Nothing Special   »   [go: up one dir, main page]

JPS6320690B2 - - Google Patents

Info

Publication number
JPS6320690B2
JPS6320690B2 JP53135492A JP13549278A JPS6320690B2 JP S6320690 B2 JPS6320690 B2 JP S6320690B2 JP 53135492 A JP53135492 A JP 53135492A JP 13549278 A JP13549278 A JP 13549278A JP S6320690 B2 JPS6320690 B2 JP S6320690B2
Authority
JP
Japan
Prior art keywords
film
layer
temperature
cooling
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53135492A
Other languages
Japanese (ja)
Other versions
JPS5563229A (en
Inventor
Tsutomu Isaka
Takashi Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP13549278A priority Critical patent/JPS5563229A/en
Publication of JPS5563229A publication Critical patent/JPS5563229A/en
Publication of JPS6320690B2 publication Critical patent/JPS6320690B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、透明性、低温ヒートシール性、表面
平滑性等に優れたフイルムの製造方法に関する。 近年、包装材料の省資源化、ヒートシール性、
ガスバリヤー性、強度等の機能性の向上等を目的
として複合フイルムの開発が行なわれている。 しかし、延伸された複合フイルムは、加熱延伸
操作等によつて低融点重合体層Bが機械的にも熱
的にも苛酷な条件におかれ、傷がついたり透明性
が悪くなつたりすることが多い。また延伸操作に
おいて加熱されたフイルム(シードを含む)は、
延伸終了後自然に冷却したのでは透明性、低温ヒ
ートシール性等が悪くなり、積層時の加工温度
斑、積層厚み斑、積層界面の接着条件等で透明性
が変化することも知られている。 本発明者らは、これらの問題点を究明する努力
を重ねた結果、本発明に到達した。 すなわち、本発明は、一軸延伸されたポリオレ
フイン系重合体からなる基材フイルム層(A)の少な
くとも片面が該基材フイルム層の構成重合体の融
点よりも5℃以上低い低融点ポリオレフイン系重
合体を主成分とする未延伸フイルム、一軸延伸フ
イルムまたは溶融押出しフイルムからなる被覆層
(B)を形成し、得られた積層フイルムを加熱延伸
し、所望により熱固定した後該被覆層(B)の主成分
である低融点熱可塑性重合体の最大結晶化温度か
ら該最大結晶化温度より10℃低い温度の温度範囲
を200℃/秒以上の冷却速度で冷却することを特
徴とするフイルムの製造方法である。 一般的に、加熱延伸されたフイルムは、5℃/
秒〜40℃/秒の冷却速度(空冷)で急冷して透明
性の良好な延伸フイルムを得るのであるが、積層
フイルムの場合には、上述のような冷却速度では
充分な延伸フイルムを得ることができない。しか
も被覆層(B)が低融点熱可塑性重合体の場合にはい
つそう不透明になる可能性があり、上述のような
特別な条件で急冷することによつて初めて透明性
が優れ、ヒートシール性、表面平滑性も優れた積
層延伸フイルムを得ることができるのである。こ
の積層フイルムは特に包装材に用いて好適なもの
である。 本発明の方法において、基材フイルム層(A)は延
伸可能なポリオレフイン系重合体からなり、延伸
により透明性が得られるものであつて、例えばポ
リエチレン、ポリプロピレン、ポリブテン―1の
ようなポリオレフインあるいはエチレン―プロピ
レン共重合体、エチレン―ブテン―1のようなポ
リオレフイン共重合体、が挙げられる。もちろん
これらの混合物や変性物も含まれる。 本発明でいう透明性とは、ヘイズで15以下、好
ましくは9.0以下をいい、基材フイルム層(A)の被
覆層(B)と積層する直前の状態は未配向溶融状態で
も未延伸状態でも一軸延伸状態でもよい。 被覆層(B)の重合体は、基材フイルム層を構成す
る重合体の融点(A)よりも5℃以上、好ましくは10
℃以上融点が低くかつ融点が230℃以下のものが
使用され、基材フイルム層(A)との関連もあるが、
例えばエチレン―プロピレン共重合体のようなオ
レフイン系共重合体が使用される。 積層は、被覆層(B)を溶融状態または固体状態、
好ましくは溶融状態で基材フイルム層(A)に施すこ
とによつて行なわれる。更に詳述すれば、共押出
法、押出ラミネート法、加熱延伸融着法、接着剤
接着法(加熱反応型も含む)等で積層する。(B)層
と(A)層の間には必要な場合は接着剤樹脂層を形成
してもよい。 積層後、該積層フイルムを加熱し、少なくとも
一軸方向に延伸する。延伸後の延伸フイルムの構
成は種々あるが、一軸延伸をUO、二軸延伸を
BO、基材フイルム層をA、被覆層をBとした場
合、2層構成ではBO―A/UO―B、BO―A/
BO―B、UO―A/UO―B、UO―A/BO―
B、3層構成ではBO―B/BO―A/BO―B、
BO―B/BO―A/UO―B、UO―B/BO―
A/UO―B、BO―A/BO―B/BO―A、UO
―A/BO―B/UO―A、UO―B/UO―A/
UO―B、UO―A/UO―B/UO―A等が有用
であり、もちろんこれ以外に種々の組合せがあ
る。 積層する被覆層(B)の厚みは延伸終了後0.1μ〜
20μ、好ましくは0.3μ〜10μ、いつそう好ましくは
0.5μ〜8μである。 延伸は積層、延伸等の工程によつて縦延伸また
は横延伸のどちらかを選択すればよく、延伸手段
としてはロール延伸、テンター延伸、インフレー
シヨン法等どのような手段であつてもさしつかえ
ない。延伸倍率は一方向に少なくとも1.1倍以上、
通常2.5倍以上延伸する。 延伸後所望により熱固定するが、熱固定温度
は、被覆層(B)構成重合体の最大結晶化温度以上の
温度であることが必要である。熱固定時間は重合
体の種類によつて異なるが、通常1〜60秒間であ
る。 次いでこの積層フイルムを急冷するが、冷却速
度は、少なくとも被覆層(B)構成重合体の最大結晶
化温度から該最大結晶化温度より10℃低い温度の
温度範囲を200℃/秒以上で均一に急冷すること
が必要である。この冷却速度よりもおそいと特に
被覆層(B)が結晶化しやすく、透明性が悪化し、低
温ヒートシール性も低下する傾向がある。また冷
却速度が部分的に異なると部分的に結晶化度が異
なり、したがつて部分的に透明性、低温ヒートシ
ール性等が低下することになる。 上述のような急冷条件を満足するためには、更
に次のような冷却条件を満足することが好まし
い。 (1) フイルム厚さ(全厚さ)L(cm)、フイルムの
