Nothing Special   »   [go: up one dir, main page]

JPS63204234A - Plastic optical fiber - Google Patents

Plastic optical fiber

Info

Publication number
JPS63204234A
JPS63204234A JP62035482A JP3548287A JPS63204234A JP S63204234 A JPS63204234 A JP S63204234A JP 62035482 A JP62035482 A JP 62035482A JP 3548287 A JP3548287 A JP 3548287A JP S63204234 A JPS63204234 A JP S63204234A
Authority
JP
Japan
Prior art keywords
core
fiber
refractive index
plastic
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62035482A
Other languages
Japanese (ja)
Inventor
Akira Tomaru
暁 都丸
Toshikuni Kaino
戒能 俊邦
Hiroaki Hanabusa
花房 広明
Yoshiyuki Aomi
青海 恵之
Kazunobu Suzuki
和宣 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62035482A priority Critical patent/JPS63204234A/en
Publication of JPS63204234A publication Critical patent/JPS63204234A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/383Non-linear optics for second-harmonic generation in an optical waveguide structure of the optical fibre type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To obtain an effective nonlinear optical element by forming a core part having the refractive index higher than the refractive index of a clad to <=100mum diameter. CONSTITUTION:The core part 1 having the refractive index higher than the refractive index of the clad of a plastic optical fiber having the core 1 consisting of a synthetic high-polymer material and the clad 2 is formed to <=100mum diameter. An org. material having large nonlinear sensitivities beta, gamma is dispersed into the synthetic high-polymer material of the core part or is incorporated into the repeating unit of the synthetic high-polymer in the core part. The org. material having the large nonlinear sensitivities beta, gamma refer to an arom. compd., incorporated with a long chain conjugation system in the molecular structure and a compd. which consists of alkyne, alkene, etc., as skeleton and is added with an electron withdrawing group such as NO2, CN or CHO, and NR2 (R denotes hydrogen or alkyl group), OH or OCH3. A nonlinear optical effect is thereby obtd. with a low input.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光通信あるいは元情報処理分野において用いる
ことのできる非線形光学効果を発現することのできるプ
ラスチック元ファイバに関する0 〔従来の技術〕 従来、プラスチック元ファイバはコア径が大きいこと、
比屈折率差が大きいこと(典型的にはコア径500μm
前後、比屈折率差5%前後)に特徴がおシ元の導入等で
有利な点が強調されていた。こうした従来のプラスチッ
ク元ファイバを非線形光学効果を起こすデバイスとして
石英系元ファイバの代夛に用いることは有機材料の元弁
線形性が石英系ガラス材料に比較して大きいことを考え
ると非常に有効でおる。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a plastic fiber that can exhibit a nonlinear optical effect and can be used in the field of optical communication or information processing. The plastic original fiber has a large core diameter,
A large relative refractive index difference (typically a core diameter of 500 μm)
The advantageous features of the introduction of the oscillator were emphasized in terms of the relative refractive index difference (around 5% between the front and back). Considering that the original linearity of organic materials is greater than that of silica-based glass materials, it is very effective to use such conventional plastic fibers as a device for producing nonlinear optical effects in place of silica-based fibers. is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来のプラスチック元ファイバは前記の
ようにコア径、比屈折率差共に大きく、元のパワー密度
が大きくとれないので有効な非線形光学効果を起こすこ
とができず、実用的なファイバ型非線形元学素子の部品
として用いることが困難であるという欠点があった。
However, as mentioned above, conventional plastic fibers have large core diameters and relative refractive index differences, and the original power density cannot be large, so they cannot produce effective nonlinear optical effects. It has the disadvantage that it is difficult to use it as a component of a chemical element.

