Nothing Special   »   [go: up one dir, main page]

JPS63203760A - Method and device for forming inorganic film to glass substrate surface - Google Patents

Method and device for forming inorganic film to glass substrate surface

Info

Publication number
JPS63203760A
JPS63203760A JP3461787A JP3461787A JPS63203760A JP S63203760 A JPS63203760 A JP S63203760A JP 3461787 A JP3461787 A JP 3461787A JP 3461787 A JP3461787 A JP 3461787A JP S63203760 A JPS63203760 A JP S63203760A
Authority
JP
Japan
Prior art keywords
glass substrate
inorganic film
film
substrate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3461787A
Other languages
Japanese (ja)
Inventor
Koichi Suzuki
巧一 鈴木
Masashi Tada
昌史 多田
Takuji Oyama
卓司 尾山
Hiroyasu Kojima
啓安 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP3461787A priority Critical patent/JPS63203760A/en
Publication of JPS63203760A publication Critical patent/JPS63203760A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To uniformly form a high-hardness inorg. film on a glass substrate surface having a large area by evaporating an inorg. materials by an arc discharge and depositing the vapor thereof by evaporation on the substrate while moving the glass substrate horizontally in a vacuum chamber. CONSTITUTION:The inside of the vacuum chamber is maintained under 5X10<-4>-1X10<-2>Torr and the glass substrate 2 is horizontally and linearly moved so as to be passed under an arc vapor deposition source 1 as a vapor source for forming the inorg. film disposed above the substrate to form the inorg. film on the substrate by vapor deposition. A rear side electrode plate 3 is disposed on the rear side of the substrate 2 so that the vapor particles evaporated by the arc discharge are ion-accelerated. The inorg. film consists of an inorg. material contg. at least one kind among oxide, nitride, carbide, boride, silicide, B4C, BN, and diamond. Soda lime silicate glass, alumino silicate glass, etc., are adequately used for the substrate 2 according to the purpose of use. The uniform inorg. film having high hardness and high m.p. is thus easily formed on the substrate 2 having a large area.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ガラス基板面上への硬質無機膜形成方法及び
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method and apparatus for forming a hard inorganic film on a glass substrate surface.

[従来の技術] ガラス上への硬質類ssi形成方法として、従来より各
種物理蒸着法(PVD法)や、各種化学的蒸着法(CV
D法)が知られているが、CVD法は一般に基板を50
0℃前後に加熱する必要があり、しかも大面積での膜厚
の面内均一性に問題があるなど、加熱しにくい大面積ガ
ラス基板への光学的な用途を目的としたコーティング方
法としては、不向きであった。一方、PvD法には、真
空蒸着法やイオンブレーティング、スパッタ法があるが
大面積のガラス基板へのコーティング方法としては、再
現性、均一性、制御性、生産性などから、主にスパッタ
法が試みられてきた。
[Prior art] Various physical vapor deposition methods (PVD methods) and various chemical vapor deposition methods (CVD methods) have been conventionally used as methods for forming hard SSI on glass.
D method) is known, but in the CVD method, the substrate is generally
As a coating method for optical applications on large-area glass substrates that are difficult to heat, such as the need to heat them to around 0°C and the problem of in-plane uniformity of film thickness over a large area, It was not suitable. On the other hand, PvD methods include vacuum evaporation, ion blating, and sputtering, but sputtering is mainly used as a coating method for large-area glass substrates due to its reproducibility, uniformity, controllability, and productivity. has been attempted.

しかしながら、非常に硬度の大きな無機膜を形成すると
いう目的には、現在の真空蒸着法も、イオンブレーティ
ング法も、スパッタ法も充分ではなかった。
However, none of the current vacuum deposition methods, ion blasting methods, and sputtering methods are sufficient for the purpose of forming an inorganic film with extremely high hardness.

これに対し、アーク蒸着法は1通常の真空蒸着(熱的蒸
発)法やスパッタ法とは異なる第3の物理的薄膜形成手
段として開発されたものであり、従来の方法では得られ
ない非常に硬くて、緻密な硬質被膜(例えばTiN1i
)が得られるという特徴を有している。特に切削工具へ
の超硬yA(例えばTiN膜)形成方法として最も有望
とされており、最近では、生産にも使われ始めている。
On the other hand, the arc evaporation method was developed as a third physical thin film formation method different from the normal vacuum evaporation (thermal evaporation) method and sputtering method, and it produces extremely thin film formation methods that cannot be obtained with conventional methods. Hard, dense hard coating (e.g. TiN1i)
). In particular, it is considered to be the most promising method for forming carbide yA (for example, TiN film) on cutting tools, and has recently begun to be used in production.