熱伝達係数h(Cal/cm2・秒・℃)とした時、 h/L≧0.2 (2) 冷却前の初期温度をθ1(℃)、冷却体のフイル
ム面への接着温度をθ2(℃)とした時、 θ1−θ2≧20℃(好ましくは40℃) 上記条件を達成する手段として水冷または調温
液冷構造の金属ロール、ゴムロール、弗素樹脂等
で表面被覆された金属ロール、冷却ベルト等を接
触させて冷却するか、冷風と霧状水とを吹きつけ
て冷却する。しかし、冷風等を単に吹きつけるだ
けでは幅方向に均一に冷却することはむずかし
く、かつ冷却性も悪いので、冷却ロールを使用す
るのが好ましい。また冷却ロール、冷却ベルト等
へのフイルムの接触をより完全にするため、押圧
ゴムロール、エアーナイフ等を用いて押圧しても
よい。 また冷却は、被覆層(B)が片面のみの場合には、
該被覆層(B)の側から行なうのが好ましい。 なお、本発明において冷却速度とは、冷却前の
初期温度をθ1、冷却後の温度をθ2とした場合、次
式によつて定義される。 冷却速度Δθ=θ1−θ2/0.1 換言すれば0.1秒間冷却された時の差を1秒当
たりに換算した値であり、本発明においてはΔθ
≧200℃/秒の条件が必要なのである。 次に実施例について本発明を説明する。実施例
中、ヘイズおよびヒートシール強度立上り温度、
最大結晶化温度TCはそれぞれ次の方法で測定し
た。 (1) ヘイズ:積分球式光線透過率測定装置により
入射光量(T1)、全光線透過量(T2)装置によ
る散乱光量(T3)、装置と試験片による散乱光
量(T4)を測定し、次式により算出した。 透明度(Tt)=T2/T1×100(%) 散乱光透過率(Td)=T4−T3(T2/T1)/T1× 100(%) ヘイズ=Td/Tt×100(%) (2) ヒートシール強度立上り温度: ヒートシール設定温度を10℃の間隔で上昇さ
せて1秒間ヒートシールし、その際のヒートシ
ール強度を測定し、縦軸にヒートシール強度、
横軸にヒートシール温度をとつてグラフを画
き、得られたヒートシール強度―温度曲線の低
温測の変曲点の温度をヒートシール強度立上り
温度とした。 (3) 最大結晶化温度(TC): 差動走査型熱量計を用い、炉中の2個の試料
皿受の一方に測定温度範囲内で吸発熱しない標
準試料を入れ、他方に測定試料を入れて窒素ガ
ス中で試料5mgを280℃まで昇温し、5分間保
持したのち、同じく窒素ガス中で10℃/分の速
度で降温させ、熱量カーブにピークを生ずる
(発熱する)温度を測定して最大結晶化温度
(TC)を得た。 実施例 1 アイソタチツクポリプロピレン(固有粘度2.5
dl/g、融点167℃)を溶融押出して平均厚さ
1620μの未延伸フイルムを得、次いで140℃で縦
方向に4.0倍延伸したのち、平均厚さ42.5μのエチ
レン―プロピレン共重合体(エチレン含量4.2重
量%、TC107℃)を溶融押出ラミネートし、次い
で160℃で横方向に8.5倍延伸し、160℃で10秒間
熱固定した。エチレン―プロピレン共重合体層
(融点155℃TC=110℃)(以下B層という)の温
度が125℃に達した時に、内部に温度20℃の水を
通した金属ロールをB層面に押出ロールによつて
押しつけて接触させ、金属ロールに対する接触弧
長約100mm、フイルムの走行速度60m/分でこの
積層フイルムを走行させた。金属ロール通過直後
のB層の表面温度は62℃であり、冷却速度は656
℃/秒ということになる。冷却後のB層の厚みは
約5μであつた。 また同様の方法で積層後の製品延伸フイルムの
厚さを全厚さで50μとなるようにしてB層の厚み
を変化させた場合の性質も併記した。更に比較例
として通常の速度(40℃/秒)で冷却した場合の
性質も併記した。
The present invention relates to a method for producing a film that has excellent transparency, low-temperature heat sealability, surface smoothness, etc. In recent years, resource saving of packaging materials, heat sealability,
Composite films are being developed for the purpose of improving functionality such as gas barrier properties and strength. However, in the stretched composite film, the low-melting point polymer layer B is subjected to harsh mechanical and thermal conditions due to heating and stretching operations, which may cause scratches or poor transparency. There are many. In addition, the film (including seeds) heated during the stretching operation is
It is also known that if the material is allowed to cool naturally after stretching, the transparency and low-temperature heat-sealability will deteriorate, and the transparency will change due to processing temperature irregularities during lamination, laminated thickness irregularities, adhesive conditions at the laminated interface, etc. . The present inventors have made repeated efforts to investigate these problems, and as a result, have arrived at the present invention. That is, the present invention provides a low melting point polyolefin polymer in which at least one side of the base film layer (A) made of a uniaxially stretched polyolefin polymer has a melting point lower than the melting point of the constituent polymer of the base film layer by 5°C or more. A coating layer consisting of an unstretched film, a uniaxially stretched film, or a melt-extruded film whose main component is