また同様なファイバ型非線形光学素子として石英系ガラ
スを用いた物も数多く発表されているが石英系ガラス自
体の非線形性が非常に小さいため有効な非線形光学効果
を起こすにはハイパワーな元をファイバに入射する必要
があるという欠点を有していた。
In addition, many similar fiber-type nonlinear optical elements using silica glass have been announced, but since the nonlinearity of silica glass itself is very small, it is difficult to produce an effective nonlinear optical effect without using a high-power source. It had the disadvantage that it needed to be incident on the

本発明の目的は有効な非線形光学素子を提供することに
ある。
An object of the present invention is to provide an effective nonlinear optical element.

〔問題点を解決するための手段〕[Means for solving problems]

本発明を概説すれば、本発明はプラスチック光ファイバ
に関する発明であって、合成高分子材料からなるコアと
クラッドを有するプラスチック光ファイバにおいて、ク
ラッドよp高い屈折率を有するコア部の直径が100μ
m以下であることを特徴とする。
To summarize the present invention, the present invention relates to a plastic optical fiber having a core and a cladding made of a synthetic polymer material, in which the diameter of the core portion having a refractive index p higher than that of the cladding is 100 μm.
m or less.

非線形光学効果の発現においてはその効率は入射光のパ
ワー強度に依存する。非線形光学材料を導波路化するこ
とで元の閉じ込め効果により実効的な入射光のパワー密
度を上げ、低入力で非線形光学効果を起こす方法は有効
な手法でアク、石英系ガラス元ファイバでは石英系ガラ
スの三次の非線形感受率z(6)の値が10” esu
と小さいにもかかわらず数Wの入力元で、コア径10μ
m以下、数mの長さの石英系ガラス元ファイバによシ有
効な三次の非線形光学効果が観測されている〔例えばR
,H,ストーレン(R,H。
The efficiency of nonlinear optical effects depends on the power intensity of incident light. It is an effective method to increase the effective power density of incident light by making a nonlinear optical material into a waveguide due to the original confinement effect, and to cause a nonlinear optical effect with a low input. The value of third-order nonlinear susceptibility z(6) of glass is 10” esu
Despite its small size, the input source is only a few W, and the core diameter is 10μ.
An effective third-order nonlinear optical effect has been observed for silica-based glass original fibers with lengths of less than m or several meters [for example, R
, H, Storen (R,H.

5tO1θn)ほか、アプライド フイジクス レター
ス(Appl、Phys、Letts、 )  第22
巻、第6号、第294頁(1973))。プラスチック
光ファイバでは有機材料がコアを形成しているが、有機
材料では石英系ガラスより二桁以上大きなz(3)を有
する材料がいくつか報告されている(例えば有機非線形
光学材料 加藤・中面シーエムシー 1985年)。
5tO1θn) and others, Applied Physics Letters (Appl, Phys, Letts, ) 22nd
Vol. 6, p. 294 (1973)). In plastic optical fibers, an organic material forms the core, and some organic materials have been reported to have z(3) two orders of magnitude larger than that of silica glass (for example, organic nonlinear optical materials Kato and Nakahama). CMC 1985).

以上のことから、有機材料をコアとするプラスチック光
ファイバのコア径を100μm以下とすることでファイ
バ畏敬m以下で石英系元ファイバで観測されていると同
様の有効な非線形光学効果を数Wの入力元で観測するこ
とができる。このプラスチック光ファイバのコア径を1
00μm超とした場合にもファイバ長を数十m以上にす
ることやあるいは入力元を数十W以上にすることで非線
形光学効果を起こすことは可能であるが、プラスチック
光ファイバの長さによる損失増、あるいは現状の半導体
レーザを入力元源として用いることを考えると数十W以
上の半導体レーザを一般的に用いることは困難であり、
実用的な非線形光学素子をプラスチック光ファイバによ
シ提供するためにはコア径が100μm以下であること
が必要となる。
From the above, by setting the core diameter of a plastic optical fiber with an organic material as the core to 100 μm or less, effective nonlinear optical effects similar to those observed in silica-based original fibers can be achieved with a power of several watts at a fiber speed of less than m. It can be observed at the input source. The core diameter of this plastic optical fiber is 1
Even if the fiber length exceeds 00 μm, it is possible to produce a nonlinear optical effect by increasing the fiber length to several tens of meters or more or by increasing the input source to several tens of W or more, but the loss due to the length of the plastic optical fiber Considering the increase in power consumption or the use of current semiconductor lasers as input sources, it is difficult to generally use semiconductor lasers with a power of several tens of W or more.
In order to provide a practical nonlinear optical element using a plastic optical fiber, it is necessary that the core diameter be 100 μm or less.

