JPS63179077A - Thin film forming device - Google Patents
Thin film forming deviceInfo
- Publication number
- JPS63179077A JPS63179077A JP1009487A JP1009487A JPS63179077A JP S63179077 A JPS63179077 A JP S63179077A JP 1009487 A JP1009487 A JP 1009487A JP 1009487 A JP1009487 A JP 1009487A JP S63179077 A JPS63179077 A JP S63179077A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- thin film
- film forming
- forming apparatus
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 44
- 239000000758 substrate Substances 0.000 claims abstract description 114
- 238000005229 chemical vapour deposition Methods 0.000 claims description 12
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical group [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000010453 quartz Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 abstract description 29
- 230000015572 biosynthetic process Effects 0.000 abstract description 14
- 238000010438 heat treatment Methods 0.000 abstract description 14
- 239000000428 dust Substances 0.000 abstract description 6
- 239000010408 film Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 238000000151 deposition Methods 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- 229910052721 tungsten Inorganic materials 0.000 description 7
- 239000010937 tungsten Substances 0.000 description 7
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、化学気相成長法(CVD法)による薄膜形成
装置に係わり、特に薄膜が形成される基板を加熱しなが
らi1膜形成を行うiiI膜形成装置に関する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a thin film forming apparatus by chemical vapor deposition (CVD), and in particular, the present invention relates to a thin film forming apparatus using a chemical vapor deposition method (CVD method). The present invention relates to an III film forming apparatus that forms an i1 film.
(従来の技術)
CVD法は、集積回路の製造工程における薄膜形成法の
一つであり、例えばシラン(SiH<)ガスを原料とす
る多結晶シリコン1躾の形成や、有機シランを原料とす
るシリコン酸化膜の形成等に実用化されている。また、
最近では有機アルミニウムを原料としたアルミニウム薄
膜の形成や、高融点金属のハロゲン化物を原料ガスとし
た高融点金属及びそのシリサイド膜の形成も検討されて
いる。(Prior art) The CVD method is one of the thin film forming methods in the manufacturing process of integrated circuits.For example, it is used to form polycrystalline silicon using silane (SiH<) gas as a raw material, or to form polycrystalline silicon using organic silane as a raw material. It has been put into practical use for forming silicon oxide films, etc. Also,
Recently, the formation of aluminum thin films using organic aluminum as a raw material and the formation of high melting point metals and their silicide films using high melting point metal halides as raw material gas have also been studied.
CVD法には、I膜形成を大気圧下で行う常圧CVD法
と、減圧下で行う減圧CVD法とがあるが、最近では生
産性に優れ、段差被覆性及び均一性が良好であると云う
特長を有する減圧CVD法が主流となっている。また、
大面積の基板や微細な表面形状を持つ基板上への1膜形
成を行う場合は、多数の基板上に一度に薄膜形成を行う
方式(バッチ式)に代えて、反応室内に基板を1枚ずつ
配置して薄膜形成を行う方式(枚葉式)が検討されてい
る。There are two types of CVD methods: normal pressure CVD, in which the I film is formed under atmospheric pressure, and low pressure CVD, in which the I film is formed under reduced pressure. The low-pressure CVD method, which has the above-mentioned features, has become mainstream. Also,
When forming a single film on a large-area substrate or a substrate with a fine surface shape, instead of forming a thin film on multiple substrates at once (batch method), place one substrate in the reaction chamber. A method (single wafer method) in which thin films are formed by arranging the wafers one by one is being considered.
しかしながら、減圧CVD法を利用した枚葉式の薄膜形
成aW1では、次のような問題を生じる。However, the following problem occurs in the single-wafer thin film formation aW1 using the low pressure CVD method.
