JPS63182004A - Aqueous solution concentration system - Google Patents
Aqueous solution concentration systemInfo
- Publication number
- JPS63182004A JPS63182004A JP62012730A JP1273087A JPS63182004A JP S63182004 A JPS63182004 A JP S63182004A JP 62012730 A JP62012730 A JP 62012730A JP 1273087 A JP1273087 A JP 1273087A JP S63182004 A JPS63182004 A JP S63182004A
- Authority
- JP
- Japan
- Prior art keywords
- aqueous solution
- osmotic pressure
- high osmotic
- pressure liquid
- concentrator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007864 aqueous solution Substances 0.000 title claims abstract description 48
- 239000012528 membrane Substances 0.000 claims abstract description 39
- 239000007788 liquid Substances 0.000 claims abstract description 31
- 230000003204 osmotic effect Effects 0.000 claims abstract description 30
- 239000000243 solution Substances 0.000 claims abstract description 5
- 230000035699 permeability Effects 0.000 claims 1
- 239000012141 concentrate Substances 0.000 abstract description 4
- 239000002994 raw material Substances 0.000 abstract description 3
- 229930006000 Sucrose Natural products 0.000 abstract description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 abstract description 2
- 238000010521 absorption reaction Methods 0.000 abstract 1
- 230000004075 alteration Effects 0.000 abstract 1
- 229960004793 sucrose Drugs 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 238000000034 method Methods 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 235000013305 food Nutrition 0.000 description 5
- 229940081735 acetylcellulose Drugs 0.000 description 4
- 229920002301 cellulose acetate Polymers 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 229920000298 Cellophane Polymers 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 229920002978 Vinylon Polymers 0.000 description 2
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 235000013373 food additive Nutrition 0.000 description 2
- 239000002778 food additive Substances 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- 235000002639 sodium chloride Nutrition 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003670 easy-to-clean Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- -1 sucrose Chemical class 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
本発明は大量の水溶液を加熱することなく、連続して濃
縮することができ、かつ食品工業、その他に広く利用可
能な水溶液の濃縮装置に関する。Detailed Description of the Invention "Industrial Application Field" The present invention relates to an aqueous solution concentrating device that can continuously concentrate a large amount of an aqueous solution without heating it, and that can be widely used in the food industry and other industries. .
「従来の技術」
従来、水溶液の工業的濃縮法としては蒸発法、逆浸透圧
法、限界p過性、イオン交換法、透析法などが実用化さ
れている。"Prior Art" Conventionally, as industrial concentration methods for aqueous solutions, evaporation method, reverse osmosis method, limited p-percentivity method, ion exchange method, dialysis method, etc. have been put into practical use.
[発明が解決しようとする問題点」
しかし、上記従来の方法にはそれぞれ次のような問題点
がある。[Problems to be Solved by the Invention] However, each of the above conventional methods has the following problems.
蒸発法は、水溶液を加熱し水分を蒸発させて系外に分離
する方法で、加熱−冷却に膨大なエネルギーを必要とし
、また、熱による濃縮物の変質し避けられない。The evaporation method is a method in which an aqueous solution is heated to evaporate water and separate it from the system, and requires a huge amount of energy for heating and cooling, and deterioration of the quality of the concentrate due to heat is unavoidable.
逆浸透圧法は、水溶液の持っている浸透圧より高い圧力
をかけ、浸透圧に抗して水分子を移動させるもので、通
常、数lθ気圧の圧力が必要なため、装置的に高圧機器
を用いなければならない。The reverse osmosis method applies a pressure higher than the osmotic pressure of an aqueous solution to move water molecules against the osmotic pressure. Usually, a pressure of several lθ atmospheres is required, so high-pressure equipment is not required for the equipment. must be used.
限界濾過法は、濾過速度が圧力に比例することにより加
圧下で行なうことが望ましく、装置の機械的強度が要求
される。さらに、濾過時において水と−しょに低分子量
成分が移動することも避けられない。又膜面の目詰りを
取り除く手段も必要である。The ultrafiltration method is preferably carried out under pressure because the filtration rate is proportional to the pressure, and the mechanical strength of the device is required. Furthermore, it is unavoidable that low molecular weight components move together with water during filtration. A means for removing clogging of the membrane surface is also required.
イオン交換法は、電気エネルギーで分離するもので、イ
オン化の低いものには適用できず、主に無機塩類の除去
、11waに用いられる。The ion exchange method separates using electrical energy, and cannot be applied to substances with low ionization, and is mainly used for the removal of inorganic salts and 11wa.