(B) is formed, the obtained laminated film is heated and stretched, and if desired, heat-set, and then the maximum crystallization temperature of the low melting point thermoplastic polymer, which is the main component of the coating layer (B), is adjusted to the maximum crystallization temperature. This is a film manufacturing method characterized by cooling a temperature range 10°C lower than the temperature at a cooling rate of 200°C/second or more. Generally, a heated and stretched film is heated at 5°C/
A stretched film with good transparency is obtained by rapid cooling at a cooling rate (air cooling) of 40°C/sec to 40°C/sec, but in the case of a laminated film, it is difficult to obtain a sufficiently stretched film at the cooling rate mentioned above. I can't. Moreover, if the coating layer (B) is a low-melting thermoplastic polymer, it may become opaque at any time, and excellent transparency and heat sealability can only be achieved by rapid cooling under the special conditions described above. Therefore, a laminated stretched film with excellent surface smoothness can be obtained. This laminated film is particularly suitable for use in packaging materials. In the method of the present invention, the base film layer (A) is made of a polyolefin polymer that can be stretched, and transparency can be obtained by stretching, such as a polyolefin such as polyethylene, polypropylene, polybutene-1, or ethylene. -propylene copolymers and polyolefin copolymers such as ethylene-butene-1. Of course, mixtures and modified products thereof are also included. Transparency in the present invention refers to a haze of 15 or less, preferably 9.0 or less, and the state immediately before laminating the base film layer (A) with the coating layer (B) is in an unoriented molten state or an unstretched state. It may be in a uniaxially stretched state. The polymer of the coating layer (B) has a melting point of 5°C or more, preferably 10°C or more, than the melting point (A) of the polymer constituting the base film layer.
A material with a low melting point of ℃ or above and a melting point of 230℃ or less is used, and it is also related to the base film layer (A),
For example, olefinic copolymers such as ethylene-propylene copolymers are used. For lamination, the coating layer (B) is in a molten state or a solid state,
This is preferably carried out by applying it to the base film layer (A) in a molten state. More specifically, the layers are laminated by a coextrusion method, an extrusion lamination method, a heat stretch fusion method, an adhesive bonding method (including a heat reaction type), or the like. If necessary, an adhesive resin layer may be formed between the (B) layer and the (A) layer. After lamination, the laminated film is heated and stretched in at least one direction. There are various configurations of the stretched film after stretching, but uniaxial stretching is UO, and biaxial stretching is UO.
When BO, base film layer is A, and coating layer is B, in a two-layer configuration, BO-A/UO-B, BO-A/
BO-B, UO-A/UO-B, UO-A/BO-
B. In the three-layer configuration, BO-B/BO-A/BO-B,
BO-B/BO-A/UO-B, UO-B/BO-
A/UO-B, BO-A/BO-B/BO-A, UO
-A/BO-B/UO-A, UO-B/UO-A/