アーク蒸着法で主に試みられているのはTiN膜であり
、Tiを出発原料として、高密度窒素プラズマ中でTi
N膜を合成する。これは、アーク放電が、Tiターゲッ
トと接地されているアークチャンバー、との間で生じ、
Tiターゲットの極小部分に電流集中が起こるため、局
所的に高温になり瞬時にTiがプラズマ化する。そして
、金属の様な電導性基板の場合には、直流的に負にバイ
アスされた基板にTiの正イオンと、アーク放電中で生
成した正のN◆イオン、が引き寄せられ、基板上でTp
とN4が反応し、TiN膜が生成するとされている。T
iも窒素も、イオン化されることで化学的反応性が増大
しており、しかも、直流電圧印加による加速によって得
られる高い運動エネルギーにより、非常に緻密で、硬い
、バルクのTiNに近い膜が得られるとされている。蒸
発するTiのほぼ100%がイオン化しており、通常の
グロー放電を用いるイオンブレーティングやスパッタよ
り、1桁も2桁もイオン化率が大きく、よって、はるか
に優れた膜が得られるとされている。
TiN films have been mainly attempted using the arc evaporation method, in which Ti is used as a starting material and Ti is deposited in high-density nitrogen plasma
Synthesize N film. This means that an arc discharge occurs between the Ti target and the grounded arc chamber,
Since current concentration occurs in a very small portion of the Ti target, the temperature locally becomes high and Ti instantly turns into plasma. In the case of a conductive substrate such as a metal, positive Ti ions and positive N◆ ions generated during arc discharge are attracted to the substrate that is negatively biased with direct current, and Tp on the substrate is attracted.
It is said that a TiN film is produced by the reaction of N4 and N4. T
The chemical reactivity of both i and nitrogen increases when they are ionized, and due to the high kinetic energy obtained by acceleration by applying a DC voltage, a very dense and hard film similar to that of bulk TiN can be obtained. It is said that Almost 100% of the evaporated Ti is ionized, and the ionization rate is one or two orders of magnitude higher than that of ion blating or sputtering using normal glow discharge, and it is said that it is possible to obtain a much superior film. There is.

しかしながら、これまで上記用途のTiN Mの厚みは
数ルから数十ルとかなり厚く、しかも金属基体を主体と
して用途も限られており、光学的用途を目的としての大
面積のガラス板上へのアーク蒸着法による薄膜(膜厚;
数十人〜数千人)形成はまだ試みられていなかった。
However, until now, the thickness of TiN M for the above-mentioned applications has been quite thick, ranging from several µm to several tens of µm, and its application has been limited as it is mainly used for metal substrates. Thin film (film thickness;
Formation (from tens to thousands of people) had not yet been attempted.

一方ガラス基板面上に硬度の大きな膜を形成するには、
もともとバルクの状態で大きな硬度を示す酸化物、窒化
物、炭化物、硼化物、BN。
On the other hand, in order to form a highly hard film on the glass substrate surface,
Oxides, nitrides, carbides, borides, and BN originally exhibit high hardness in their bulk state.

Bad、ダイヤモンドなどのバルク特性を薄膜で実現す
るのが最適である。しかしながら、これらの材料は、高
融点材料でもあり、低温の基板にバルクに近い特性を有
した膜を形成することは、従来の真空蒸着法やスパッタ
法では、困難であった。最近、様々なイオンブレーティ
ング法が開発され、より硬い、より緻密な、膜の形成が
試みられてはいるが、いまだ不充分であった。
It is optimal to achieve the bulk characteristics of bad, diamond, etc. with a thin film. However, these materials also have high melting points, and it has been difficult to form a film with properties close to bulk on a low-temperature substrate using conventional vacuum evaporation methods or sputtering methods. Recently, various ion blating methods have been developed, and attempts have been made to form harder and denser films, but these methods are still insufficient.

[発明の解決しようとする問題点] 本発明は、従来法では困難であった大面積のガラス基板
面への硬度の大きな硬質被膜の形成方法及びその装置を
提供することを目的とする。
[Problems to be Solved by the Invention] An object of the present invention is to provide a method and an apparatus for forming a hard film with high hardness on a large-area glass substrate surface, which has been difficult to achieve using conventional methods.