透析法は水溶液と透析液の成分の濃度差によって分離す
る乙ので、圧力、温度に制限はないが、分離速度が極め
て遅く、大量の水溶液を扱う場合、装置の大型化は避け
られない。Since the dialysis method separates the aqueous solution and dialysate based on the concentration difference between the components, there are no restrictions on pressure or temperature, but the separation speed is extremely slow, and when handling a large amount of aqueous solution, the size of the equipment is unavoidable.
本発明考等は、上記の問題点を解決すべく鋭意研究した
結果、水溶液と高浸透圧液とを透水性半透膜(以下半透
膜という)を介して接触させると、数kg〜数100
kg/ cm’の浸透圧の差が得られ、水溶液中の水分
が高浸透圧液に移行する現象に着目した。As a result of intensive research to solve the above-mentioned problems, the present inventors have found that when an aqueous solution and a high osmotic pressure liquid are brought into contact through a water-permeable semi-permeable membrane (hereinafter referred to as a semi-permeable membrane), it is possible to 100
A difference in osmotic pressure of kg/cm' was obtained, and we focused on the phenomenon in which water in an aqueous solution migrates to a high osmotic pressure solution.
本発明は」二足の現象を用いてなされたもので、外部か
ら加熱、加圧等の大量のエネルギーを与えることなく、
はぼ常温、常圧下で連続して水溶液を濃縮できる濃縮装
置を提供することを目的とする。The present invention was made using the two-legged phenomenon, and it can be used without applying a large amount of energy such as heating or pressurizing from the outside.
The object of the present invention is to provide a concentrator that can continuously concentrate an aqueous solution at room temperature and under normal pressure.
「問題点を解決するための手段」
本発明は上記の目的を達成すべくなされたもので、その
要旨は、水溶液および高浸透圧液が連続して導入され、
広い面積の透水性半透膜を介して接触した後流出するそ
れぞれの流路を有する濃縮器と、上記水溶液を上記濃縮
器に送給する手段と、上記流出する高浸透圧液を濃縮器
に循環する手段と、この循環する高浸透圧液の少なくと
も一部を減圧脱水する再生器とを具備してなる水溶液の
濃縮装置にある。"Means for Solving the Problems" The present invention has been made to achieve the above object, and its gist is that an aqueous solution and a high osmotic solution are successively introduced,
a concentrator having respective channels for contact and outflow through a water-permeable semipermeable membrane having a large area; a means for feeding the aqueous solution to the concentrator; and a means for feeding the outflowing hyperosmotic liquid to the concentrator. An apparatus for concentrating an aqueous solution is provided, comprising a circulating means and a regenerator for dehydrating at least a portion of the circulating high osmotic fluid under reduced pressure.
「発明の具体的構成および作用」
本発明に係る濃縮装置は、脱水の推進力が浸透圧の差で
あることから、温度、圧力の制限(毒ない。"Specific Structure and Effects of the Invention" Since the concentrating device according to the present invention uses a difference in osmotic pressure as the driving force for dehydration, it is possible to limit temperature and pressure (non-toxic).
但し、脱水速度を制御するため、高浸透圧液の濃度を一
定の範囲に保持する必要がある。また、濃縮器の型式と
しては、大量の水溶液の処理を目的とするため、水溶液
と高浸透圧液とを区画する半透膜は広い面積を有しなけ
ればならない。そのため、スパイラル型、シェルチュー
ブ型も使用出来ろが、構造が簡単で分解清掃が容易なこ
とから、フィルタープレス型が好ましい。However, in order to control the dehydration rate, it is necessary to maintain the concentration of the hyperosmotic solution within a certain range. Furthermore, since the type of concentrator is intended to process a large amount of aqueous solution, the semipermeable membrane that partitions the aqueous solution and the high osmotic pressure liquid must have a large area. Therefore, although a spiral type and a shell tube type can also be used, the filter press type is preferable because it has a simple structure and is easy to disassemble and clean.
第1図ないし第3図は本発明に係る水溶液の濃縮装置の
一実施例を示すもので、第1図はフィルタープレス型濃
縮器の開いた状態を示す図である。1 to 3 show an embodiment of an aqueous solution concentrator according to the present invention, and FIG. 1 is a diagram showing a filter press type concentrator in an open state.