第1−1図に示すのは本発明によシ作裂したプラスチッ
ク光ファイバの断面図であシ、符号1はコア、2はクラ
ッドを意味する。第1−2図は本発明のプラスチック光
ファイバのコア及びクラツド径も屈折率分布の様子の一
例のグラΔ フであp5コア径10μm、ファイバ外径500μm、
比屈折率差は[1,2%の場合について示したものであ
る。すなわち、第1−2図はファイバ径(μm、横軸)
と屈折率n(縦軸)との関係を示すグラフである。
FIG. 1-1 is a cross-sectional view of a plastic optical fiber that has been cleaved according to the present invention, in which reference numeral 1 indicates the core and 2 indicates the cladding. Figures 1-2 are graphs showing an example of the refractive index distribution of the core and cladding diameters of the plastic optical fiber of the present invention.
The relative refractive index difference is shown for the case of [1.2%]. In other words, Figure 1-2 shows the fiber diameter (μm, horizontal axis)
It is a graph showing the relationship between the refractive index n (vertical axis) and the refractive index n (vertical axis).

本発明において分散若しくは合成高分子の繰返し単位と
して含まれる非線形感受率β、γの大きな有機物として
は、分子構造中に長鎖共役系が含まれる芳香族系化合物
、アルキン、アルケン等を骨格として、 No、、CN
、 CHO等の電子吸引基、 NR,(Rは水素又はア
ルキル基を示す)、OH,0CHs  等の電子供与基
を付加した化合物を用いることができる。
In the present invention, organic substances with large nonlinear susceptibilities β and γ that are included as repeating units in dispersed or synthesized polymers include aromatic compounds containing long-chain conjugated systems in their molecular structures, alkynes, alkenes, etc. as skeletons; No, CN
, CHO, and other electron-withdrawing groups, and compounds to which electron-donating groups such as NR, (R represents hydrogen or an alkyl group), OH, and 0CHs can be used.

プラスチックに有機物を分散させる例以外に、例えば以
下の反応式の様に非線形感受率β、γが大きな有機物を
重合能を有する分子に結合させ、その後モノマーを重合
させて高分子化し、プラスチック光ファイバのコア材料
として用いることもできる。
In addition to the example of dispersing organic substances in plastic, for example, as shown in the reaction formula below, organic substances with large nonlinear susceptibilities β and γ are bonded to molecules that have polymerization ability, and then monomers are polymerized to make them into polymers to create plastic optical fibers. It can also be used as a core material.

あるいは以下の式の様に先にモノマーを重合させ、あと
から非線形感受率β、γが大きな有機分子を結合させ、
この高分子材料をグラスチック元ファイバのコア材料と
して用いることができる。
Alternatively, as shown in the formula below, monomers are first polymerized, and then organic molecules with large nonlinear susceptibilities β and γ are combined,
This polymer material can be used as a core material of a glass original fiber.

O2 本発明のプラスチック元ファイバにおいてはコア径が1
00μm以下と非常に小さいため元パワー密度が実効的
に大きくなり従来のプラスチック党ファイバに比較して
低い元パワーで非線形性を発現することが可能である。
O2 In the plastic original fiber of the present invention, the core diameter is 1
Since it is very small, 00 μm or less, the original power density becomes effectively large, and it is possible to exhibit nonlinearity with a lower original power than conventional plastic fibers.

