

PURPOSE:To remove selectively water vapor effectively from various kinds of mixed gas at a high removal rate by using an aromatic polyimide gas separating membrane and carrying out gas separation at a specific temperature or more. CONSTITUTION:Mixed gas containing water vapor is continuously fed from a mixed gas feed opening 3 at a temperature of 60 deg.C or more into a gas separation device 1 with a built-in aromatic polyimide gas separating membrane 2, and the mixed gas is flowed along the gas feeding side of the gas separating membrane 2. The water vapor in the mixed gas permeates the gas separating membrane 2 efficiently by carrying out gas separation of the gas separating membrane 2 at the temperature of 60 deg.C or more, and the mixed gas (impermeable gas) sufficiently dehumidified and dried is prepared on the gas feeding side of the gas separating membrane 2, and said gas is exhausted out of an impermeating gas exhaust outlet 4. The water vapor permeating the gas separating membrane 2 is exhausted and removed out of a permeating gas exhaust outlet 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、芳香族ポリイミド製のガス分離膜(中空糸、
スパイラル状膜、平膜など)を内蔵したガス分離装置を
使用して、水蒸気を含有する種々の混合ガス(例えば、
空気、窒素、アルゴン、天然ガス、原油採取の際の随伴
ガス、醗酵ガスなど)から水蒸気を選択的に除去し、混
合ガスを乾燥する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a gas separation membrane (hollow fiber,
Various mixed gases containing water vapor (e.g.,
The present invention relates to a method for selectively removing water vapor from air, nitrogen, argon, natural gas, accompanying gas during crude oil extraction, fermentation gas, etc.) and drying a mixed gas.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

従来、天然ガスなどの炭化水素系ガスの除湿方法として
は、グリコール吸収法、モレキュラシープ吸着法などが
、一般的に採用されてきた。
Conventionally, as methods for dehumidifying hydrocarbon gases such as natural gas, glycol absorption methods, molecular sheep adsorption methods, and the like have generally been employed.

しかし、これらの方法は、すべてかなり大型の装置を必
要とし、設備費が高(なり、また充分な工場建設のため
の敷地が必要であり、スペースの限られている海上での
ガス採取などには適当ではなく、また、操作の複雑さ、
操業上の安全性、保守の困難さなどにおいても問題があ
った。
However, all of these methods require fairly large equipment, have high equipment costs, and require sufficient land for factory construction, making them difficult to use in offshore gas extraction where space is limited. is not suitable, and also the complexity of the operation,
There were also problems in terms of operational safety and difficulty in maintenance.

上記の吸収法及び吸着法に対して、小型で軽量な装置に
することができ、維持管理が容易であって安全性が高い
方法として、最近、ガス分離膜を内蔵したガス分離装置
を使用して混合ガスの除湿又は乾燥を行う方法が、いく
つか提案されている。
In contrast to the above-mentioned absorption and adsorption methods, gas separation equipment with a built-in gas separation membrane has recently been developed as a method that can be made smaller and lighter, is easier to maintain, and is highly safe. Several methods have been proposed for dehumidifying or drying mixed gas.

そのようなガス分Wn膜を使用する混合ガスの除湿方法
としては、例えば、次のような方法などが知られている
As a method for dehumidifying a mixed gas using such a gas-containing Wn film, for example, the following method is known.

+8+水蒸気を含有する混合ガスを極めて高い圧力に昇
圧してガス分離装置に供給したり、又は、ガス分離膜の
透過側をかなり減圧したりして、ガス分離膜の供給側と
透過側とでの水蒸気の差圧を大きくなるようにして、混
合ガスを除湿する方法(特開昭54〜152679号公
報参照)。
+8+ Pressurize the mixed gas containing water vapor to an extremely high pressure and supply it to the gas separation device, or significantly reduce the pressure on the permeate side of the gas separation membrane, so that the supply side and the permeate side of the gas separation membrane are separated. A method of dehumidifying a mixed gas by increasing the differential pressure of water vapor (see JP-A-54-152679).

(bl供給ガスの主成分(例えば、天然ガスなどではメ
タンガス)の透過性が比較的高く、しかもメタンガスに
対する水蒸気の選択透過性(P II□0/PC114
)が200〜400であるガス分離膜を使用して、混合
ガスを除湿する方法(特開昭59−1!113835号
公報参照)。
(bl) The permeability of the main component of the supply gas (for example, methane gas in natural gas) is relatively high, and the selective permeability of water vapor to methane gas (P II□0/PC114
) is 200 to 400, a method of dehumidifying a mixed gas (see Japanese Patent Laid-Open No. 59-1!113835).

+c+ガス分離膜の透過側に大量のパージガスを供給し
てi3遇した水蒸気の分圧を低下させて、混合ガスを除
湿する方法(特開昭50−2674号公報参照)。
+c+ A method of dehumidifying a mixed gas by supplying a large amount of purge gas to the permeation side of a gas separation membrane to lower the partial pressure of the water vapor (see JP-A-50-2674).

(d)特定の水蒸気選択透過性を有する芳香族ポリイミ
ド製のガス分離膜を使用し、且つ該ガス分離膜の透過側
に乾燥ガスを流通させて、混合ガスを除湿する方法(特
開昭62−42723号公報参照)。
(d) A method of dehumidifying a mixed gas by using a gas separation membrane made of aromatic polyimide having a specific water vapor permselectivity and flowing dry gas through the permeation side of the gas separation membrane (JP-A-62 (Refer to Publication No.-42723).

しかしながら、上記の公知の方法(alは、ガス分離膜
のガス透過側における水蒸気の濃度が高くなった区域(
透過ガス排出口付近)では、水広気を充分に高い除去率
で混合ガスから除去することができないことがあり、実
用的には適当でない。
However, in the above-mentioned known method (al is the area where the concentration of water vapor is high on the gas permeation side of the gas separation membrane (
(near the permeated gas outlet), it may not be possible to remove water from the mixed gas at a sufficiently high removal rate, and this is not suitable for practical use.

また、上記の公知の方法(blは、この方法に適合する
ガス分離性能を有するガス分離膜を製造することが困難
である問題がある。
Further, the above-mentioned known method (BL) has a problem in that it is difficult to manufacture a gas separation membrane having gas separation performance suitable for this method.

また、上記の公知の方法(C1は、かなり大量のパージ
ガスを消費してしまう問題がある。
Further, the above-mentioned known method (C1) has the problem of consuming a considerably large amount of purge gas.