図中符号1および2は、濃縮器の両端部に用いられる金
属製のエンドプレートである。これらエンドプレートの
対向する内面には、それぞれ所定幅の縁部3を残して浅
い凹部4が設けられている。Reference numerals 1 and 2 in the figure indicate metal end plates used at both ends of the concentrator. Shallow recesses 4 are provided on the opposing inner surfaces of these end plates, leaving an edge 3 of a predetermined width.
エンドプレートlの縁部3の4隅近傍には盲孔か穿設さ
れている。これらのうち一方の対角線近傍の盲孔5,5
には、上記凹部4を結ぶ経路5 a、 5 aが設Rら
れ、他方の対角線近傍の盲孔6.6 には経路は設けら
れていない。また、エンドプレート2のエンドプレート
lの盲孔5,6 に対向する部分には、貫通孔5°、6
′が穿設され、これら貫通孔5°、6゛ のエンドプレ
ート2の外面には、導管を接続するフランジ管5°a、
6°aが取付けられており、上記盲孔6と対向する貫通
孔6″には、エンドプレート2の凹部と結ぶ通路が設け
られている。Blind holes are bored near the four corners of the edge 3 of the end plate l. Blind holes 5, 5 near one of these diagonals
Paths 5a, 5a connecting the recessed portions 4 are provided in R, and no path is provided in the blind hole 6.6 near the other diagonal. In addition, in the portion of the end plate 2 facing the blind holes 5 and 6 of the end plate l, through holes 5° and 6
' are bored, and on the outer surface of the end plate 2 of these through holes 5° and 6°, flange pipes 5°a and 5°a for connecting conduits are formed.
A through hole 6'' facing the blind hole 6 is provided with a passage connected to the recess of the end plate 2.
上記エンドプレート1.2 の間には、エンドプレー
トl側から縁部3に当接するガスケット7、このガスケ
ット7の全面を覆う半透膜8、次いでガスケット7、さ
らに液が通るスペースを形成する上記ガスケット7と同
形のセルリング9を一組として、この組が順次偶数個積
層され、エンドプレート2側は、ガスケット7、半透膜
8、ガスケット7、エンドプレート2で終る。これらガ
スケット7、半透膜8、セルリング9には、盲孔5.6
、貫通孔5°、6′と連通ずる孔5°’、6”が穿設さ
れ、エンドプレート1の次のセルリングの孔5°°には
通路5′°aがもうけられている。このようにセルリン
グ9には一つおきに通路6”a、5”aが設けられてお
り、これが偶数個存在するため、エンドプレート2の貫
通孔6″には通路が設けられることとなる。また、エン
ドプレート1,2、ガスケット7、半透膜8、セルリン
グ9には、これを重ね合せて締付けるためのボルトを通
す多数のポルI・孔lOが穿設されている。これらボル
ト孔10にボルト(図示せず)を挿通して締めると、上
記各部分は液密に圧着され、第2図に、第3図に示す上
下の貫通孔5’、5’ を通る1点鎖線の切断線11に
沿って切断した縦断面図を示すように、孔5゛。Between the end plates 1.2, there is a gasket 7 that contacts the edge 3 from the end plate l side, a semipermeable membrane 8 that covers the entire surface of the gasket 7, then the gasket 7, and the gasket 7 that forms a space for liquid to pass through. An even number of cell rings 9 having the same shape as the gasket 7 are stacked one after another in order, and the end plate 2 side ends with the gasket 7, the semipermeable membrane 8, the gasket 7, and the end plate 2. These gaskets 7, semipermeable membranes 8, and cell rings 9 have blind holes 5.6.
, through holes 5° and 6' are bored, and a passage 5'°a is formed in the hole 5° of the next cell ring of the end plate 1. As shown, the cell ring 9 is provided with passages 6''a and 5''a every other time, and since there is an even number of passages, passages are provided in the through holes 6'' of the end plate 2. Further, the end plates 1 and 2, the gasket 7, the semipermeable membrane 8, and the cell ring 9 are provided with a large number of holes I and IO through which bolts are passed for overlapping and tightening them. When bolts (not shown) are inserted into these bolt holes 10 and tightened, the above-mentioned parts are crimped together in a liquid-tight manner, and as shown in FIG. As shown in the longitudinal cross-sectional view taken along the dot-dashed cutting line 11, the hole 5'.
5″・・・、5よりなる連続孔a、a、半透膜8・・・
の一方の一つおきの空部、連続孔a、aと上記空部を結
ぶ通路よりなる流路A1および孔6′、6°゛・・・6
よりなる連続孔す、b 、通路、他方の一つおきの空部
よりなる流路Bとを有するフィルタープレス型の濃縮器
12が構成される。5″..., continuous pores a, a consisting of 5, semipermeable membrane 8...