[問題点を解決するための手段] 本発明は、前述の目的に基づき研究の結果、発明された
ものであり、その第1の発明の要旨は、真空室内におい
てガラス基板を水平方向に移動させながら無機質膜形成
用蒸発材料をアーク放電によって蒸発させ、上記ガラス
基板上に無機質膜を蒸着させることを特徴とするガラス
基板面への無機質膜の形成方法に関するものであり、第
2の発明の要旨は真空室内において、無機質膜形成用蒸
発材料を蒸発させてガラス基板上に無機質膜を蒸着させ
る真空蒸着装置において、無機質膜形成用蒸発材料を蒸
発させるための蒸発源としてアーク放電源を設けるとと
もに、ガラス基板のamに直流電圧印加用又は高周波印
加用の電極板を配したことを特徴とするガラス基板面へ
の無機質膜形成装置に関するものである。
[Means for Solving the Problems] The present invention was invented as a result of research based on the above-mentioned object, and the gist of the first invention is to move a glass substrate horizontally in a vacuum chamber. The second aspect of the invention relates to a method for forming an inorganic film on a glass substrate surface, characterized in that an evaporation material for forming an inorganic film is evaporated by arc discharge, and the inorganic film is deposited on the glass substrate. In a vacuum evaporation apparatus that evaporates an evaporation material for forming an inorganic film in a vacuum chamber to deposit an inorganic film on a glass substrate, an arc discharge source is provided as an evaporation source for evaporating the evaporation material for forming an inorganic film, and The present invention relates to an apparatus for forming an inorganic film on the surface of a glass substrate, characterized in that an electrode plate for applying a DC voltage or high frequency is arranged on the am of the glass substrate.

以下1本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明において、Sa質膜を形成するガラス基板として
は、使用目的に応じてソーダライムシリケートガラス、
アルミノシリケートガラス、硼硅酸塩ガラス、リチウム
アルミノシリケートガラス、石英ガラスなどが使用され
る。
In the present invention, the glass substrate on which the Sa film is formed may be soda lime silicate glass,
Aluminosilicate glass, borosilicate glass, lithium aluminosilicate glass, quartz glass, etc. are used.

又、ガラス基板面上に形成される高い硬度を有する無機
質膜としては、使用目的に応じて各種の無機質からなる
薄膜、例えば、酸化物膜、窒化物膜、炭化物膜、硼化物
膜、硅化物膜、84G、 8N、ダイヤモンド、又は炭
素、硼素、硅素の少なくとも2種を含む例えば多元化物
膜1例えば、酸化窒化物膜、炭化硼化物膜、窒化硼化物
、窒化硅素膜、炭化硅素膜、あるいは上記各種物質の複
合膜などが選ばれる。
In addition, as the inorganic film having high hardness formed on the glass substrate surface, thin films made of various inorganic materials may be used depending on the purpose of use, such as oxide films, nitride films, carbide films, boride films, and silicide films. 84G, 8N, diamond, or a multicomponent film 1 containing at least two of carbon, boron, and silicon, such as an oxynitride film, a boron carbide film, a boron nitride film, a silicon nitride film, a silicon carbide film, or A composite film of the various substances listed above is selected.

例えば、熱線反射ガラスや反射鏡として使用する場合に
は、無機質膜として、酸化物、窒化物、炭化物などの無
機質が選ばれ1反射防止ガラスとして使用する場合には
、無機質膜として、酸化物などの無機質が選ばれ、又フ
ォトマスクブランクスとして使用する場合には、無機質
膜として、窒化物、炭化物、酸化物、硅化物又はこれら
の多元化物が使用され、又ガラス磁気ディスクとして使
用する場合には、無機質膜として、フェライトなどが使
用され、又、導電性ガラスとして使用する場合には、無
機質膜とじて導電性の酸化物などが使用される。
For example, when used as heat-reflecting glass or a reflective mirror, inorganic materials such as oxides, nitrides, and carbides are selected as the inorganic film; and when used as antireflection glass, inorganic materials such as oxides, etc. are selected as the inorganic film. When used as a photomask blank, nitride, carbide, oxide, silicide, or a combination thereof is used as the inorganic film, and when used as a glass magnetic disk, A ferrite or the like is used as the inorganic film, and when used as a conductive glass, a conductive oxide or the like is used as the inorganic film.

なお、本発明においては、本発明により形成される異種
の無機質膜を複数層積層してもよいし、あるいは又、未
発明により形成される無機質膜と、スパッター法、真空
蒸着法あるいはイオングレーティング法により形成され
る種々の膜とを積層してもよい。
In the present invention, a plurality of different types of inorganic films formed according to the present invention may be laminated, or an inorganic film formed according to the present invention may be combined with a sputtering method, a vacuum evaporation method, or an ion grating method. Various films formed by the above may be stacked.

例えば、スパッター法により100人のTi1lを形成
し、この膜に窒素イオン注入処理を施し、更にこの上に
アーク蒸着法により1000人のTiN膜を形成すれば
、付着力硬度の優れたTiN反射膜(ゴールド色)を得
ることができる。
For example, if a 100-layer Ti film is formed by sputtering, nitrogen ion implantation is performed on this film, and a 1,000-layer TiN film is formed on top of this film by arc evaporation, a TiN reflective film with excellent adhesion and hardness can be formed. (gold color).