また、上記の公知の方法fdlは、上記の公知の方法f
al〜(C1の問題を改善したものであるが、水蒸気の
除去が充分でなく、しかもガス分離膜の透過側に乾燥ガ
スを導入する必要があるなどの問題があった。
Further, the above-mentioned known method fdl is the above-mentioned known method fdl.
al~(C1), but there were problems such as insufficient removal of water vapor and the need to introduce dry gas to the permeation side of the gas separation membrane.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、前述のような「ガス分離膜を使用する混
合ガスの除湿方法Jにおける問題が解消された実用的な
除湿方法を提供すべく鋭意研究した結果、芳香族ポリイ
ミド製のガス分離膜(中空糸膜、スパイラル状膜、平膜
なと)が内蔵されているガス分離装置を使用して特定の
温度でガス分離操作、運転を行ったところ、混合ガスの
除湿又は乾燥を従来法に比して充分に高い除去率で効果
的に行うことができることを知見した。
As a result of intensive research to provide a practical dehumidification method that solves the problems in the method J for dehumidifying a mixed gas using a gas separation membrane, the inventors of the present invention have developed a gas separation membrane made of aromatic polyimide. When a gas separation device with a built-in membrane (hollow fiber membrane, spiral membrane, flat membrane) was operated and operated at a specific temperature, dehumidification or drying of the mixed gas was performed using conventional methods. It has been found that this process can be carried out effectively with a sufficiently high removal rate compared to the conventional method.

本発明は、上記知見に基づきなされたもので・水蒸気を
含有する混合ガスを、ガス分離膜を内蔵したガス分離装
置を用いて除湿する方法において、上記ガス分離膜とし
て芳香族ポリイミド製膜を用い、且つ上記ガス分離膜に
おけるガス分離を60℃以上の温度で行うことを特徴と
する混合ガスの除湿方法を提供するものである。
The present invention has been made based on the above findings.In a method for dehumidifying a mixed gas containing water vapor using a gas separation device incorporating a gas separation membrane, an aromatic polyimide film is used as the gas separation membrane. The present invention also provides a method for dehumidifying a mixed gas, characterized in that gas separation in the gas separation membrane is performed at a temperature of 60° C. or higher.

以下、本発明の混合ガスの除湿方法について、図面も参
考にして、詳しく説明する。
Hereinafter, the mixed gas dehumidification method of the present invention will be described in detail with reference to the drawings.

本発明で用いられる芳香族ポリイミド製ガス分a膜は、
後述のガス透過試験法によって測定された「水蒸気と窒
素とのガス透過速度の比(P)1.0/PNz)」で示
される選択透過性(ガス分離性能)が好ましくは50以
上、より好ましくは200以上、さらに好、ましくは5
00〜5ooo程度である芳香族ポリイミド製のガス分
離膜である。上記選択透過性(P HzO/ P Nt
)が50より小さいと、混合ガスのロスが大きくなるの
で適当ではない。
The aromatic polyimide gas separation membrane used in the present invention is
The selective permeability (gas separation performance) indicated by the "ratio of gas permeation rates of water vapor and nitrogen (P) 1.0/PNz)" measured by the gas permeation test method described below is preferably 50 or more, more preferably is 200 or more, more preferably 5
It is a gas separation membrane made of aromatic polyimide and has a molecular weight of about 00 to 5ooo. The above selective permselectivity (P HzO/P Nt
) is less than 50, which is not appropriate because the loss of the mixed gas increases.

また、上記ガス分離膜は、25℃の水痕気の透過速度C
PlhOi後述のガス透過試験法による)が、約I X
 10−’cd/c+a −sec −cmHg以上、
特にl x l Q−’ 〜5 x 10−”cd/c
d・sec −cnHg程度であることが好ましい。
Further, the gas separation membrane has a permeation rate C of water trace air at 25°C.
PlhOi (according to the gas permeation test method described below) is about I
10-'cd/c+a-sec-cmHg or more,
Especially l x l Q-' ~5 x 10-"cd/c
It is preferable that it is about d·sec -cnHg.

上記ガス分離膜としては、有効膜面積の大きい中空糸の
集合体が好ましいが、スパイラル状膜、平膜などでも良
い。
The gas separation membrane is preferably an aggregate of hollow fibers with a large effective membrane area, but may also be a spiral membrane, a flat membrane, or the like.

ガス分離膜として用いられる中空糸は、その外径が、通
常50〜2000μ、好ましくは200〜1000μで
ある。中空糸の外径が小さ過ぎると圧力損失が大きくな
り、大き過ぎると有効膜面積が減少する。また、上記中
空糸としては、(厚み/外径)−0,1〜0.3の条件
を満たすものを用いるのが好ましい、尚、上記厚み−(
外径−内径/2である。中空糸の厚みが小さいと耐圧性
が不充分となり、また厚みが大きいと水蒸気選択透過性
が不良となる場合がある。
The outer diameter of the hollow fiber used as a gas separation membrane is usually 50 to 2000μ, preferably 200 to 1000μ. If the outer diameter of the hollow fiber is too small, pressure loss will increase, and if it is too large, the effective membrane area will decrease. Further, as the hollow fiber, it is preferable to use one that satisfies the condition of (thickness/outer diameter) -0.1 to 0.3, and the above-mentioned thickness - (
Outer diameter - inner diameter/2. If the thickness of the hollow fiber is small, the pressure resistance may be insufficient, and if the thickness is large, the water vapor selective permeability may be poor.

上記の芳香族ポリイミド製ガス分離膜としては、芳香族
テトラカルボン酸又はその酸二無水物などの酸成分と、
芳香族ジアミン成分とを、重合(及びイミド化)して得
られた芳香族ポリアミック酸(又は芳香族ポリイミド)
の溶液を使用して、凝固液による湿式製膜法などで形成
される非対称性構造のガス分離膜(均質層と多孔質層と
を一体に有する膜)、あるいは芳香族ポリイミド溶液な
どを使用して適当な材質の多孔質膜の表面に薄い均質層
を形成して製造される複合分離膜であり、しかも水蒸気
について上述のような充分なガス分離性能を有するガス
分離膜を挙げることができる。
The above-mentioned aromatic polyimide gas separation membrane contains an acid component such as aromatic tetracarboxylic acid or its acid dianhydride,
Aromatic polyamic acid (or aromatic polyimide) obtained by polymerizing (and imidizing) an aromatic diamine component
A gas separation membrane with an asymmetric structure (a membrane that has a homogeneous layer and a porous layer integrated) formed by a wet membrane forming method using a coagulating liquid, or an aromatic polyimide solution, etc. It is a composite separation membrane manufactured by forming a thin homogeneous layer on the surface of a porous membrane made of a suitable material, and has sufficient gas separation performance for water vapor as described above.