Flow path A1 consisting of every other cavity on one side, continuous holes a, and passages connecting a and the above cavity, and holes 6', 6°...6
A filter press type concentrator 12 is constructed, having a continuous hole B, a passage B, and a flow path B consisting of every other cavity on the other hand.
この場合、セルリング9の内部およびエンドプレート1
,2 の凹部4を空間としておいてもよいか、これらの
部分に液の流通を妨げないプラスチック等の網状スペー
サ13を入れ、半透膜8の間を一定の間隔に保持するの
が好ましい。また、連続孔aまたはbに設けられた通路
の合計の断面積を、連続孔a、bの断面積より小さくし
ておけば、液が各空部に均一に導入される。In this case, the inside of the cell ring 9 and the end plate 1
, 2 may be left as a space, or it is preferable to insert a net-like spacer 13 made of plastic or the like that does not impede the flow of liquid into these parts to maintain a constant spacing between the semipermeable membranes 8. Further, if the total cross-sectional area of the passages provided in the continuous holes a or b is made smaller than the cross-sectional area of the continuous holes a and b, the liquid can be uniformly introduced into each cavity.
上記濃縮器に用いられる半透膜8としては、ビニロン膜
、セロハン膜、アセチルセルロース膜、酢酸セルロース
膜、ポリザルホン膜、ポリアクリルニトリル膜などが使
用できるが、高浸透圧物質を透過することなく、水のみ
を透過する半透性が必要である。さらに、上記半透膜は
水と一緒に移動する物質をどこまで許容するかによって
選ばれる。すなわち、分画分子量と、その通過飛で半透
膜を選択することが望ましい。例えば、酢酸セルローズ
膜では10人、ビニロン膜では15人、セロハン膜では
30人、アセチルセルロース膜では50人の細孔を有し
、この細孔径と膜厚が透過速度と成分の排除率を支配す
るからである。As the semipermeable membrane 8 used in the concentrator, a vinylon membrane, a cellophane membrane, an acetyl cellulose membrane, a cellulose acetate membrane, a polysulfone membrane, a polyacrylonitrile membrane, etc. can be used. It needs to be semi-permeable, allowing only water to pass through. Furthermore, the semipermeable membrane is chosen depending on how much it allows substances to migrate with water. In other words, it is desirable to select a semipermeable membrane based on the molecular weight cutoff and its passage. For example, a cellulose acetate membrane has 10 pores, a vinylon membrane has 15 pores, a cellophane membrane has 30 pores, and an acetyl cellulose membrane has 50 pores, and the pore diameter and membrane thickness control the permeation rate and component exclusion rate. Because it does.
第4図は上記構成の濃縮器12を用いた水溶液の濃縮装
置を示すもので、符号21は原料水溶液の貯槽である。FIG. 4 shows an apparatus for concentrating an aqueous solution using the concentrator 12 configured as described above, and reference numeral 21 is a storage tank for raw material aqueous solution.
貯槽21内の水溶液はポンプ22によってフィルタ23
を通ってヘッドタンク24に導入される。ヘッドタンク
24には水溶液を貯槽21に戻すオーバーフロー管25
が設けられ、ヘッドタンク24の液面を一定の高さに保
持している。このヘッドタンク24内の水溶液は、冷却
水または加熱水の通る加熱・冷却器24aによって、常
温近傍の所定温度に保持されるとともに、流mFA整器
26によって流量がコントロールされ、濃縮器12の流
路A人口(下フランジ管5°a)より導入される。導入
された水溶液は、後述する流路Bを通る高浸透圧液と半
透膜8を介して接触し、濃縮され流路A出口(上フラン
ジ管5°a)より流出し、製品貯槽27に貯留される。The aqueous solution in the storage tank 21 is passed through a filter 23 by a pump 22.
and is introduced into the head tank 24 through. The head tank 24 has an overflow pipe 25 that returns the aqueous solution to the storage tank 21.
is provided to maintain the liquid level in the head tank 24 at a constant height. The aqueous solution in the head tank 24 is maintained at a predetermined temperature near normal temperature by a heating/cooling device 24a through which cooling water or heated water flows, and the flow rate is controlled by a flow mFA regulator 26, and the flow rate of the concentrator 12 is controlled. It is introduced from route A (lower flange pipe 5°a). The introduced aqueous solution comes into contact with a high osmotic pressure liquid passing through channel B (described later) via the semipermeable membrane 8, is concentrated, flows out from the outlet of channel A (upper flange pipe 5°a), and enters the product storage tank 27. stored.