次に本発明を第1図に従って説明する。第1図に示した
ガラス基板面への無機質膜形成装置はインライン式のも
のを示した例である。第1図において、ガラス基板2は
水平方向に直線的に移動し、その上方に配置された無機
質膜形成用蒸発源としてのアーク蒸着源1の下を通過す
る時に移動しながら無機質膜が蒸着により形成される。
Next, the present invention will be explained with reference to FIG. The apparatus for forming an inorganic film on a glass substrate surface shown in FIG. 1 is an example of an in-line type apparatus. In FIG. 1, a glass substrate 2 moves linearly in the horizontal direction, and as it passes under an arc evaporation source 1, which is an evaporation source for forming an inorganic film, and is placed above it, an inorganic film is formed by evaporation. It is formed.

この際、無機質膜形成用蒸発源はアーク放電によって蒸
発され、いわゆるアーク蒸着法により膜形成される。3
は、移動するガラス基板の裏面に配された裏面電極板を
示し、アーク放電によって蒸発された蒸発粒子がイオン
加速されるようにしたものである。膜の厚さは。
At this time, the evaporation source for forming the inorganic film is evaporated by arc discharge, and the film is formed by a so-called arc evaporation method. 3
1 shows a back electrode plate placed on the back surface of a moving glass substrate, so that evaporated particles evaporated by arc discharge are ion-accelerated. What is the thickness of the membrane?

ガラス基板の移動スピード、アーク蒸発速度(アーク源
への投入電力)によって決まる。これらガラス基板の移
動スピードとアーク蒸発速度並びに、圧力やその他の条
件が時間的に一定であれば、ガラス基板の進行方向で均
一な膜厚分布が得られる。進行方向と直角の横方向の膜
厚の均一性は点ソースとしてのアーク蒸発源を必要に応
じて、複数個横方向に並べることによって、達成される
0以上のような方法によって、大面積のガラス基板への
均一な膜形成が可能となる。
It is determined by the moving speed of the glass substrate and the arc evaporation rate (power input to the arc source). If the moving speed of the glass substrate, the arc evaporation rate, the pressure, and other conditions are constant over time, a uniform film thickness distribution can be obtained in the direction of movement of the glass substrate. The uniformity of the film thickness in the lateral direction perpendicular to the direction of travel is achieved by arranging multiple arc evaporation sources as point sources in the lateral direction. It becomes possible to form a uniform film on a glass substrate.

ガラスなどの絶縁性基板に対し、イオンの加速を行なう
場合には、チャージアップが問題となる。したがって、
その解決手段としては、高周波バイアスを用いる方法、
直流バイアスで同時にチャージアップ防止用グリッドを
用いる方法、直流バイアスで、熱電子による中和を行な
う方法などを採用することができる。
When accelerating ions on an insulating substrate such as glass, charge-up becomes a problem. therefore,
The solution is to use high frequency bias,
A method of using a charge-up prevention grid at the same time as a DC bias, a method of neutralizing using thermoelectrons with a DC bias, etc. can be adopted.

本発明においては、第2図に示すように、ガラス基板表
面に金属膜イオン、窒素圧イオンを引き寄せ、ガラス基
板近傍に、高密度のプラズマを形成するために、ガラス
基板の裏側に直流電圧、又は高周波印加のための裏面電
極板3を配置することができる。なお、ガラスの表面に
あらかじめ電導性波Jll(例えば金属膜)をコートで
きる場合には、基板バイアスはこの電導性被膜を基板ホ
ルダーと電気的に接続することによっても可能になる。
In the present invention, as shown in FIG. 2, in order to attract metal film ions and nitrogen pressure ions to the surface of the glass substrate and form high-density plasma near the glass substrate, a DC voltage is applied to the back side of the glass substrate. Alternatively, a back electrode plate 3 for high frequency application can be arranged. Note that if the surface of the glass can be coated with a conductive wave Jll (for example, a metal film) in advance, substrate biasing can also be achieved by electrically connecting this conductive coating to the substrate holder.

ガラス基板の裏側に配置する裏面電極板3としては、S
OS、 AI、 Cuなどの金属からなる電極が用いら
れる。なお、この場合は、裏面電極板がガラス基板より
わずかに離れて配置され(例えば〜1層層程度)、アー
ク源と対向し、静止している様に設けられているまた、
前述のように、直流加速の場合にはチャージアップ防止
のために、第2図に示すようにガラス基板のアーク源側
に、金属細線などからなるグリッド4を設けることも有
効である。この場合、グリッドの金属細線の間隔は2c
m以下が適当である。これ以上間隔があくと、チャージ
アップ防止の効果はなくなる。また。
As the back electrode plate 3 placed on the back side of the glass substrate, S
Electrodes made of metals such as OS, AI, and Cu are used. In this case, the back electrode plate is placed slightly away from the glass substrate (for example, about one layer), facing the arc source, and placed stationary.
As mentioned above, in the case of direct current acceleration, it is also effective to provide a grid 4 made of thin metal wire or the like on the arc source side of the glass substrate, as shown in FIG. 2, in order to prevent charge-up. In this case, the spacing between the metal wires of the grid is 2c
m or less is appropriate. If the interval is longer than this, the effect of preventing charge-up will be lost. Also.