線形光学効果、例えば誘導ラマン等を利用した光源とし
ての応用、元カー効果を応用した元−元スイッチ等の応
用が考えられ本発明の効果の発現は、もちろん実施例に
掲げた材料、製法等に限定されるものではない。また本
発明におけるプラスチック元ファイバは非線形光学効果
以外の尤物性を示す光導光路として応用することができ
るのは言うまでもないことである。
Applications such as light sources using linear optical effects, such as stimulated Raman, and source-to-source switches using the original Kerr effect can be considered, and the effects of the present invention can of course be realized using the materials, manufacturing methods, etc. listed in the examples. It is not limited to. Further, it goes without saying that the plastic fiber in the present invention can be applied as a light guide path exhibiting physical properties other than nonlinear optical effects.

次に本発明のグラスチック元ファイバの作製方法の1例
を記す。第2図に示すのは作製の工程図である。第2図
において、符号3はコア用母材、4はクラッド用母材、
5は線引き母材、6は線引き用炉を意味する。まず、通
常のプラスチック製コアファイバ(コア径500μm程
度)を例えば特開昭57−81205号公報に報告され
ているような方法で作製、長さ20t:!n程度に切断
する〔第2図(ア)〕。次に(イ)に示す様にプラスチ
ック製コアファイバの屈折率よpも小さな値を有するプ
ラスチックの円筒を作製する〔第2図(イ)〕。次にこ
の円筒の大中にプラスチック製コアファイバを挿入する
。両者のす@まけ円筒と同材料のプラスチックを与える
モノマーを注入後〔第2図(つ)〕、当該モノマーを高
分子化することによって円筒とコアファイバを一体化す
る〔第2図(1)〕。最後に一体化したこのプラスチッ
ク固溶体を熱をかけながら溶融押出し線引きすることに
よって本発明によるプラスチック元ファイバを得た。
Next, one example of the method for producing the glass original fiber of the present invention will be described. FIG. 2 shows a manufacturing process diagram. In FIG. 2, numeral 3 is a core base material, 4 is a clad base material,
5 means a wire drawing base material, and 6 means a wire drawing furnace. First, a normal plastic core fiber (core diameter of about 500 μm) was fabricated using a method such as that reported in Japanese Patent Application Laid-Open No. 57-81205, and the length was 20 tons. Cut into approximately n pieces [Figure 2 (A)]. Next, as shown in (A), a plastic cylinder having a refractive index p smaller than that of the plastic core fiber is manufactured [Fig. 2 (A)]. Next, a plastic core fiber is inserted into the large part of this cylinder. After injecting a monomer that provides the same plastic material as both spare cylinders [Figure 2 (1)], the cylinder and core fiber are integrated by polymerizing the monomer [Figure 2 (1)] ]. Finally, this integrated plastic solid solution was melt-extruded and drawn while heating to obtain a plastic original fiber according to the present invention.

〔実施例〕〔Example〕

以下に具体的に本発明によるプラスチック元ファイバの
作製及びその動作について説明するが、本発明はこれら
実施例に限定されない。
The production and operation of the plastic original fiber according to the present invention will be specifically described below, but the present invention is not limited to these examples.