この濃縮水溶液製品は、ポンプ28によって所望の場所
に送られるが、その際、必要に応じてその一部をヘッド
タンク24に送り、再濃縮することによって、製品の濃
縮度をコントロールすることが出来る。This concentrated aqueous solution product is sent to a desired location by a pump 28, but at that time, the concentration level of the product can be controlled by sending a portion of it to the head tank 24 and reconcentrating it as necessary. .
また、流路Bの人口(下フランジ管6°a)より導入さ
れた高浸透圧液は、流路Bを通り、その過程で半透膜を
介して水溶液より水分を吸収し、出口(上フランジ管6
゛a)より流出する。この水分の増加した高浸透圧液は
、受槽31に導入され、その一部は、加熱器32を通っ
て真空ポンプ33によって減圧状態に保持された再生器
34に導入される。In addition, the high osmotic pressure liquid introduced from the flow path B (lower flange pipe 6°a) passes through flow path B, absorbs water from the aqueous solution through the semipermeable membrane in the process, and absorbs water from the aqueous solution through the semipermeable membrane. Flange pipe 6
It flows out from a). This high osmotic pressure liquid with increased water content is introduced into a receiving tank 31 , and a portion of it is introduced through a heater 32 into a regenerator 34 maintained at a reduced pressure by a vacuum pump 33 .
トλ−加1■2は、吸水した高浸透圧液の減圧濃縮時の
温度低下を補うために加熱する乙ので、二重管式、シェ
ルチューブ式、プレート式等いずれも使用出来る。上記
再生器34内で蒸発した水分は、冷却器34aによって
凝縮され、系外に排出される。濃縮された高浸透圧液は
、上記再生器34に送られなかった残部の吸水高浸透圧
液とともに、ポンプ35によってヘッドタンク36に送
られる。このヘッドタンク36に送られる高浸透圧液は
、再生器34に送られる吸水した高浸透圧液の割合を調
整することによって、吸水した水分が除去された濃度に
保持される。また、再生器34において水と共に蒸発す
る高浸透圧物質の減少分は、貯槽37からヘッドタンク
36に補給されろ。λ-addition 1 and 2 are heated to compensate for the temperature drop during vacuum concentration of the absorbed hyperosmotic liquid, so any of the double pipe type, shell tube type, plate type, etc. can be used. The moisture evaporated within the regenerator 34 is condensed by the cooler 34a and discharged to the outside of the system. The concentrated high osmotic pressure liquid is sent to the head tank 36 by the pump 35 together with the remaining absorbed high osmotic pressure liquid that was not sent to the regenerator 34 . The high osmotic pressure liquid sent to the head tank 36 is maintained at a concentration from which absorbed water has been removed by adjusting the proportion of the absorbed high osmotic pressure liquid sent to the regenerator 34. Further, the reduced amount of the high osmotic pressure substance that evaporates together with water in the regenerator 34 is replenished from the storage tank 37 to the head tank 36 .
上記ヘッドタンク36には、加熱、冷却器36aが設け
られており、常温近傍の所定温度に調整された後、流量
調整器38を通り、所定の流量で濃縮器12に循環され
る。The head tank 36 is equipped with a heating/cooling device 36a, and after being adjusted to a predetermined temperature near normal temperature, the water passes through a flow rate regulator 38 and is circulated to the concentrator 12 at a predetermined flow rate.
膜の透水速度を上げる為、膜面の液の流速を高く保つ事
とか、液を振動・攪拌させるとかの操作をする事も何ん
ら制限がない。In order to increase the water permeation rate of the membrane, there are no restrictions on maintaining the flow rate of the liquid on the membrane surface at a high level, or performing operations such as vibrating or stirring the liquid.
また、系内に液の帯招部ができないようにし、洗浄しや
すい構造にする事も食品用途では肝要である。It is also important for food applications to prevent liquid from forming in the system and to create a structure that is easy to clean.