UO-B, UO-A/UO-B/UO-A, etc. are useful, and of course there are various other combinations. The thickness of the coating layer (B) to be laminated is 0.1μ ~ after stretching.
20μ, preferably 0.3μ~10μ, when so preferably
It is 0.5μ to 8μ. For stretching, either longitudinal stretching or lateral stretching may be selected depending on the process such as lamination or stretching, and any stretching method such as roll stretching, tenter stretching, or inflation method may be used. . The stretching ratio is at least 1.1 times in one direction,
Usually stretched by 2.5 times or more. After stretching, heat setting is performed if desired, and the heat setting temperature must be higher than the maximum crystallization temperature of the polymer constituting the coating layer (B). The heat setting time varies depending on the type of polymer, but is usually 1 to 60 seconds. Next, this laminated film is rapidly cooled, and the cooling rate is at least 200°C/sec or more uniformly over a temperature range from the maximum crystallization temperature of the polymer constituting the coating layer (B) to a temperature 10°C lower than the maximum crystallization temperature. Rapid cooling is necessary. If the cooling rate is slower than this, the coating layer (B) in particular tends to crystallize, resulting in poor transparency and low-temperature heat sealability. Furthermore, if the cooling rate differs locally, the degree of crystallinity will differ locally, and therefore transparency, low-temperature heat sealability, etc. will decrease locally. In order to satisfy the rapid cooling conditions as described above, it is preferable that the following cooling conditions are further satisfied. (1) When the film thickness (total thickness) is L (cm) and the heat transfer coefficient of the film is h (Cal/ cm2・sec・℃), h/L≧0.2 (2) The initial temperature before cooling is When θ 1 (°C) and the adhesion temperature of the cooling body to the film surface are θ 2 (°C), θ 1 - θ 2 ≧20°C (preferably 40°C) Water cooling or temperature control is used as a means to achieve the above conditions. Cooling is performed by contacting a liquid-cooled metal roll, a rubber roll, a metal roll whose surface is coated with a fluororesin, a cooling belt, or the like, or by blowing cold air and water mist. However, it is difficult to cool uniformly in the width direction by simply blowing cold air or the like, and the cooling performance is also poor, so it is preferable to use a cooling roll. Further, in order to bring the film into more complete contact with the cooling roll, cooling belt, etc., a pressing rubber roll, an air knife, etc. may be used to press the film. In addition, cooling is performed when the coating layer (B) is only on one side.
It is preferable to carry out from the side of the coating layer (B). In the present invention, the cooling rate is defined by the following equation, where the initial temperature before cooling is θ 1 and the temperature after cooling is θ 2 . Cooling rate Δθ = θ 1 - θ 2 /0.1 In other words, it is a value obtained by converting the difference in cooling for 0.1 seconds per second, and in the present invention, Δθ