上記の芳香族ポリイミドとしては、特に、「−8−1又
は−502−の二価の基jを含有している芳香族ジアミ
ンを20〜100モル%、好ましくは40〜100モル
%で含有する芳香族ジアミン成分と、芳香族テトラカル
ボン酸成分とを、略等モル、重合及びイミド化して得ら
れるものが、水蒸気の透過速度の大きい点において、極
めて好適である。
The above-mentioned aromatic polyimide particularly contains 20 to 100 mol%, preferably 40 to 100 mol%, of an aromatic diamine containing a -8-1 or -502- divalent group j. A material obtained by polymerizing and imidizing an aromatic diamine component and an aromatic tetracarboxylic acid component in approximately equimolar amounts is extremely suitable in terms of high water vapor transmission rate.

上記の「−8−1又は−3O□−の二価の基jを含有し
ている芳香族ジアミンとしては、例えば、ジアミノ−ジ
ベンゾチオフェン又はその誘導体、ジアミノ−ジフェニ
レンスルホン又はその誘導体、ジアミノージフヱニルス
ルフィド又はその誘導体、ジアミノ−ジフェニルスルホ
ン又はその誘導体、ジアミノ−チオキサンチン又はその
誘導体などを挙げることができる。
Examples of the aromatic diamine containing the divalent group j of "-8-1 or -3O□-" include diamino-dibenzothiophene or its derivatives, diamino-diphenylene sulfone or its derivatives, diamino Diphenyl sulfide or its derivatives, diamino-diphenyl sulfone or its derivatives, diamino-thioxanthin or its derivatives, etc. can be mentioned.

特に、上記ジアミノ−ジベンゾチオフェン又はその誘導
体としては、 一般式 で示されるジアミノ−ジベンゾチオフェン類を挙げるこ
とができ、また、上記ジアミノ−ジフェニレンスルホン
又はその誘導体としては、一般式 で示されるジアミノ−ジフェニレンスルホン類を挙げる
ことができる。ただし、上記一般式(1)及び(II)
において、R,R’ は、水素、炭素数1〜6を有する
炭化水素置換基(アルキル基、アルキレン基、アリール
基など)、炭素数1〜6を有するアルコキシ基などであ
り、例えば、メチル基、エチル基、プロピル基などが好
適である。
In particular, the diamino-dibenzothiophenes or derivatives thereof include diamino-dibenzothiophenes represented by the general formula, and examples of the diamino-diphenylene sulfone or derivatives thereof include diamino-dibenzothiophenes represented by the general formula. Diphenylene sulfones may be mentioned. However, the above general formulas (1) and (II)
In, R and R' are hydrogen, a hydrocarbon substituent having 1 to 6 carbon atoms (alkyl group, alkylene group, aryl group, etc.), an alkoxy group having 1 to 6 carbon atoms, etc., such as a methyl group. , ethyl group, propyl group, etc. are suitable.

上記の一般式(1)で示されるジアミノ−ジベンゾチオ
フェン類としては、3.7−シアミツー2.8−ジメチ
ル−ジベンゾチオフェン、3.7−ジアミツー2.6−
シメチルージベンゾチオフヱン、2.8−ジアミノ−3
,7−シメチルージベンヅチオフエン、3.7−ジアミ
ツー2.8−ジエチル−ジベンゾチオフェンなどを挙げ
ることができ、また、上記の一般式(II)で示される
ジアミノ−ジフェニレンスルホン類としては、3゜7−
ジアミツー2.8−ジメチル−ジフェニレンスルホン、
3.7−ジアミツー2.8−ジエチル−ジフェニレンス
ルホン、3,7−シアミツー2゜8−ジプロピル−ジフ
ェニレンスルホン、2.8−ジアミノ−3,フーシメチ
ルージフエニレンスルホン、3.7−ジアミツー2.8
−ジメトキシ−ジフェニレンスルホンなどを挙げること
ができる。
The diamino-dibenzothiophenes represented by the above general formula (1) include 3,7-diami2-2,8-dimethyl-dibenzothiophene, 3,7-diami2,2,6-
Dimethyl-dibenzothiophene, 2,8-diamino-3
, 7-dimethyl-dibenduthiophene, 3,7-diami-2,8-diethyl-dibenzothiophene, and the diamino-diphenylene sulfones represented by the above general formula (II). is 3°7-
diami2, 8-dimethyl-diphenylene sulfone,
3.7-diamino-2,8-diethyl-diphenylene sulfone, 3,7-diamino-2゜8-dipropyl-diphenylene sulfone, 2,8-diamino-3,fucymethyl-diphenylene sulfone, 3.7-diamino-3, fucymethyl-diphenylene sulfone 2.8
-dimethoxy-diphenylene sulfone and the like.

さらに、上記のジアミノ−ジフェニルスルフィド又はそ
の誘導体としては、4,4゛−ジアミノ−ジフェニルス
ルホン、3.3゛−ジアミノ−ジフェニルスルホン、3
.5−ジアミノ−ジフェニルスルホン、3.4’ −ジ
アミノ−ジフェニルスルホンなどのジアミノ−ジフェニ
ルスルホン類、及び、4.4゛−ジアミノ−ジフェニル
スルフィド、3.3°−ジアミノ−ジフェニルスルフィ
ド、3.5−ジアミノ−ジフェニルスルフィド、3゜4
′−ジアミノ−ジフェニルスルフィドなどのジアミノ−
ジフェニルスルフィド類を挙げることができ、また、上
記のジアミノ−チオキサンチン又はその誘導体としては
、3.7−シアミツ−チオキサンチンー5.5ジオキシ
ド、2.8−ジアミノ−チオキサンチン−5,5−ジオ
キシド、3゜7−シアミツ−チオキサントンー5.5−
ジオキシト、2,8−ジアミノ−チオキサントン−5゜
5−ジオキシド、3.7−シアミツ−フェノキサチンー
5,5−ジオキシド、2.8−ジアミノ−フェノキサチ
ン−5,5−ジオキシド、2,7−シアミツーチアンス
レン、2,8−ジアミノ−チアンスレン、3,7−シア
ミツーIO−メチルーフェノチアジン−5,5−ジオキ
シドなどを挙げることができる。
Furthermore, the above diamino-diphenyl sulfide or its derivatives include 4,4'-diamino-diphenyl sulfone, 3,3'-diamino-diphenyl sulfone, 3'-diamino-diphenyl sulfone, 3.
.. Diamino-diphenyl sulfones such as 5-diamino-diphenyl sulfone, 3.4'-diamino-diphenyl sulfone, and 4.4'-diamino-diphenyl sulfide, 3.3'-diamino-diphenyl sulfide, 3.5- Diamino-diphenyl sulfide, 3゜4
Diamino- such as '-diamino-diphenyl sulfide
Diphenylsulfides can be mentioned, and the above-mentioned diamino-thioxanthin or its derivatives include 3,7-cyamino-thioxanthin-5,5-dioxide, 2,8-diamino-thioxanthin-5,5-dioxide, 3゜7-siamitsu-thioxanthone-5.5-
Dioxyto, 2,8-diamino-thioxanthone-5°5-dioxide, 3,7-cyamitsu-phenoxatine-5,5-dioxide, 2,8-diamino-phenoxatine-5,5-dioxide, 2,7-cyamitsuthian Threne, 2,8-diamino-thianthrene, 3,7-cyamitsuIO-methyl-phenothiazine-5,5-dioxide, and the like can be mentioned.