本発明の装置に用いられる高浸透圧液としては、濃縮す
る水溶液が食品用途の場合、食用糖類、すなわちショ糖
、異性化糖、グルコース、マルトース、フラクトースな
どの水溶液、および食品添加物であるグリセリン、プル
ピレングリコールなどが使用できる。しかし、無機系の
食品添加物、例えば食塩、塩化カルシウム、塩化マグネ
シウムなどは、水和イオンの直径が数人であり、これら
の透過を完全に阻止する半透膜かないことから、使用上
制限される。食用糖類とグリセリンの浸透圧と濃度との
関係は第5図に示すように、極めて浸透圧の高い液が得
られる。When the aqueous solution to be concentrated is for food use, the high osmotic fluid used in the device of the present invention includes aqueous solutions of edible sugars, such as sucrose, high fructose sugar, glucose, maltose, and fructose, and glycerin, which is a food additive. , propylene glycol, etc. can be used. However, inorganic food additives, such as table salt, calcium chloride, and magnesium chloride, are limited in their use because the hydrated ions have a diameter of only a few inches and there is no semipermeable membrane that completely blocks their permeation. Ru. The relationship between the osmotic pressure and concentration of edible sugars and glycerin is shown in FIG. 5, and a liquid with extremely high osmotic pressure can be obtained.
食品用途以外では、人体に対する影響を考慮する必要が
ないので、水溶性有機物、水溶性高分子物など、高浸透
圧液か得られるものはrべて使用可能である。In applications other than food, there is no need to consider the effects on the human body, so any high osmotic pressure liquid, such as water-soluble organic substances and water-soluble polymers, can be used.
なお、高浸透圧液の指環使用に際し、常法の殺との関係
を示す図である。In addition, it is a figure which shows the relationship with the conventional killing method when using a ring of hyperosmotic liquid.
閉操作を付加することは同等差支えない。There is no difference in adding a closing operation.
「発明の効果」
以上述べたように本発明に係る水溶液のaw6装置は、
常温・常圧下、連続して流れる水溶液および高浸透圧液
が広い面積の半透膜を介して接触し、水溶液は濃縮回収
されて製品となり、高浸透圧液は吸収した水分が除去さ
れて循環されるので、大きなエネルギーを必要とせず、
また水溶液の変質らなく、大虫の水溶液を効率よく処理
することが可能で、かつほとんすべての水溶液の濃縮に
広く利用出来るものである。"Effects of the Invention" As described above, the aqueous solution aw6 device according to the present invention has the following features:
At room temperature and pressure, the aqueous solution and hyperosmotic fluid that flow continuously come into contact through a semipermeable membrane with a large area, and the aqueous solution is concentrated and recovered to become a product, and the absorbed water is removed from the hyperosmotic fluid and circulated. does not require a large amount of energy,
In addition, it is possible to efficiently treat aqueous solutions of maggots without altering the aqueous solution, and it can be widely used for concentrating almost all aqueous solutions.
第1図ないし第4図は、本発明に係る水溶液の濃縮装置
の一実施例を示すらので、第1図は、フィルタプレス型
濃縮器を開いた状態を示す斜視図、第2図は、第1図の
各部を圧着し第3図の1点鎖線に沿って切断した縦断面
図、第3図は、第2図のI[I−III線矢視図、第4
図は、第2図の濃縮器を用いた濃縮装置のフローを示す
図、第5図は、食品糖類水溶液、グリセリン水溶液の濃
度と浸透圧1.2 ・・・・エンドプレート、3・・・
・・・縫部、4・・・・・・凹部、5・・・・・・盲孔
、5a・・・・・通路、5゛・・9900貫通孔、5’
a=・・・・フランジ管、5°″・・・・・・孔、5゛
°a・・・・・・通路、6・・・・・盲孔、6′・・・
・・・貫通孔、6°a・・・・・・フランジ管、6°°
・・・・孔、6“′a・・・・・・通路、7・・・・・
・ガスケツト、8・・・・・半透膜、9・・・・・・セ
ルリング、lO・・・・・ボルト孔、ll・・・・・・
切断線、12・・・・・・濃縮器、13・・・・・・ス
ペーサ、21・・・・・原料水溶液貯槽、22・・・・
・ポンプ、23・・・・・・フィルタ、24・・・・・
・ヘッドタンク、24a・・・・・・加熱・冷却器、2
5・・・・・・オーバーフロー管、26・・・・・・流
量調整器、27・・・・・製品貯槽、28・・・・・・
ポンプ、31・・・・・・受槽、32・・・・・・加熱
器、33・・・・・・真空ポンプ、34・・・・・再生
器、34a・・・・・・冷却器、35・・・・・・ポン
プ、36・・・・・・ヘッドタンク、36a・・・・・
・加熱・冷却器、37・・・・・・貯槽、38・・・・
・・流量調整器、a、b・・・・・・連続孔、A、B・
・・・・・流路。1 to 4 show an embodiment of the aqueous solution concentrating device according to the present invention. FIG. 1 is a perspective view showing the filter press type concentrator in an open state, and FIG. A vertical cross-sectional view taken along the dashed line in FIG. 3 after crimping the various parts in FIG. 1;
The figure shows the flow of a concentrator using the concentrator of Figure 2, and Figure 5 shows the concentration and osmotic pressure of food saccharide aqueous solution and glycerin aqueous solution.