A condition of ≧200°C/sec is required. Next, the present invention will be explained with reference to examples. In the examples, haze and heat seal strength rise temperature,
The maximum crystallization temperature TC was measured by the following method. (1) Haze: Measure the amount of incident light (T 1 ), total light transmission (T 2 ) using an integrating sphere light transmittance measurement device, the amount of scattered light (T 3 ) by the device, and the amount of scattered light (T 4 ) by the device and test piece. It was measured and calculated using the following formula. Transparency (Tt) = T 2 / T 1 × 100 (%) Scattered light transmittance (Td) = T 4 − T 3 (T 2 / T 1 ) / T 1 × 100 (%) Haze = Td / Tt × 100 (%) (2) Heat seal strength rise temperature: Increase the heat seal temperature at 10°C intervals and heat seal for 1 second, measure the heat seal strength at that time, and plot the heat seal strength on the vertical axis.
A graph was drawn with the heat sealing temperature on the horizontal axis, and the temperature at the inflection point of the low temperature measurement of the obtained heat sealing strength-temperature curve was taken as the heat sealing strength rise temperature. (3) Maximum crystallization temperature (TC): Using a differential scanning calorimeter, place a standard sample that does not absorb or heat heat within the measurement temperature range in one of the two sample trays in the furnace, and place the measurement sample in the other. 5 mg of sample was heated to 280℃ in nitrogen gas, held for 5 minutes, then lowered at a rate of 10℃/min in nitrogen gas, and the temperature at which a peak occurs on the calorific curve (heat generation) is measured. The maximum crystallization temperature (TC) was obtained. Example 1 Isotactic polypropylene (intrinsic viscosity 2.5
dl/g, melting point 167℃) to obtain the average thickness
An unstretched film of 1620μ was obtained, then stretched 4.0 times in the machine direction at 140°C, and then melt-extruded laminated with an ethylene-propylene copolymer (ethylene content 4.2% by weight, TC 107°C) with an average thickness of 42.5μ, and then It was stretched 8.5 times in the transverse direction at 160°C and heat-set at 160°C for 10 seconds. When the temperature of the ethylene-propylene copolymer layer (melting point 155°C TC = 110°C) (hereinafter referred to as B layer) reaches 125°C, a metal roll with water at a temperature of 20°C passed inside is extruded onto the B layer surface. The laminated film was pressed into contact with the metal roll, and the laminated film was run at a contact arc length of about 100 mm and a film running speed of 60 m/min. The surface temperature of layer B immediately after passing through the metal roll is 62℃, and the cooling rate is 656℃.
This means ℃/second. The thickness of layer B after cooling was approximately 5 μm. In addition, the properties when the thickness of layer B was varied by making the total thickness of the product stretched film 50 μm after lamination using the same method are also listed. Furthermore, as a comparative example, the properties when cooled at a normal rate (40° C./sec) are also shown.