さらに、前記の芳香族ジアミンとしては、ビス((p−
アミノフェノキシ)フェニル〕スルフィド、ビス[(p
−アミノフェノキシ)フェニル〕スルホンなとも挙げる
ことができる。
Further, as the aromatic diamine, bis((p-
aminophenoxy)phenyl] sulfide, bis[(p
-aminophenoxy)phenyl]sulfone.

前記の芳香族ポリイミドの製造に使用される芳香族ジア
ミン成分としては、上述のr3−1又は一5oz−の二
価の基」を含有している芳香族ジアミンと共に他の芳香
族ジアミンを使用することができ、そのような他の芳香
族ジアミンとしては、4,4°−ジアミノ−ジフェニル
エーテル、3.3°−ジメチル−4,4°−ジアミノ−
ジフェニルエーテル、3,3°−ジェトキシ−4゜4′
−ジアミノ−ジフェニルエーテル、3.3゜−ジアミノ
ージフェニルエーテルなどのジフェニルエーテル系化合
物、4,4゛−ジアミノ−ジフェニルメタン、3,3゛
−ジアミノ−ジフェニルメタンなどのジフェニルメタン
系化合物、4゜4゛−ジアミノ−ベンゾフェノン、3,
3′−ジアミノ−ベンゾフェノンなどのベンゾフェノン
系化合物、2.2−ビス(3−アミノフェニル)プロパ
ン、2,2−ビス(4−アミノフェニル)プロパン、2
,2−ビス(4−(4°−アミノフェノキシ)フェニル
〕プロパンなどの2,2−ビス(フェニル)プロパン系
化合物、さらに0−2m−19−フェニレンジアミン、
3,5−ジアミノ安息香酸、2,6−シアミツピリジン
、0−トリジンなどを挙げることができる。
As the aromatic diamine component used in the production of the aromatic polyimide, other aromatic diamines are used together with the aromatic diamine containing the above-mentioned "r3-1 or 15oz-divalent group". and such other aromatic diamines include 4,4°-diamino-diphenyl ether, 3,3°-dimethyl-4,4°-diamino-
Diphenyl ether, 3,3°-jetoxy-4°4'
Diphenyl ether compounds such as -diamino-diphenyl ether and 3.3゜-diamino-diphenyl ether, diphenylmethane compounds such as 4,4゛-diamino-diphenylmethane and 3,3゛-diamino-diphenylmethane, 4゜4゛-diamino-benzophenone ,3,
Benzophenone compounds such as 3'-diamino-benzophenone, 2,2-bis(3-aminophenyl)propane, 2,2-bis(4-aminophenyl)propane, 2
, 2,2-bis(phenyl)propane-based compounds such as 2-bis(4-(4°-aminophenoxy)phenyl)propane, and further 0-2m-19-phenylenediamine,
Examples include 3,5-diaminobenzoic acid, 2,6-cyamitsupyridine, and 0-tolidine.

また、前記の芳香族ポリイミドの製造に使用される芳香
族テトラカルボン酸成分としては、3゜3’ 、4.4
’ −ビフェニルテトラカルボン酸、又は2.3.3’
 、4’ −ビフェニルテトラカルボン酸、あるいはそ
れらの二無水物、又はそれらの低級アルコールエステル
化物などのビフェニルテトラカルボンej!1類、3,
3°、4.4’ −ベンゾフェノンテトラカルボン酸、
又は2,3.3’ 。
Further, the aromatic tetracarboxylic acid component used in the production of the aromatic polyimide is 3°3', 4.4
'-biphenyltetracarboxylic acid, or 2.3.3'
, 4'-biphenyltetracarboxylic acid, dianhydrides thereof, or lower alcohol esters thereof, etc. Category 1, 3,
3°, 4.4'-benzophenonetetracarboxylic acid,
Or 2,3.3'.

4°−ベンゾフェノンテトラカルボン酸、あるいはそれ
らの二無水物、又はそれらの低級アルコールエステル化
物などのベンゾフェノンテトラカルボン酸類、さらに、
ピロメリット酸、あるいはその二無水物、又はそのエス
テル化物などのピロメリットMI¥Iを挙げることがで
きる。
Benzophenonetetracarboxylic acids such as 4°-benzophenonetetracarboxylic acid, dianhydrides thereof, or lower alcohol esters thereof;
Examples include pyromellitic acid MI\I such as pyromellitic acid, its dianhydride, or its esterified product.

特に、本発明では、ビフェニルテトラカルボンa[−5
0〜I Q O−1:JL/%、特に80〜100−t
−ル%含有している芳香族テトラカルボン酸成分と、前
述の芳香族ジアミン成分とから得られた芳香族ポリイミ
ドが、フェノール系化合物のような有機溶媒に対して優
れた溶解性を存しているので、安定な製膜用ドープ液の
調製及び製膜性などの製膜上の点から好ましい。
In particular, in the present invention, biphenyltetracarbon a[-5
0 to IQ O-1: JL/%, especially 80 to 100-t
The aromatic polyimide obtained from the aromatic tetracarboxylic acid component and the aromatic diamine component described above has excellent solubility in organic solvents such as phenolic compounds. Therefore, it is preferable from the viewpoint of film forming, such as preparation of a stable dope for film forming and film forming properties.

本発明で用いられる芳香族ポリイミド製ガス分離膜は、
前述の芳香族ジアミン成分と芳香族テトラカルボン酸成
分とから得られた芳香族ポリアミック酸(ポリイミド前
駆体)、又は有機溶媒溶液の芳香族ポリイミドなどの有
機溶媒溶液を、製膜用のドープ液として使用して、その
ドープ液の薄膜を形成し、ドープ液の薄膜から溶媒を除
去して固化する乾燥工程を主体にして製膜する乾式製脱
法、又はドープ液の薄膜を凝固液と接触させて凝固して
製膜する湿式製膜法で、平膜状又は中空糸状に形成して
、種々の構造のポリイミド分離膜として製造することが
できる。
The aromatic polyimide gas separation membrane used in the present invention is
An organic solvent solution such as aromatic polyamic acid (polyimide precursor) obtained from the above-mentioned aromatic diamine component and aromatic tetracarboxylic acid component, or an organic solvent solution of aromatic polyimide, is used as a dope liquid for film formation. A dry method is used to form a thin film of the dope solution, and the film is formed mainly by a drying process in which the solvent is removed from the thin film of the dope solution and solidified, or a thin film of the dope solution is brought into contact with a coagulation solution. A wet film forming method is used to form a membrane by coagulation, and it can be formed into a flat membrane or hollow fiber shape to produce polyimide separation membranes of various structures.