実施例1 メチルメタクリレートモノマーからまず通常のプラスチ
ック製コアファイバ(コア径500μfn)を作製する
。次にポリメチルメタクリレートとポリフルオロアルキ
ルメタクリレートの共重合体から円柱状のロッドを作製
する(混合比99:・1)。作製した円柱状のロッド(
外径50cm、外径510μtn)に穴あけ加工を施し
第2図に示した作製法例に従って線引き加工を施す。こ
の様にしてできたグラスチック元ファイバのファイバ形
状はコア径が5μm5外径が500μmであった。この
ファイバ10mに色素レーザー元(波長[154Am、
元パワー: 50.OmW )  を入射したところ自
己位相変調効果を観測することができた。入射光の波形
の変化を第3−1図に示したようにして測定し、第3−
2図に示す結果を得た。なお第3−1図において、符号
7は本発明のプラスチックファイバ、8は入射前のスペ
クトル幅、9は入射後のスペクトル幅、10はNd :
 YAGレーザを意味する。また、第5−2図は、入力
元強度(任意単位、横軸)とスペクトル幅(任意単位、
縦軸)との関係を示すグラフである。
Example 1 First, an ordinary plastic core fiber (core diameter 500 μfn) is produced from methyl methacrylate monomer. Next, a cylindrical rod is produced from a copolymer of polymethyl methacrylate and polyfluoroalkyl methacrylate (mixing ratio 99:.1). The prepared cylindrical rod (
A hole (outer diameter 50 cm, outer diameter 510 μtn) is drilled and wire drawn according to the manufacturing method example shown in FIG. The fiber shape of the glass original fiber thus produced had a core diameter of 5 μm and an outer diameter of 500 μm. A dye laser source (wavelength [154 Am,
Original power: 50. When OmW ) was incident, a self-phase modulation effect could be observed. The change in the waveform of the incident light is measured as shown in Figure 3-1.
The results shown in Figure 2 were obtained. In FIG. 3-1, numeral 7 is the plastic fiber of the present invention, 8 is the spectral width before incidence, 9 is the spectral width after incidence, and 10 is Nd:
means YAG laser. In addition, Figure 5-2 shows the input source intensity (arbitrary unit, horizontal axis) and spectral width (arbitrary unit,
It is a graph showing the relationship with the vertical axis).

実施例2 メチルメタクリレートモノマー溶液に所定量の重合開始
剤、連鎖移動剤と共に4−二トロー4′−ジメチルアミ
ノスチルベンをα1重量%溶かした母材からファイバ径
500μmのプラスチック製コアファイバを20m程度
作製する。
Example 2 Approximately 20 m of plastic core fiber with a fiber diameter of 500 μm was prepared from a base material in which α1% by weight of 4-nitro-4'-dimethylaminostilbene was dissolved together with a predetermined amount of a polymerization initiator and a chain transfer agent in a methyl methacrylate monomer solution. do.

次に実施例1と同様の方法で作製したポリメチルメタク
リレートの円筒中に当該プラスチック製コアファイバを
挿入する。更に円筒とファイバのすきまにメチルメタク
リレートモノマー及び所定量の添加剤全注入し、窒素ガ
ス雰囲気下130℃で6時間放置しグラスチック光ファ
イバを円筒中に固定する。その後、160℃で6時間放
置し完全にファイバと筒とを一体化する。
Next, the plastic core fiber was inserted into a polymethyl methacrylate cylinder prepared in the same manner as in Example 1. Furthermore, methyl methacrylate monomer and a predetermined amount of additives were all injected into the gap between the cylinder and the fiber, and the glass optical fiber was fixed in the cylinder by leaving it at 130° C. for 6 hours in a nitrogen gas atmosphere. Thereafter, the fiber and tube were completely integrated by being left at 160° C. for 6 hours.

次にこの円筒状のプラスチック固溶体の一端に200℃
程度の熱をかけながら圧力による押出しによって線引き
加工する。外径500μmに制御することによって本発
明のグラスチック光ファイバを得た。この元ファイバの
コア径5μm。
Next, one end of this cylindrical plastic solid solution was heated to 200°C.
The wire is drawn by extrusion under pressure while applying a certain amount of heat. The glass optical fiber of the present invention was obtained by controlling the outer diameter to 500 μm. The core diameter of this original fiber was 5 μm.

外径500μm、比屈折−a、2%であった。The outer diameter was 500 μm, and the relative refraction -a was 2%.

このファイバ1mにレーザー元(波長:α63μm、ピ
ークパワー5 mW )  をファイバ端から入射した
ところ自己位相変調効果を観測することができた。
When a laser source (wavelength: α63 μm, peak power 5 mW) was input into 1 m of this fiber from the fiber end, a self-phase modulation effect could be observed.