【表】 第1表の結果から明らかなように実施例の積層
フイルムのヘイズ、ヒートシール強度は比較例の
それと比較して格段に優れていることが分かる。 実施例 2 実施例1と同様な方法で積層フイルムを製造し
た。ただし、B層の厚みを5μと一定にし、冷却
速度を第2表のように変化させた。その結果は第
2表のとおりである。
[Table] As is clear from the results in Table 1, the haze and heat seal strength of the laminated films of Examples are significantly superior to those of Comparative Examples. Example 2 A laminated film was produced in the same manner as in Example 1. However, the thickness of layer B was kept constant at 5 μm, and the cooling rate was varied as shown in Table 2. The results are shown in Table 2.

【表】 実施例 3 基材フイルム層(A)に、エチレン含有量0.7重量
%のエチレン―プロピレン共重合体にステアリン
酸モノグリセライド0.5重量%、ステアリルアミ
ンのエチレンオキサイド付加物0.1重量%および
エルカ酸アミド0.1重量%を配合したものを用い、
一方、被覆層(B)に、エチレン―プロピレン共重合
体(エチレン含有量5重量%融点=148℃TC=
100℃)とエチレン―ブテン―1共重合体(エチ
レン含有量4.5重量%)とを4:1に混合し、こ
れに更にエルカ酸アミド0.2重量%とステアリン
酸モノグリセド0.3重量%とを配合したものを用
いて、上記A層の両面に上記B層を積層した。 積層方法は、2台の押出機からA層とB層の各
原料を別個に溶融し、ダイス内部で積層した共押
出しして未延伸フイルムを得た。各層の厚みはA
層1480μ、B層計120μ、合計1600μであつた。 該フイルムを125℃で縦方向に5倍、次いで160
℃で横方向に8倍延伸し、165℃で8秒間熱固定
した。次いで20℃に冷却した金属ロールで800
℃/秒の冷却したところ、第3表のような結果と
なつた。なお、比較のために従来法の場合を併記
した。なお、製品の延伸積層フイルムの厚さは
40μと一定にした。
[Table] Example 3 In the base film layer (A), an ethylene-propylene copolymer with an ethylene content of 0.7% by weight, 0.5% by weight of stearic acid monoglyceride, 0.1% by weight of ethylene oxide adduct of stearylamine, and erucic acid amide Using a compound containing 0.1% by weight,
On the other hand, in the coating layer (B), ethylene-propylene copolymer (ethylene content 5% by weight, melting point = 148°C TC =
100°C) and ethylene-butene-1 copolymer (ethylene content: 4.5% by weight) in a 4:1 ratio, which was further blended with 0.2% by weight of erucic acid amide and 0.3% by weight of stearic acid monoglyceride. The above layer B was laminated on both sides of the above layer A using the following method. In the lamination method, raw materials for layer A and layer B were separately melted using two extruders, and the raw materials for layer A and B were laminated and coextruded inside a die to obtain an unstretched film. The thickness of each layer is A
The layer was 1480μ, the B layer was 120μ in total, and the total thickness was 1600μ. The film was heated 5 times in the longitudinal direction at 125°C, then 160°
The film was stretched 8 times in the transverse direction at 165° C. and heat-set for 8 seconds at 165° C. Then 800℃ with a metal roll cooled to 20℃
When the sample was cooled at a rate of .degree. C./second, the results shown in Table 3 were obtained. For comparison, the case of the conventional method is also shown. In addition, the thickness of the stretched laminated film of the product is
It was kept constant at 40μ.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 未配向溶融状態、未延伸状態又は一軸延伸状
態のポリオレフイン系重合体からなる基材フイル
ム層(A)の少なくとも片面に該基材フイルム層の構
成重合体の融点よりも5℃以上低い低融点ポリオ
レフイン系重合体を主成分とする未延伸フイル
ム、一軸延伸フイルムまたは溶融押出しフイルム
からなる被覆層(B)を形成し、得られた積層フイル
ムを加熱延伸し、所望により熱固定した後該被覆
層(B)の主成分である低融点ポリオレフイン系重合
体の最大結晶化温度から該最大結晶化温度より10
℃低い温度までの範囲にわたつて200℃/秒以上
の冷却速度で冷却することを特徴とするフイルム
の製法。
1 At least one side of the base film layer (A) made of a polyolefin polymer in an unoriented molten state, an unstretched state, or a uniaxially stretched state has a low melting point that is 5°C or more lower than the melting point of the constituent polymer of the base film layer. A coating layer (B) consisting of an unstretched film, a uniaxially stretched film, or a melt-extruded film containing a polyolefin polymer as a main component is formed, and the resulting laminated film is heated and stretched, and if desired, heat-set, and then the coating layer is formed. 10% from the maximum crystallization temperature of the low melting point polyolefin polymer that is the main component of (B)
A film manufacturing method characterized by cooling at a cooling rate of 200°C/second or more over a range of temperatures as low as 100°F.
JP13549278A 1978-11-02 1978-11-02 Method of manufacturing film excellent in transparency Granted JPS5563229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13549278A JPS5563229A (en) 1978-11-02 1978-11-02 Method of manufacturing film excellent in transparency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13549278A JPS5563229A (en) 1978-11-02 1978-11-02 Method of manufacturing film excellent in transparency