例えば、本発明で用いられる芳香族ポリイミド製ガス分
離膜の製造方法としては、 前述の芳香族ジアミン(他の芳香族ジアミンを含有して
いてもよい)からなる芳香族ジアミン成分と、前述のビ
フェニルテトラカルボン酸類を主として含有する芳香族
テトラカルボン酸成分とを、略等モル、フェノール系化
合物の有機溶媒中、約140℃以上の温度で、一段階で
重合及びイミド化して、芳香族ポリイミドを生成し、 その芳香族ポリイミドの溶液(濃度:約3〜30重量%
)をドープ液として使用して、約30〜150℃の温度
の基材上に塗布又は流延あるいは中空糸状に押出して、
ドープ液の薄膜(平膜又は中空糸)を形成し、 次いで、その薄膜を凝固液に浸漬して凝固膜を形成し、 その凝固膜から溶媒、凝固液などを蒸発・除去し、最後
に150〜400℃、特に170〜350℃の温度で充
分に乾燥・熱処理して、芳香族ポリイミド製の非対称性
ガス分離膜を形成する製Ha方法を挙げることができる
For example, the method for manufacturing the aromatic polyimide gas separation membrane used in the present invention involves using an aromatic diamine component consisting of the above-mentioned aromatic diamine (which may contain other aromatic diamines) and the above-mentioned biphenyl diamine. An aromatic tetracarboxylic acid component mainly containing tetracarboxylic acids is polymerized and imidized in one step in approximately equimolar amounts of a phenolic compound in an organic solvent at a temperature of about 140°C or higher to produce an aromatic polyimide. and a solution of the aromatic polyimide (concentration: about 3 to 30% by weight)
) is used as a dope liquid and applied or cast onto a substrate at a temperature of about 30 to 150°C or extruded into a hollow fiber shape,
A thin film (flat film or hollow fiber) of the dope liquid is formed, then the thin film is immersed in a coagulation liquid to form a coagulation film, the solvent, coagulation liquid, etc. are evaporated and removed from the coagulation film, and finally 150 An example of the Ha manufacturing method is to form an asymmetric gas separation membrane made of aromatic polyimide by sufficiently drying and heat-treating at a temperature of ~400°C, especially 170~350°C.

本発明で使用するガス分離装置は、上述の芳香族ポリイ
ミド製ガス分離膜を内蔵したものであり、このようなガ
ス分離装置としては、例えば、第1図に示すような、中
空糸の形状の芳香族ポリイミド製ガ不分離膜(スパイラ
ル状膜、平膜などでも良い)2が密封容器6に内蔵され
ているガス分離装置lが挙げられる。
The gas separation device used in the present invention incorporates the above-mentioned aromatic polyimide gas separation membrane, and examples of such a gas separation device include, for example, a hollow fiber-shaped gas separation membrane as shown in FIG. An example is a gas separation device 1 in which a gas non-separation membrane (which may be a spiral membrane, a flat membrane, etc.) 2 made of aromatic polyimide is housed in a sealed container 6.

上記密封容器6は、上記ガス分離膜2のガス透過側と連
通している「ガス分離膜を透過した透過ガス(水蒸気な
ど)の排出口5」、上記ガス分離膜2のガス供給側に連
通している「原料ガス供給口(混合ガス供給口)31、
及びr非透過ガス排出口41を有する密封容器(例えば
、円筒状容器など)であれば良い。
The sealed container 6 communicates with the gas permeation side of the gas separation membrane 2 and the gas supply side of the gas separation membrane 2 with an outlet 5 for the permeated gas (water vapor, etc.) that has passed through the gas separation membrane. "Raw material gas supply port (mixed gas supply port) 31,
Any sealed container (for example, a cylindrical container) having a non-permeable gas outlet 41 may be used.

上記ガス分離膜(中空糸の糸束など)2は、その両端が
、エラストマー系樹脂、アクリレート系樹脂、エポキシ
樹脂、フェノール樹脂などの適当な熱硬化性樹脂を固化
して形成された円板状の樹脂壁7,7°で一体に結束さ
れてガス分離膜エレメントに形成されており、そして、
そのエレメントは、少なくとも一端(i!!過ガス排出
口5側)において樹脂壁内を各中空糸が貫通して中空糸
内部の孔が樹脂壁の外Iこ向かって開口しており、また
第1図に示すように樹脂壁7,7゛の部分で、必要であ
れば接着剤などを使用して、密封容器6の内壁に密封固
着され一体に固定されている。
The gas separation membrane (a bundle of hollow fibers, etc.) 2 has a disk shape at both ends formed by solidifying a suitable thermosetting resin such as an elastomer resin, an acrylate resin, an epoxy resin, or a phenolic resin. The resin walls 7, 7° are bound together to form a gas separation membrane element, and
In this element, each hollow fiber penetrates the inside of the resin wall at least at one end (i!!exhaust gas outlet 5 side), and the hole inside the hollow fiber opens toward the outside of the resin wall. As shown in FIG. 1, the resin walls 7, 7' are hermetically fixed to the inner wall of the sealed container 6 using an adhesive or the like if necessary.

而して、本発明の方法を実施するには、例えば、上述の
、第1図に示す如き芳香族ポリイミド製ガス分離膜2を
内蔵したガス分N装置1を使用し、水蒸気を含有てる混
合ガスを60℃以上、好ましくは70℃以上、より好ま
しくは80〜150℃の温度で混合ガス供給口3から連
続的に供給し、該混合ガスをガス分離膜2のガス供給側
に沿って流動させることにより、上記ガス分離装置1に
おけるガス分離操作、運転を60°C以上の温度で行え
ば良い。このようにガス分離llI2におけるガス分離
を60℃以上の温度で行うことにより、混合ガス中の水
蒸気が効率良くガス分離膜2を透過し、ガス分離膜2の
ガス供給側に充分に除湿乾燥された混合ガス(非透過ガ
ス)が得られる。
In order to carry out the method of the present invention, for example, the above-mentioned gas separation apparatus 1 having a built-in aromatic polyimide gas separation membrane 2 as shown in FIG. Gas is continuously supplied from the mixed gas supply port 3 at a temperature of 60°C or higher, preferably 70°C or higher, more preferably 80 to 150°C, and the mixed gas flows along the gas supply side of the gas separation membrane 2. By doing so, the gas separation operation and operation in the gas separation apparatus 1 may be performed at a temperature of 60°C or higher. By performing the gas separation in the gas separation III2 at a temperature of 60°C or higher in this way, the water vapor in the mixed gas efficiently permeates the gas separation membrane 2, and the gas supply side of the gas separation membrane 2 is sufficiently dehumidified and dried. A mixed gas (non-permeable gas) is obtained.