このグリッドは、ガラス基板の裏面電極と電気的に等電
位にあることが有効である。金属細線は、その膜厚分布
への影響がでることのないように、ガラス基板の進行方
向と直角の方向に張ることが有効である。
It is effective that this grid is electrically at the same potential as the back electrode of the glass substrate. It is effective to extend the thin metal wire in a direction perpendicular to the direction of movement of the glass substrate so as not to affect the film thickness distribution.

アーク蒸着時の圧力は、通常1O−2Torr台である
が、ガラス基板上への光学的用途を目的とした膜形成の
場合は、10−’Torr台、好ましくは5X 101
TorrNIX 10−2Torrが有効である。これ
以上圧力が高いと、ガスによる散乱の影響のためにバル
クに近い特性を有した膜が出来にくくなり、また、これ
以上圧力が低いとアーク放電の持続が困難になる。
The pressure during arc evaporation is usually on the order of 10-2 Torr, but in the case of film formation for optical purposes on a glass substrate, the pressure is on the order of 10-'Torr, preferably 5X 101
TorrNIX 10-2 Torr is effective. If the pressure is higher than this, it will be difficult to form a film with properties close to bulk due to the influence of scattering by the gas, and if the pressure is lower than this, it will be difficult to sustain arc discharge.

[作用] 本発明においては、ガラス基板を移動させながら、ガラ
ス基板にアーク蒸着法により無機質膜を形成することに
より、大面積ガラス基板への均一な膜形成が可能となり
、しかも、ガラス基板の送りスピードやアーク蒸発源へ
の投入パワーを変えることにより膜厚のコントロールが
可能となり、しかも、目的とする光学膜用の数百人前後
の薄膜形成が可能となる。
[Function] In the present invention, by forming an inorganic film on the glass substrate by arc evaporation while moving the glass substrate, it is possible to form a uniform film on a large area glass substrate. By changing the speed and the power input to the arc evaporation source, it is possible to control the film thickness, and moreover, it is possible to form several hundred thin films for the desired optical film.

しかも、従来の方法に比べ、アーク蒸着法は、膜の堆積
スピードが大きいという特徴もあり、スパッタ法以上の
生産スピードが得られることも有利な点である。ガラス
基板の移動方向での膜厚の均一性は、ガラス基板の送り
スピードやアーク蒸発源への投入パワーを一定にするこ
とで確保でき、又、ガラス基板の移動方向と直角の方向
の均一性は、マスクを使用すること゛によって改良する
ことができる。これも第1.2図に示した様なインライ
ン型の装置の1つの特徴である。
Furthermore, compared to conventional methods, the arc evaporation method is characterized by a higher film deposition speed, and is also advantageous in that it can achieve a production speed higher than that of the sputtering method. Uniformity of the film thickness in the direction of movement of the glass substrate can be ensured by keeping the feeding speed of the glass substrate and power input to the arc evaporation source constant, and uniformity in the direction perpendicular to the direction of movement of the glass substrate can be ensured. can be improved by using masks. This is also one of the features of the in-line type device as shown in Figure 1.2.

アーク蒸発源は、上下左右いずれの方向からもコート可
能であり、コートの方向を規定するものではないが大面
積ガラス基板の場合は、扱いが容易であるという点から
、アーク源が上で、基板が下になる配置が好ましい。
The arc evaporation source can coat from either the top, bottom, left or right, and although the coating direction is not specified, in the case of large-area glass substrates, the arc source should be placed at the top for ease of handling. An arrangement with the substrate facing down is preferred.

グリッドの作用は、ガラス基板へのイオン衝撃によって
発生する2次電子がそのグリッドの負電位によって押し
戻されることで、チャージアップを低減すると考えられ
る。
The effect of the grid is thought to be that secondary electrons generated by ion bombardment on the glass substrate are pushed back by the negative potential of the grid, thereby reducing charge-up.