...Sewn part, 4...Recessed part, 5...Blind hole, 5a...Passway, 5゛...9900 through hole, 5'
a=...flange pipe, 5°''...hole, 5゛°a...passage, 6...blind hole, 6'...
...Through hole, 6°a...Flanged pipe, 6°°
... Hole, 6"'a ... Passage, 7...
・Gasket, 8...Semi-permeable membrane, 9...Cell ring, lO...Bolt hole, ll...
Cutting line, 12... Concentrator, 13... Spacer, 21... Raw material aqueous solution storage tank, 22...
・Pump, 23...Filter, 24...
・Head tank, 24a...Heating/cooler, 2
5... Overflow pipe, 26... Flow rate regulator, 27... Product storage tank, 28...
pump, 31...receiving tank, 32...heater, 33...vacuum pump, 34...regenerator, 34a...cooler, 35...Pump, 36...Head tank, 36a...
・Heating/cooling device, 37...Storage tank, 38...
...Flow rate regulator, a, b... Continuous hole, A, B.
...Flow path.
Claims (2)
い面積の透水性半透膜を介して接触した後流出するそれ
ぞれの流路を有する濃縮器と、上記水溶液を上記濃縮器
に送給する手段と、上記流出する高浸透圧液を濃縮器に
循環する手段と、この循環する高浸透圧液の少なくとも
一部を減圧脱水する再生器とを具備してなる水溶液の濃
縮装置。(1) A concentrator having respective channels into which an aqueous solution and a hyperosmotic solution are successively introduced and flow out after coming into contact with each other through a wide-area water-permeable semipermeable membrane, and the aqueous solution is sent to the concentrator. An apparatus for concentrating an aqueous solution, comprising a means for supplying the high osmotic pressure liquid, a means for circulating the outflowing high osmotic pressure liquid to a concentrator, and a regenerator for dehydrating at least a portion of the circulating high osmotic pressure liquid under reduced pressure.
半透膜の一つおきの間に水溶液を並列に流して抜き出す
流路、および他方の一つおきの間に高浸透圧液を並列に
流して抜き出す流路を有する濃縮器である特許請求の範
囲第1項記載の水溶液の濃縮装置。(2) The concentrator has a flow path through which the aqueous solution is drawn out in parallel between every other half of the semi-permeable membranes stretched in multiple stages with intervals, and a high permeability channel between every other half of the membranes. 2. The aqueous solution concentrating device according to claim 1, which is a concentrator having a channel through which a pressure liquid flows in parallel and is extracted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62012730A JPS63182004A (en) | 1987-01-22 | 1987-01-22 | Aqueous solution concentration system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62012730A JPS63182004A (en) | 1987-01-22 | 1987-01-22 | Aqueous solution concentration system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63182004A true JPS63182004A (en) | 1988-07-27 |
Family
ID=11813555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62012730A Pending JPS63182004A (en) | 1987-01-22 | 1987-01-22 | Aqueous solution concentration system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63182004A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5129032A (en) * | 1990-04-27 | 1992-07-07 | Mitsubishi Rayon Co. Ltd. | Optical fiber display apparatus, fixing device for optical fiber used therein, and decorative optical fiber usable therein |
JP2009092564A (en) * | 2007-10-10 | 2009-04-30 | Kurita Water Ind Ltd | Method and apparatus for concentrating test water |
JP2012036850A (en) * | 2010-08-09 | 2012-02-23 | Mitsubishi Heavy Ind Ltd | Concentration difference power generation device |
JP2012041849A (en) * | 2010-08-18 | 2012-03-01 | Mitsubishi Heavy Ind Ltd | Concentration difference power generation system |
JP2015188786A (en) * | 2014-03-27 | 2015-11-02 | 東洋紡株式会社 | Positive permeation processing system |
WO2016072461A1 (en) * | 2014-11-07 | 2016-05-12 | 株式会社 東芝 | Water treatment method, water treatment system, and water treatment device |
JP2016150308A (en) * | 2015-02-17 | 2016-08-22 | 株式会社ササクラ | Concentration apparatus and concentration method for oral or external application |
JP2018023933A (en) * | 2016-08-10 | 2018-02-15 | 株式会社神鋼環境ソリューション | Water treatment device and water treatment method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55144108U (en) * | 1979-04-04 | 1980-10-16 | ||
JPS5828891Y2 (en) * | 1979-06-20 | 1983-06-24 | 株式会社ボッシュオートモーティブ システム | Vehicle air conditioner |