除湿乾燥された混合ガスは、非透過ガス排出口4から排
出される。
The dehumidified and dried mixed gas is discharged from the non-permeable gas discharge port 4.

また、ガス分離膜2を透過した水蒸気などは、透過ガス
排出口5から排出、除去される。
Furthermore, water vapor and the like that have permeated the gas separation membrane 2 are discharged and removed from the permeated gas outlet 5.

本発明では、ガス分離装置1のガス分離膜2へ供給する
混合ガスの温度によって、ガス分離膜2のガス透過側へ
の水蒸気の除去を調整することができる。
In the present invention, the removal of water vapor to the gas permeation side of the gas separation membrane 2 can be adjusted by the temperature of the mixed gas supplied to the gas separation membrane 2 of the gas separation device 1.

上述した本発明の方法の処理対象とされる混合ガスとし
ては、空気、窒素、アルゴン等のガス、炭化水素ガス、
天然ガス、石油ガスなどを主成分とする混合ガス中に、
水蒸気が含有されているものを挙げることができる。
The mixed gas to be treated in the method of the present invention mentioned above includes gases such as air, nitrogen, and argon, hydrocarbon gases,
In a mixed gas whose main components are natural gas, petroleum gas, etc.
Examples include those containing water vapor.

尚、混合ガスをガス分離膜2のガス供給側に供給する際
、ガス分離膜2のガス透過側を減圧に保持しても良い。
Note that when supplying the mixed gas to the gas supply side of the gas separation membrane 2, the gas permeation side of the gas separation membrane 2 may be maintained at a reduced pressure.

また、本発明では、透過ガス(水蒸気)の排出時の圧を
大気圧付近にする場合には、約2Kg/cj以上、特に
、5〜lOにg/cd程度であることが、水蒸気の除去
率を高くするために、好ましい。
In addition, in the present invention, when the pressure at the time of exhausting the permeated gas (water vapor) is near atmospheric pressure, it is necessary to set the pressure at about 2 kg/cj or more, particularly about 5 to 10 g/cd, to remove water vapor. preferred in order to increase the rate.

〔作用〕[Effect]

本発明において、芳香族ポリイミド製ガス分離膜を内蔵
したガス分離装置におけるガス分離操作、運転を60℃
以上の温度で行うことにより、混合ガス中の水蒸気を効
率良く除去できるのは、次のような理由によるものと推
察される。
In the present invention, gas separation operations and operations in a gas separation device incorporating an aromatic polyimide gas separation membrane are carried out at 60°C.
The reason why the water vapor in the mixed gas can be efficiently removed by carrying out the process at the above temperature is presumed to be due to the following reason.

本発明で用いられる芳香族ポリイミド製ガス分離膜(中
空糸l1l)は、その水蒸気透過速度が常温〜120℃
の温度範囲において温度の影響をほとんど受けることな
く一定の値を示す、一方、水蒸気を含有する種々の混合
ガス(例えば、空気、天然ガスなど)の透過速度は、温
度の上昇と共に増大する。さらに、上記ガス分離膜に供
給する混合ガスが水蒸気のように透過しやすい成分が希
薄で、且つ上記ガス分離膜の選択透過性が高い< p 
ut。
The aromatic polyimide gas separation membrane (hollow fiber 11l) used in the present invention has a water vapor permeation rate from room temperature to 120°C.
On the other hand, the permeation rate of various mixed gases containing water vapor (e.g., air, natural gas, etc.) increases as the temperature increases. Furthermore, the mixed gas supplied to the gas separation membrane has a dilute content of easily permeable components such as water vapor, and the gas separation membrane has a high permselectivity < p
ut.

/PN、が常温で500以上)場合には、上記ガス分離
膜のガス透過側の水蒸気濃度が高くなって分圧差が小さ
くなる結果、見掛けの水蒸気透過速度が小さくなり、有
効膜面の効率が低下する。そこで、ガス分離装置におけ
るガス分離操作、運転の温度を60℃以上の範囲に設定
すると、混合ガスの主成分(例えば窒素など)の透過速
度は常温の値の数倍〜士数倍速くなる。一方、水蒸気の
透過速度は、上記のように温度の影響をほとんど受ける
ことなく一定であるために、上記ガス分離膜のガス透過
側の水蒸気濃度は1/2〜115程度に薄められる。従
って、分圧差が大きくなり除湿の効率が向上する。
/PN, is 500 or more at room temperature), the water vapor concentration on the gas permeation side of the gas separation membrane becomes high and the partial pressure difference becomes small, resulting in a small apparent water vapor permeation rate and a decrease in the efficiency of the effective membrane surface. descend. Therefore, when the temperature of the gas separation operation and operation in the gas separation device is set to a range of 60° C. or higher, the permeation rate of the main component (for example, nitrogen, etc.) of the mixed gas becomes several to several times faster than the value at room temperature. On the other hand, since the water vapor permeation rate is almost constant without being affected by temperature as described above, the water vapor concentration on the gas permeation side of the gas separation membrane is diluted to about 1/2 to 115. Therefore, the partial pressure difference increases and the efficiency of dehumidification improves.

〔実施例〕〔Example〕

以下、本発明の実施例を比較例と共に挙げ、本発明をさ
らに詳細に説明する。
EXAMPLES Hereinafter, the present invention will be explained in more detail by giving examples of the present invention together with comparative examples.

尚、本発明において、ガス透過試験は、第1図に示すよ
うなガス分離装置を使用し、芳香族ポリイミド製のガス
分離JIl(中空糸)を内蔵させて、水蒸気を含有する
混合ガスを約7にg / cd Gの供給圧及び所定の
測定温度(下記実施例では60〜120℃)でガス分離
装置に供給すると共に、中空糸の内部を約30Torr
に減圧排気しながら、ガス分離を行い、ガス分離膜非透
過ガスの組成及び各成分非透過量(水蒸気の分析はデュ
ポン社製303型湿度計で行い、非透過量は石鹸膜i置
針によって行った)を測定した。
In the present invention, the gas permeation test is carried out using a gas separation device as shown in Fig. 1, which is equipped with a gas separation JIl (hollow fiber) made of aromatic polyimide to separate a mixed gas containing water vapor from approximately At the same time, the inside of the hollow fiber was heated to about 30 Torr while supplying the gas to the gas separation device at a supply pressure of 7 g/cd G and a predetermined measurement temperature (60 to 120 °C in the following example).
Gas separation was performed while evacuation under reduced pressure, and the composition of the gas that did not permeate through the gas separation membrane and the amount of each component that did not permeate (water vapor was analyzed using a DuPont Model 303 hygrometer, and the amount that did not permeate was determined using a soap film i-pointer). ) was measured.