[実施例] 実施例1 30cm角のガラス基板を用意し、市販の中性洗剤→流
水→エタノール→N2乾燥という手順で洗浄した。この
ガラス基板をインライン型の第1図に示したアーク蒸着
装置にセットし、 l×1O−5Torrまで排気し、
ついでN2ガスを導入した。  IX 101Torr
台でアーク放電を開始した後、圧力を2X 1O−3T
orrにコントロールした。
[Examples] Example 1 A 30 cm square glass substrate was prepared and washed using a commercially available neutral detergent, running water, ethanol, and N2 drying. This glass substrate was set in the in-line type arc evaporation apparatus shown in Fig. 1, and the air was evacuated to 1 × 1 O-5 Torr.
Then, N2 gas was introduced. IX 101 Torr
After starting the arc discharge on the stand, increase the pressure to 2X 1O-3T.
Controlled to orr.

蒸発源としてのターゲット物質はTiを使用した。この
状態でアーク蒸着ゾーンは高密度のプラズマで満たされ
る0次いでガラス基板を30cm7分で移動させ、アー
ク蒸着ゾーンを通過させた。その結果500人程鹿の金
色の反射色を示すTiN薄膜がガラス上に得られた。蒸
発源は1ケであるので、進行方向と直角の方向の膜厚均
一性を確保するため、マスクを用いた。その結果、 3
0cm角のガラス基板で±10%以内の膜厚均一性を有
していた。なお、ガラス基板裏面電極への加速電圧は一
50Vであった。
Ti was used as a target material as an evaporation source. In this state, the arc evaporation zone was filled with high-density plasma.Then, the glass substrate was moved 30 cm in 7 minutes to pass through the arc evaporation zone. As a result, a TiN thin film with a reflection color of about 500 deer gold was obtained on glass. Since there was only one evaporation source, a mask was used to ensure film thickness uniformity in the direction perpendicular to the direction of travel. As a result, 3
The film thickness uniformity was within ±10% on a 0 cm square glass substrate. Note that the accelerating voltage applied to the back electrode of the glass substrate was -50V.

この方法で得られたTiN膜は、耐久性にもすぐれ、高
い赤外反射性能を示し、また耐擦傷性もすぐれていた。
The TiN film obtained by this method had excellent durability, high infrared reflection performance, and excellent scratch resistance.

実施例2 60c量角のガラス基板を用意し、市販の中性洗剤→流
水→エタノール→N2乾燥という手順で洗浄した。この
ガラス基板を基板の移動機構のついた第 図の様なイン
ライン型のアーク蒸着装置にセットした。これを IX
 1O−5Torrまで排気し、ついでN2ガスを導入
したm  IX 1O−2Torr台でZrをターゲッ
トとして、アーク放電を開始し、圧力を2X 1O−3
Torrにコントロールした。
Example 2 A 60 cm square glass substrate was prepared and washed using a commercially available neutral detergent, running water, ethanol, and N2 drying. This glass substrate was set in an in-line type arc evaporation apparatus as shown in the figure, which is equipped with a substrate movement mechanism. This IX
The atmosphere was evacuated to 1O-5 Torr, and then N2 gas was introduced. Arc discharge was started using Zr as a target on a 1O-2 Torr platform, and the pressure was increased to 2X 1O-3.
It was controlled to Torr.

ついでガラス基板裏面位置に、アーク蒸発源と対向させ
て、配置した金属電極板に一500Vを印加し、また基
板のアーク蒸発源側、ガラス基板位こより ICC隔隔
、  1cm間隔で金属細線をガラス基板の移動方向と
直角方向に張ったチャージアップ防止用グリッドに、同
じ<−500Vを印加し、その条件下でガラス基板を移
動させ、アーク蒸着ゾーンを通過させた。搬送スピード
は30cm/分である。その結果、500人の金色の反
射色を呈したZrN薄膜が得られた。なお、膜形成時、
ガラス基板の加熱は行なわなかった。
Next, 1500V was applied to the metal electrode plate placed on the back side of the glass substrate, facing the arc evaporation source, and thin metal wires were placed on the glass at 1 cm intervals on the arc evaporation source side of the substrate from the glass substrate. The same voltage of <-500 V was applied to a charge-up prevention grid stretched perpendicular to the direction of movement of the substrate, and the glass substrate was moved under that condition to pass through the arc deposition zone. The conveyance speed is 30 cm/min. As a result, a ZrN thin film with a 500-gold reflective color was obtained. Note that during film formation,
The glass substrate was not heated.

アーク蒸発源は、2ケセツトされており、ガラス基板の
進行方向と直角方向の膜厚均一性は、マスクにより確保
した。その結果、ガラス基板全体で±lO%以内の膜厚
均一性が得られた。得られたZrN薄膜は、電気抵抗も
10−5Ωam台と低く、高赤外反射率〉80%を示し
た。
Two arc evaporation sources were used, and uniformity of the film thickness in the direction perpendicular to the direction of movement of the glass substrate was ensured using a mask. As a result, film thickness uniformity within ±10% was obtained over the entire glass substrate. The obtained ZrN thin film had a low electrical resistance of 10 −5 Ωam and a high infrared reflectance of 80%.