実施例3 2−メチル−4−ニトロアニリンを2%程度混入したコ
ア用母材を作製して上記実施例1と同様にして本発明の
グラスチック光ファイバを得た(コア径5μm、外径4
50 /jm、比屈折率差0.2%、長さ10 m )
Example 3 A core base material containing about 2% of 2-methyl-4-nitroaniline was prepared, and a glass optical fiber of the present invention was obtained in the same manner as in Example 1 (core diameter: 5 μm, outer diameter: 4
50/jm, relative refractive index difference 0.2%, length 10 m)
.

このファイバにレーザー元(波長:1.06μm。A laser source (wavelength: 1.06 μm) is attached to this fiber.

ピークパワー5 mW )  をファイバ端から入射し
たところ第二高調波の発生を観測した。効率としてはα
5%程度であった。
When a peak power of 5 mW) was input from the fiber end, the generation of second harmonics was observed. As for efficiency, α
It was about 5%.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によるグラスチック光ファ
イバは非常に大きな非線形光学効果を有する有機材料を
コアとして用いること、更にはコア径比屈折率差を小さ
くできるため、実効的なパワー密度が稼げることから有
効な非線形光学素子となり、従来の石英系ファイバを用
いる非線形光学素子に比較して実効長が短く、また光の
パワーが小さくて済むというオU点を有している。
As explained above, the glass optical fiber according to the present invention uses an organic material that has a very large nonlinear optical effect as a core, and furthermore, the difference in refractive index relative to the core diameter can be made small, so that effective power density can be obtained. Therefore, it is an effective nonlinear optical element, and has the advantage of having a shorter effective length and requiring less optical power than conventional nonlinear optical elements using silica fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1−1図は本発明のグラスチック光ファイバの断面図
、第1−2図は本発明のグラスチック光ファイバの1例
のコア及びクラッドの径と屈折率の関係を示すグラフ、
第2図は本発明のグラスチック光ファイバの作製方法の
1例の工程図、第3−1図は本発明のグラスチック光フ
ァイバを用いた自己位相変調効果を観測する方法の概要
図、第3−2図は第3−1図による本発明のグラスチッ
ク光ファイバの1例の入力元強度とスペクトル幅との関
係を示すグラフである。
FIG. 1-1 is a cross-sectional view of the plastic optical fiber of the present invention, and FIG. 1-2 is a graph showing the relationship between the diameter of the core and cladding and the refractive index of an example of the plastic optical fiber of the present invention.
FIG. 2 is a process diagram of an example of the method for producing a glass optical fiber of the present invention, FIG. 3-1 is a schematic diagram of a method for observing the self-phase modulation effect using the glass optical fiber of the present invention, FIG. 3-2 is a graph showing the relationship between the input source intensity and the spectral width of an example of the glass optical fiber of the present invention according to FIG. 3-1.

Claims (1)

【特許請求の範囲】 1、合成高分子材料からなるコアとクラッドを有するプ
ラスチック光ファイバにおいて、クラッドより高い屈折
率を有するコア部の直径が100μm以下であることを
特徴とするプラスチック光ファイバ。 2、非線形感受率β、γが大きな有機物が、コア部の合
成高分子材料中に分散している特許請求の範囲第1項記
載のプラスチック光ファイバ。 3、非線形感受率β、γが大きな有機物が、コア部の合
成高分子の繰返し単位に含まれている特許請求の範囲第
1項記載のプラスチック光ファイバ。
[Scope of Claims] 1. A plastic optical fiber having a core and a cladding made of a synthetic polymer material, wherein the diameter of the core portion having a higher refractive index than that of the cladding is 100 μm or less. 2. The plastic optical fiber according to claim 1, wherein organic substances with large nonlinear susceptibilities β and γ are dispersed in the synthetic polymer material of the core portion. 3. The plastic optical fiber according to claim 1, wherein the organic substance having large nonlinear susceptibilities β and γ is contained in the repeating unit of the synthetic polymer in the core portion.
JP62035482A 1987-02-20 1987-02-20 Plastic optical fiber Pending JPS63204234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62035482A JPS63204234A (en) 1987-02-20 1987-02-20 Plastic optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62035482A JPS63204234A (en) 1987-02-20 1987-02-20 Plastic optical fiber