実施例1 下記の芳香族ポリイミド製中空糸6本(有効膜面積;1
2.0cd)が、その両端をエポキシ系樹脂で密着され
て、第1図と同様の形式の密封容器内に内蔵されている
ガス分離装置を使用し、そのガス分離装置の原料ガス供
給口に、水蒸気を0.281mo1%含有し窒素を主成
分とする混合ガスを7゜0にg / cA Gの圧力、
60℃の温度及び120cnl/secのガス流速で供
給し、上記中空糸膜の外面(ガス供給側)に沿って流動
させ、一方、上記中空糸膜の内面(ガス透過側)を約3
0Torrになるように減圧排気した。中空糸膜を透過
しなかった非透過ガス(除湿されたガス)をガス分離装
置の非透過ガス排出口から回収し、その組成及び流量を
測定した。その結果を下記第1表に示す。
Example 1 Six hollow fibers made of the following aromatic polyimide (effective membrane area: 1
2.0 cd) is sealed with epoxy resin at both ends, and is connected to the raw gas supply port of the gas separation device using a gas separation device built in a sealed container of the same type as shown in Figure 1. , a mixed gas containing 0.281 mo1% water vapor and mainly nitrogen was heated to 7°0 at a pressure of g/cA G,
The gas was supplied at a temperature of 60° C. and a gas flow rate of 120 cnl/sec to flow along the outer surface (gas supply side) of the hollow fiber membrane, while the inner surface (gas permeation side) of the hollow fiber membrane was
The pressure was evacuated to 0 Torr. The non-permeable gas (dehumidified gas) that did not pass through the hollow fiber membrane was collected from the non-permeable gas outlet of the gas separation device, and its composition and flow rate were measured. The results are shown in Table 1 below.

〔芳香族ポリイミド製中空糸〕[Aromatic polyimide hollow fiber]

ビフェニルテトラカルボン酸二g水物1o 。 1 o of biphenyltetracarboxylic acid dihydrate.

重量部と、ジアミノ−ジメチル−ジフェニレンスルホン
異性体混合物80重量部及び2,6−リアミツビリジン
20111i部とから形成された芳香族ポリイミド製中
空糸であり、外径;530μ、内径;382μ、測定温
度25℃での沖薄気透過速度i 1.8 X 10−’
 (c+4/cd−sec ・c+sHg)である。
parts by weight, 80 parts by weight of diamino-dimethyl-diphenylene sulfone isomer mixture, and 20111 parts of 2,6-riamitubiridine, outer diameter: 530μ, inner diameter: 382μ, measurement temperature. Oki thin air permeation rate i 1.8 x 10-' at 25°C
(c+4/cd-sec ・c+sHg).

実施例2及び3 原料ガスの供給温度を80℃又は120℃とした以外は
実施例1と同様にして、混合ガスの水p気の除去を行っ
た。その結果を下記第1表に示1比較例1 原料ガスの供給1度を45℃とした以外は実施例1と同
様にして、混合ガスの水蒸気の除去を行った。その結果
を下記第1表に示す。
Examples 2 and 3 Water and gas were removed from the mixed gas in the same manner as in Example 1, except that the raw material gas supply temperature was 80° C. or 120° C. The results are shown in Table 1 below. 1 Comparative Example 1 Water vapor from the mixed gas was removed in the same manner as in Example 1, except that the raw material gas was supplied at 45°C. The results are shown in Table 1 below.

第1表 〔発明の効果〕 本発明の方法は、芳香族ポリイミド製のガス分離膜を使
用して60℃以上の温度でガス分離操作、運転を行うも
ので、次のような利点を有している。
Table 1 [Effects of the Invention] The method of the present invention performs gas separation operation and operation at a temperature of 60°C or higher using a gas separation membrane made of aromatic polyimide, and has the following advantages. ing.

la)ガス分離装置に内蔵されたガス分離膜を有効ξ 
  に使用することができ、ガス分離装置全体に内蔵“
・  させるガス分離膜の膜面積を小さくすることかで
きるので、ガス分離装置を小型化することが可能である
la) Enabling the gas separation membrane built into the gas separation device ξ
can be used for “integrated into the entire gas separation device”
- Since the membrane area of the gas separation membrane used can be reduced, it is possible to downsize the gas separation device.

(b)比較的低圧の原料ガスを使用することもでき、ま
た、ガス分離膜の原料ガス供給側とガス透過側との差圧
をそれほど太き(しなくても、混合ガスの除湿を行うこ
とができる。
(b) It is also possible to use a relatively low-pressure raw material gas, and the mixed gas can be dehumidified even if the differential pressure between the raw material gas supply side and the gas permeation side of the gas separation membrane is not very large. be able to.

(c++湿操作を行った後の乾燥ガス(非透過ガス)は
充分に除湿できたものである。
(c++ The dry gas (non-permeable gas) after the humid operation has been sufficiently dehumidified.

(d+非非通過ガス水蒸気含を率を、原?4濃度、供給
量、膜面積、操作圧力などを変えることなく広範囲に渡
って制御することができる。
(The water vapor content of the d+ non-passing gas can be controlled over a wide range without changing the raw material concentration, feed rate, membrane area, operating pressure, etc.).

te1本発明の方法で用いられる芳香族ポリイミド製ガ
ス分離膜は、耐久性、耐熱性、耐薬品性、耐湿性などの
諸性質が極めて優れているので、混合ガスの除湿を長期
間に安定的に実施することができる。
te1 The aromatic polyimide gas separation membrane used in the method of the present invention has extremely excellent properties such as durability, heat resistance, chemical resistance, and moisture resistance, so it can stably dehumidify mixed gas over a long period of time. can be implemented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法で用いられる芳香族ポリイミド
製ガス分+1!膜を内蔵したガス分離装置の一例を示す
断面図である。 ■・・ガス分離装置、2・・芳香族ポリイミド袈ガス分
暉膜(中空糸)、3・・原料ガス供給口(混合ガス供給
口)、4・・非透過ガス排出口、5・・透過ガス排出口
、6・・密封容器、7・・樹脂壁
Figure 1 shows the amount of aromatic polyimide gas used in the method of the present invention +1! FIG. 1 is a cross-sectional view showing an example of a gas separation device incorporating a membrane. ■... Gas separation device, 2... Aromatic polyimide gas separation membrane (hollow fiber), 3... Raw material gas supply port (mixed gas supply port), 4... Non-permeable gas discharge port, 5... Permeation Gas outlet, 6... Sealed container, 7... Resin wall

Claims (1)