Publications (2)

Publication Number Publication Date
JPS5563229A JPS5563229A (en) 1980-05-13
JPS6320690B2 true JPS6320690B2 (en) 1988-04-28

Family

ID=15152991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13549278A Granted JPS5563229A (en) 1978-11-02 1978-11-02 Method of manufacturing film excellent in transparency

Country Status (1)

Country Link
JP (1) JPS5563229A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595532A (en) * 1979-01-12 1980-07-19 Toray Ind Inc Manufacture of composite film
JPS6219454A (en) * 1985-07-19 1987-01-28 三菱化学株式会社 Non-fogging polypropylene film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495492A (en) * 1972-05-04 1974-01-18
JPS5221544A (en) * 1975-08-11 1977-02-18 Nippon Cable Syst Inc Flexible shafr for pushing and pulling operation
JPS5294381A (en) * 1976-02-04 1977-08-08 Mitsui Petrochem Ind Ltd Biaxially stretched polypropylene composite film
JPS5324465A (en) * 1976-08-11 1978-03-07 Seiichi Tadami Method of patterning matting materials
JPS53128685A (en) * 1977-04-15 1978-11-09 Toray Ind Inc Three layer-laminated polypropylene film
JPS55154131A (en) * 1979-05-19 1980-12-01 Tokuyama Soda Co Ltd Preparation of biaxially-drawn laminated polypropylene film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495492A (en) * 1972-05-04 1974-01-18
JPS5221544A (en) * 1975-08-11 1977-02-18 Nippon Cable Syst Inc Flexible shafr for pushing and pulling operation
JPS5294381A (en) * 1976-02-04 1977-08-08 Mitsui Petrochem Ind Ltd Biaxially stretched polypropylene composite film
JPS5324465A (en) * 1976-08-11 1978-03-07 Seiichi Tadami Method of patterning matting materials
JPS53128685A (en) * 1977-04-15 1978-11-09 Toray Ind Inc Three layer-laminated polypropylene film
JPS55154131A (en) * 1979-05-19 1980-12-01 Tokuyama Soda Co Ltd Preparation of biaxially-drawn laminated polypropylene film

Also Published As

Publication number Publication date
JPS5563229A (en) 1980-05-13

Similar Documents

Publication Publication Date Title
US4578316A (en) Multi-layer oriented polypropylene films with low COF skin(s)
US3671383A (en) Laminated biaxially oriented isotactic polypropylene and uniaxially oriented ethylene-propylene-films
US4333968A (en) Thermoplastic packaging films with improved heat-seal characteristics
US4148972A (en) Heatsealable polypropylene film laminate
US4198256A (en) Method of making a heat-sealable oriented polypropylene film
JP2679823B2 (en) Biaxially stretched multilayer barrier film and method for producing the same
US4235365A (en) Three-layered polypropylene films
EP0454420B1 (en) Biaxially stretched multilayer film and process for manufacturing same
US4390385A (en) Heat sealable, multi-ply polypropylene film
EP0595270A1 (en) Heat sealable shrink laminate
US4613547A (en) Multi-layer oriented polypropylene films
US6025079A (en) Heat-shrinkable multi-layer film
GB2039249A (en) Stretching ethylene-vinyl-alcohol copolymer film
US3540979A (en) Laminates of similarly constituted films of different crystal structure
EP1213318B1 (en) Fluororesin film of high mechanical strength
TW202204494A (en) Biaxially-oriented polypropylene film
JPS6320690B2 (en)
JPH024426B2 (en)
JPS60171149A (en) Polyester composite film
US6174479B1 (en) Process for processing a semicrystalline thermoplastic
JPH0373452B2 (en)
JPH0380092B2 (en)
JPH05185506A (en) Production of moisture-proof film
JPH04255322A (en) Moistureproof film
JP3650454B2 (en) Manufacturing method of multilayer stretched film