JPS60127215U (en) * | 1984-02-07 | 1985-08-27 | 株式会社小松製作所 | Air conditioning system in the cabin of earthmoving vehicles |
-
1987
- 1987-01-22 JP JP62012730A patent/JPS63182004A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55144108U (en) * | 1979-04-04 | 1980-10-16 | ||
JPS5828891Y2 (en) * | 1979-06-20 | 1983-06-24 | 株式会社ボッシュオートモーティブ システム | Vehicle air conditioner |
JPS60127215U (en) * | 1984-02-07 | 1985-08-27 | 株式会社小松製作所 | Air conditioning system in the cabin of earthmoving vehicles |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5129032A (en) * | 1990-04-27 | 1992-07-07 | Mitsubishi Rayon Co. Ltd. | Optical fiber display apparatus, fixing device for optical fiber used therein, and decorative optical fiber usable therein |
JP2009092564A (en) * | 2007-10-10 | 2009-04-30 | Kurita Water Ind Ltd | Method and apparatus for concentrating test water |
JP2012036850A (en) * | 2010-08-09 | 2012-02-23 | Mitsubishi Heavy Ind Ltd | Concentration difference power generation device |
JP2012041849A (en) * | 2010-08-18 | 2012-03-01 | Mitsubishi Heavy Ind Ltd | Concentration difference power generation system |
JP2015188786A (en) * | 2014-03-27 | 2015-11-02 | 東洋紡株式会社 | Positive permeation processing system |
WO2016072461A1 (en) * | 2014-11-07 | 2016-05-12 | 株式会社 東芝 | Water treatment method, water treatment system, and water treatment device |
JPWO2016072461A1 (en) * | 2014-11-07 | 2017-04-27 | 株式会社東芝 | Water treatment method, water treatment system and water treatment apparatus |
JP2016150308A (en) * | 2015-02-17 | 2016-08-22 | 株式会社ササクラ | Concentration apparatus and concentration method for oral or external application |
JP2018023933A (en) * | 2016-08-10 | 2018-02-15 | 株式会社神鋼環境ソリューション | Water treatment device and water treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3608610A (en) | Apparatus for evaporative separation of liquids through microporous panels | |
AU587407B2 (en) | Osmotic concentration by membrane | |
US3695444A (en) | Membrane support | |
US3133132A (en) | High flow porous membranes for separating water from saline solutions | |
US3398091A (en) | Membrane separation apparatus and process | |
US5098575A (en) | Method and apparatus for processing liquid solutions of suspensions particularly useful in the desalination of saline water | |
US3342729A (en) | Permeability separatory cell and apparatus and method of using the same | |
US4620900A (en) | Thermopervaporation apparatus | |
KR890000168B1 (en) | Temperature-regenerating method for an aqueous solution and apparatus therefor | |
KR101020316B1 (en) | Forward osmotic desalination device using membrane distillation method | |
US9656883B2 (en) | Forward osmosis system comprising solvent separation by means of membrane distillation | |
KR101692053B1 (en) | Membrane distillation- crystallization system and method | |
US11090609B2 (en) | Forward osmosis performance improved membrane apparatus and method of separating solution using the same | |
JPS63182004A (en) | Aqueous solution concentration system | |
US3698559A (en) | Reverse osmosis module suitable for food processing | |
KR20130017933A (en) | Forward osmotic desalination device using membrane distillation method in which a part of draw solution is directly fed to a forward osmotic type separator | |
JP7186557B2 (en) | Concentration system for solvent-containing articles | |
CN211725372U (en) | High-efficiency vacuum membrane distillation assembly based on flow channel optimization design and combined membrane distillation assembly | |
DasGupta et al. | Membrane applications in fruit processing technologies | |
JPH0347521A (en) | Separation membrane and usage thereof | |
FI73960C (en) | Process for concentrating aqueous solutions of alcohols by evaporation | |
CN208066140U (en) | A kind of reverse osmosis equipment | |
KR101837553B1 (en) | Multichannel parallel type skid for vacuum membrane distillation module | |
JPS6185169A (en) | Concentration of albumen | |
JPH04298222A (en) | Membrane separation of liquid mixture |