Publications (1)

Publication Number Publication Date
JPS63204234A true JPS63204234A (en) 1988-08-23

Family

ID=12442973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62035482A Pending JPS63204234A (en) 1987-02-20 1987-02-20 Plastic optical fiber

Country Status (1)

Country Link
JP (1) JPS63204234A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01237528A (en) * 1987-11-02 1989-09-22 Fuji Photo Film Co Ltd Optical wavelength converting element
JPH02282230A (en) * 1989-04-24 1990-11-19 Nippon Telegr & Teleph Corp <Ntt> Nonlinear optical fiber
EP0464795A2 (en) * 1990-07-06 1992-01-08 Nippon Telegraph And Telephone Corporation Organic optical nonlinear material and optical nonlinear device
US6332370B1 (en) * 1999-12-09 2001-12-25 Koito Manufacturing Co., Ltd. Evaluation device for evaluating mist generation in a vehicle lighting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788405A (en) * 1980-11-22 1982-06-02 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for plastic optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788405A (en) * 1980-11-22 1982-06-02 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for plastic optical fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01237528A (en) * 1987-11-02 1989-09-22 Fuji Photo Film Co Ltd Optical wavelength converting element
JPH0820654B2 (en) * 1987-11-02 1996-03-04 富士写真フイルム株式会社 Optical wavelength conversion element
JPH02282230A (en) * 1989-04-24 1990-11-19 Nippon Telegr & Teleph Corp <Ntt> Nonlinear optical fiber
EP0464795A2 (en) * 1990-07-06 1992-01-08 Nippon Telegraph And Telephone Corporation Organic optical nonlinear material and optical nonlinear device
US6332370B1 (en) * 1999-12-09 2001-12-25 Koito Manufacturing Co., Ltd. Evaluation device for evaluating mist generation in a vehicle lighting device

Similar Documents

Publication Publication Date Title
Kuzyk et al. Guest‐host polymer fibers for nonlinear optics
Peng et al. Fluorescence decay and recovery in organic dye-doped polymer optical fibers
Peng et al. Dye-doped step-index polymer optical fiber for broadband optical amplification
CN102104231A (en) Graphene Raman mode-locked laser
He et al. Optical limiting, pulse reshaping, and stabilization with a nonlinear absorptive fiber system
Liang et al. Fabrication and amplification of Rhodamine B‐doped step‐index polymer optical fiber
JPS63204234A (en) Plastic optical fiber
Bartuch et al. Experimental investigations and numerical simulations of spatial solitons in planar polymer waveguides
Lee et al. Fabrication method for ultra-long optical micro/nano-fibers
He et al. Pulse-width tuning in a passively mode-locked fiber laser with graphene saturable absorber
Kumar et al. Multi-core photonic crystal fiber with anomalous dispersion behavior
Xingsheng et al. Properties of polarized laser-induced birefringent gratings in azobenzene-doped poly (methyl methecrylate) optical fibers
Zverev et al. Passively mode-locked composite erbium fiber laser with a pulse repetition rate of 150 MHz
Canning et al. UV laser cleaving of air–polymer structured fibre
JP2876052B2 (en) Nonlinear optical fiber
JP3305741B2 (en) Nonlinear optical element
Tao et al. Photosensitive polymer optical fibres and gratings
Prakash et al. Multimode laser emission from BODIPY dye-doped polymer optical fiber
Dai et al. Wavelength-tunable GHz harmonic mode-locked fiber laser by an over-coupled long period fiber grating based saturable absorber
JP2892516B2 (en) Nonlinear optical fiber and device
Yamashita Carbon nanotube based mode-locked fiber lasers
JPH0731335B2 (en) Non-linear optical element
Peng et al. Development of special polymer optical fibers and devices
Fuse et al. Stability enhancement of carbon-nanotube-based mode-locked fiber laser by Nitrogen sealing
Xu et al. Supercontinuum Generation in an All-Normal Dispersion Tellurite Photonic Crystal Fiber