【特許請求の範囲】[Claims] 水蒸気を含有する混合ガスを、ガス分離膜を内蔵したガ
ス分離装置を用いて除湿する方法において、上記ガス分
離膜として芳香族ポリイミド製膜を用い、且つ上記ガス
分離膜におけるガス分離を60℃以上の温度で行うこと
を特徴とする混合ガスの除湿方法。
A method for dehumidifying a mixed gas containing water vapor using a gas separation device incorporating a gas separation membrane, wherein an aromatic polyimide membrane is used as the gas separation membrane, and the gas separation in the gas separation membrane is performed at 60°C or higher. A mixed gas dehumidification method characterized in that the dehumidification is carried out at a temperature of .
JP62069946A 1987-03-24 1987-03-24 Dehumidification method for mixed gas Pending JPS63236517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62069946A JPS63236517A (en) 1987-03-24 1987-03-24 Dehumidification method for mixed gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62069946A JPS63236517A (en) 1987-03-24 1987-03-24 Dehumidification method for mixed gas

Publications (1)

Publication Number Publication Date
JPS63236517A true JPS63236517A (en) 1988-10-03

Family

ID=13417328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62069946A Pending JPS63236517A (en) 1987-03-24 1987-03-24 Dehumidification method for mixed gas

Country Status (1)

Country Link
JP (1) JPS63236517A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4875908A (en) * 1988-01-27 1989-10-24 Hiroyasu Kikukawa Process for selectively separating gaseous mixtures containing water vapor
US4909810A (en) * 1988-01-26 1990-03-20 Asahi Glass Company Ltd. Vapor permselective membrane
JPH0299114A (en) * 1988-10-06 1990-04-11 Mitsubishi Kasei Corp Dehumidifying method
US5002590A (en) * 1989-09-19 1991-03-26 Bend Research, Inc. Countercurrent dehydration by hollow fibers
US5053058A (en) * 1989-12-29 1991-10-01 Uop Control process and apparatus for membrane separation systems
US5118327A (en) * 1989-10-05 1992-06-02 Andrew Corporation Dehumidifier for supplying gas having controlled dew point
US5131929A (en) * 1991-05-06 1992-07-21 Permea, Inc. Pressure control for improved gas dehydration in systems which employ membrane dryers in intermittent service
US5178650A (en) * 1990-11-30 1993-01-12 E. I. Du Pont De Nemours And Company Polyimide gas separation membranes and process of using same
US5470379A (en) * 1989-07-19 1995-11-28 The Boc Group Plc Membrane plant: automatic control of
US5681368A (en) * 1995-07-05 1997-10-28 Andrew Corporation Dehumidifier system using membrane cartridge
US5762690A (en) * 1992-11-25 1998-06-09 Andrew Corporation Dehumidifier for supplying air using variable flow rate and variable pressure in a membrane dryer
US6273936B1 (en) * 1998-10-09 2001-08-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and plant for producing a variable gas output
WO2004004044A1 (en) * 2002-05-31 2004-01-08 Ube Industries, Ltd. Fuel cell-use humidifier
CN104258682A (en) * 2014-09-28 2015-01-07 吴江市欧诚包装材料制品有限公司 Air drying machine

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4909810A (en) * 1988-01-26 1990-03-20 Asahi Glass Company Ltd. Vapor permselective membrane
US4875908A (en) * 1988-01-27 1989-10-24 Hiroyasu Kikukawa Process for selectively separating gaseous mixtures containing water vapor
JPH0299114A (en) * 1988-10-06 1990-04-11 Mitsubishi Kasei Corp Dehumidifying method
US5470379A (en) * 1989-07-19 1995-11-28 The Boc Group Plc Membrane plant: automatic control of
US5002590A (en) * 1989-09-19 1991-03-26 Bend Research, Inc. Countercurrent dehydration by hollow fibers
US5118327A (en) * 1989-10-05 1992-06-02 Andrew Corporation Dehumidifier for supplying gas having controlled dew point
US5053058A (en) * 1989-12-29 1991-10-01 Uop Control process and apparatus for membrane separation systems
US5178650A (en) * 1990-11-30 1993-01-12 E. I. Du Pont De Nemours And Company Polyimide gas separation membranes and process of using same
US5131929A (en) * 1991-05-06 1992-07-21 Permea, Inc. Pressure control for improved gas dehydration in systems which employ membrane dryers in intermittent service
US5762690A (en) * 1992-11-25 1998-06-09 Andrew Corporation Dehumidifier for supplying air using variable flow rate and variable pressure in a membrane dryer
US5885329A (en) * 1992-11-25 1999-03-23 Andrew Corporation Dehumidifier for supplying air using variable flow rate and variable pressure in a membrane dryer
US5681368A (en) * 1995-07-05 1997-10-28 Andrew Corporation Dehumidifier system using membrane cartridge
US6273936B1 (en) * 1998-10-09 2001-08-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and plant for producing a variable gas output
WO2004004044A1 (en) * 2002-05-31 2004-01-08 Ube Industries, Ltd. Fuel cell-use humidifier
US7156379B2 (en) 2002-05-31 2007-01-02 Ube Industries, Ltd. Fuel cell-use humidifier
CN104258682A (en) * 2014-09-28 2015-01-07 吴江市欧诚包装材料制品有限公司 Air drying machine

Similar Documents

Publication Publication Date Title
US4718921A (en) Method for removing water vapor from water vapor-containing gas
JPH0446173B2 (en)
JPS63236517A (en) Dehumidification method for mixed gas
JP5472114B2 (en) Asymmetric gas separation membrane and gas separation method
US20070180994A1 (en) Solvent resistant asymmetric integrally skinned membranes
JPH0673616B2 (en) Method for producing polyimide two-layer hollow fiber membrane
JP2874741B2 (en) Asymmetric hollow fiber polyimide gas separation membrane
JPH0247930B2 (en)
JPS63248418A (en) Separation of gaseous mixture
JP5359957B2 (en) Polyimide gas separation membrane and gas separation method
JP5359914B2 (en) Polyimide gas separation membrane and gas separation method
JPH02222717A (en) Gas separating membrane and separation of gas
JPH0542288B2 (en)
JP6623600B2 (en) Asymmetric gas separation membrane and method for separating and recovering gas
Huang et al. Sorption and transport behavior of water vapor in dense and asymmetric polyimide membranes
WO2015147103A1 (en) Asymmetric gas separation membrane, and methods for separating and recovering gases
JP2022152519A (en) Asymmetric hollow fiber gas separation membrane
JPH0763579B2 (en) Dehumidification method
JPH0530484B2 (en)
JPH038818B2 (en)
JPS63143923A (en) Concentration of organic substance aqueous solution
JP7135296B2 (en) gas separation membrane
JPS63264121A (en) Polyimide membrane for separating gas
JPH0693985B2 (en) Manufacturing method of polyimide two-layer hollow fiber membrane
JPH02222716A (en) Gas separating membrane and separation of gas