[発明の効果] 本発明による効果は以下の通りである。[Effect of the invention] The effects of the present invention are as follows.

l)大面積のガラス基板に均一な膜を容易に形成できる
l) A uniform film can be easily formed on a large area glass substrate.

2)TiN、 ZrNなとの高硬度、高融点の無機質膜
をバルクに近い特性を有した状態で形成できる。
2) High hardness, high melting point inorganic films such as TiN and ZrN can be formed with properties close to bulk.

3)絶縁性のガラス基板にも加速効果が得られ、付着力
も強くできる。
3) An acceleration effect can be obtained even on insulating glass substrates, and the adhesion can be strengthened.

4)他の手法(例えばスパッタ法、イオン注入法など)
との組み合わせが可能である0例えばスパッタ膜形成、
イオン注入処理、アーク蒸着膜形成の組合せが可能であ
る。
4) Other methods (e.g. sputtering method, ion implantation method, etc.)
For example, sputter film formation,
A combination of ion implantation treatment and arc evaporation film formation is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は、本発明のインライン型の無機質膜形
成装置の具体例を模式的に示したものである0図におい
て、(1)はアーク蒸発源を、(2)はガラス基板を、
(3)は裏面電極板を、(4)はチャージアップ防止用
グリッドを示す。 一゛;・°。 で 第1図 第2図
Figures 1 and 2 schematically show a specific example of the in-line inorganic film forming apparatus of the present invention. In Figure 0, (1) shows an arc evaporation source, and (2) shows a glass substrate. of,
(3) shows the back electrode plate, and (4) shows the charge-up prevention grid. 1゛;・°. Figure 1 Figure 2

Claims (7)

【特許請求の範囲】[Claims] (1)真空室内においてガラス基板を水平方向に移動さ
せながら無機質膜形成用蒸発材料をアーク放電によって
蒸発させ、上記ガラス基板上に無機質膜を蒸着させるこ
とを特徴とするガラス基板面への無機質膜の形成方法。
(1) An inorganic film on the surface of a glass substrate characterized by evaporating an evaporation material for inorganic film formation by arc discharge while moving the glass substrate horizontally in a vacuum chamber, and depositing the inorganic film on the glass substrate. How to form.
(2)無機質膜が、酸化物、窒化物、炭化物、硼化物、
硅化物、B_4C、BN、ダイヤモンドの少なくとも一
種を含む無機質からなることを特徴とする特許請求の範
囲第1項記載のガラス基板面への無機質膜の形成方法。
(2) The inorganic film is made of oxide, nitride, carbide, boride,
The method for forming an inorganic film on a glass substrate surface according to claim 1, wherein the inorganic film is made of an inorganic material containing at least one of silicide, B_4C, BN, and diamond.
(3)真空室内の圧力を5×10^−^4Torr〜1
×10^−^2Torrとした条件下で蒸着することを
特徴とする特許請求の範囲第1項記載のガラス基板面へ
の無機質膜の形成方法。
(3) Reduce the pressure inside the vacuum chamber to 5 x 10^-^4 Torr ~ 1
A method for forming an inorganic film on a glass substrate surface according to claim 1, characterized in that the vapor deposition is performed under conditions of x10^-^2 Torr.
(4)移動するガラス基板の裏側に直流電圧印加用電極
板を配するとともに、基板の蒸発源側にガラス基板の移
動方向と直交する金属細線グリッドを配し、上記直流電
圧印加用電極板と金属細線グリッドとを等電位の状態に
おいて無機質膜を蒸着させることを特徴とする特許請求
の範囲第1項記載のガラス基板面への無機質膜の形成方
法。
(4) An electrode plate for applying a DC voltage is placed on the back side of the moving glass substrate, and a fine metal wire grid is placed on the evaporation source side of the substrate perpendicular to the moving direction of the glass substrate. A method for forming an inorganic film on a glass substrate surface according to claim 1, characterized in that the inorganic film is deposited in a state where the metal wire grid and the fine wire grid are at the same potential.
(5)真空室内において無機質膜形成用蒸発材料を蒸発
させてガラス基板上に無機質膜を蒸着させる真空蒸着装
置において、無機質膜形成用蒸発材料を蒸発させるため
の蒸発源としてアーク放電源を設けるとともに、移動す
るガラス基板の裏側に直流電圧印加用又は高周波印加用
の電極板を配したことを特徴とするガラス基板面への無
機質膜形成装置。
(5) In a vacuum evaporation device that evaporates an evaporation material for inorganic film formation in a vacuum chamber to deposit an inorganic film on a glass substrate, an arc discharge source is provided as an evaporation source for evaporating the evaporation material for inorganic film formation; An apparatus for forming an inorganic film on the surface of a glass substrate, characterized in that an electrode plate for applying a direct current voltage or high frequency is arranged on the back side of a moving glass substrate.
(6)基板の蒸発源側にガラス基板の移動方向と直交す
る金属細線グリッドを配したことを特徴とする特許請求
の範囲第5項記載のガラス基板面への無機質膜形成装置
(6) An apparatus for forming an inorganic film on a glass substrate surface as set forth in claim 5, characterized in that a grid of thin metal wires is disposed on the evaporation source side of the substrate, orthogonal to the moving direction of the glass substrate.
(7)ガラス基板とアーク放電源との間に中和用熱電子
発生フィラメントを配したことを特徴とする特許請求の
範囲第5項記載のガラス基板面への無機質膜形成装置。
(7) An apparatus for forming an inorganic film on a glass substrate surface according to claim 5, characterized in that a neutralizing thermoelectron generating filament is disposed between the glass substrate and the arc discharge source.
JP3461787A 1987-02-19 1987-02-19 Method and device for forming inorganic film to glass substrate surface Pending JPS63203760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3461787A JPS63203760A (en) 1987-02-19 1987-02-19 Method and device for forming inorganic film to glass substrate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3461787A JPS63203760A (en) 1987-02-19 1987-02-19 Method and device for forming inorganic film to glass substrate surface

Publications (1)

Publication Number Publication Date
JPS63203760A true JPS63203760A (en) 1988-08-23

Family

ID=12419335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3461787A Pending JPS63203760A (en) 1987-02-19 1987-02-19 Method and device for forming inorganic film to glass substrate surface

Country Status (1)

Country Link
JP (1) JPS63203760A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234557A (en) * 1988-03-16 1989-09-19 Nippon Sheet Glass Co Ltd Heat ray reflecting plate and its production
JP2009045528A (en) * 2007-08-16 2009-03-05 Ulvac Japan Ltd Nanoparticle support device equipped with source of coaxial type vacuum arc vapor deposition and supporting method of nanoparticle
JP2009167088A (en) * 2007-12-20 2009-07-30 Nippon Electric Glass Co Ltd Top plate for cooking appliance and method for manufacturing the same
JP2009285644A (en) * 2008-06-02 2009-12-10 Ulvac Japan Ltd Manufacturing method of catalyst material and vacuum arc evaporation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234557A (en) * 1988-03-16 1989-09-19 Nippon Sheet Glass Co Ltd Heat ray reflecting plate and its production
JP2009045528A (en) * 2007-08-16 2009-03-05 Ulvac Japan Ltd Nanoparticle support device equipped with source of coaxial type vacuum arc vapor deposition and supporting method of nanoparticle
JP2009167088A (en) * 2007-12-20 2009-07-30 Nippon Electric Glass Co Ltd Top plate for cooking appliance and method for manufacturing the same
JP2009285644A (en) * 2008-06-02 2009-12-10 Ulvac Japan Ltd Manufacturing method of catalyst material and vacuum arc evaporation device

Similar Documents

Publication Publication Date Title
Mattox Physical vapor deposition (PVD) processes
JP3660866B2 (en) Method and apparatus for forming hard carbon film
US20040151911A1 (en) Ion gun deposition and alignment for liquid-crystal applications
JPH04354865A (en) Surface treatment by ultra-low speed ion beam
Mattox Physical vapor deposition (PVD) processes
JPH0588310B2 (en)
US20090236217A1 (en) Capillaritron ion beam sputtering system and thin film production method
KR100336621B1 (en) Method of depositing an io or ito thin film on polymer substrate
Colligon Applications of ion-beam-assisted deposition
GB1532759A (en) Production of monocrystalline layers on substrates
JPS63203760A (en) Method and device for forming inorganic film to glass substrate surface
EP0269112A3 (en) Method of forming a thin crystalline metal film
JPH07258840A (en) Formation of carbon thin film
JPS6210269A (en) Vacuum evaporation device and production of thin film
JPH059725A (en) Method for coating hard carbon film
Franks et al. Ion enhanced film bonding
JP2698416B2 (en) Method of forming three-dimensional optical waveguide clad film
JPH0314906B2 (en)
JPH04318162A (en) Formation of cubic boron nitride film and forming device therefor
JP2603919B2 (en) Method for producing boron nitride film containing cubic boron nitride crystal grains
JPH0590253A (en) Insulating film forming method and device
JPS628409A (en) Formation of transparent conducting metal oxide film
JPS58100672A (en) Method and device for formation of thin film
JPH07202440A (en) Production of wiring board
JPS61221360A (en) Flexible film having hard surface and production thereof