即ち、この装置では通常、シース抵抗体のような熱源を
含む基板支持具に基板を載置し、基板を加熱しながら薄
膜形成を行っているが、減圧下では基板の加熱効率が著
しく低下する。これは、基板と基板支持具の表面が鏡面
であったとしても微視的には両者の間に隙間があり、減
圧下では熱伝導が主に輻射によるからである。このため
、CVDに必要な温度に基板を加熱できなかったり、基
板支持具の表面温度の方が基板表面温度よりも高いと云
う問題を生じる。特に、後者は次のような弊害をもたら
す。In other words, in this device, the substrate is normally placed on a substrate support that includes a heat source such as a sheathed resistor, and thin films are formed while heating the substrate, but the heating efficiency of the substrate decreases significantly under reduced pressure. . This is because even if the surfaces of the substrate and the substrate support are mirror-finished, there is a microscopic gap between them, and heat conduction is mainly due to radiation under reduced pressure. This causes problems that the substrate cannot be heated to the temperature required for CVD or that the surface temperature of the substrate support is higher than the substrate surface temperature. In particular, the latter brings about the following disadvantages.
即ち、基板支持部材若しくは反応容器の基板付近が高温
状態になるため、基板上に形成されるべき薄膜が基板支
持部材等の表面にも形成される。That is, since the substrate support member or the vicinity of the substrate of the reaction vessel is in a high temperature state, the thin film that should be formed on the substrate is also formed on the surface of the substrate support member and the like.
この基板支持部材表面に形成されたii*は、薄膜形成
を繰返す毎に成長し、ついには基板支持部材等から剥離
して、基板上に塵として付着する。こめような塵が付着
した基板は不良となるから、集積回路の歩留りが低下す
る結果となる。The ii* formed on the surface of the substrate support member grows each time the thin film formation is repeated, and eventually peels off from the substrate support member and adheres to the substrate as dust. A substrate with a large amount of dust attached becomes defective, resulting in a decrease in the yield of integrated circuits.
また、反応室内の反応ガスが基板上のみならず、その周
りの高温状態にある基板支持部材若しくは反応容器内壁
上でも反応して消費されることにより、基板上での薄膜
の堆積速度が低下する。さらに、基板支持部材上に形成
された薄膜は、薄膜形成の結果として生じる副生成ガス
の増大を招く。In addition, the reaction gas in the reaction chamber reacts and is consumed not only on the substrate but also on the surrounding substrate support member or the inner wall of the reaction vessel that is at a high temperature, which reduces the deposition rate of the thin film on the substrate. . Additionally, thin films formed on substrate support members result in an increase in by-product gases resulting from thin film formation.
この副生成ガスの増大は、基板表面付近のガス組成を複
雑にし、CVD過程、薄膜の膜質の制御を困難なものと
する。This increase in by-product gas complicates the gas composition near the substrate surface, making it difficult to control the CVD process and the film quality of the thin film.
(発明が解決しようとする問題点)
このように従来、減圧CVD法を利用した薄膜形成装置
においては、基板の加熱を十分に行うことができず、ま
た基板の周りの基板支持部材若しくは反応容器内壁の表
面にも薄膜が形成されてしまい、これに起因して集積回
路の歩留り低下。(Problems to be Solved by the Invention) As described above, in conventional thin film forming apparatuses using the low pressure CVD method, it is not possible to sufficiently heat the substrate, and the substrate support member or reaction vessel around the substrate is A thin film is also formed on the surface of the inner wall, which reduces the yield of integrated circuits.
基板上への薄膜形成速度の低下及び副生成ガスの増大と
言った問題があった。There were problems such as a decrease in the rate of thin film formation on the substrate and an increase in by-product gas.
本発明は上記事情を考慮してなされたもので、その目的
とするところは、基板支持部材等の基板以外の部材への
a1Ml形成を抑制することができ、集積回路の歩留り
向上及び薄膜堆積速度の向上等をはかり得る薄膜形成装
置を提供′することにある。The present invention has been made in consideration of the above circumstances, and its purpose is to be able to suppress the formation of a1Ml on members other than the substrate, such as a substrate support member, and to improve the yield of integrated circuits and increase the thin film deposition rate. It is an object of the present invention to provide a thin film forming apparatus that can improve the quality of the film.
[発明の構成]
(問題点を解決するための手段)
本発明の骨子は、smを形成すべき基板のみを加熱し、
基板支持部材等の基板以外の部分の温度上昇を極力抑え
ることにある。[Structure of the Invention] (Means for Solving the Problems) The gist of the present invention is to heat only the substrate on which the sm is to be formed,
The objective is to suppress the temperature rise of parts other than the substrate, such as the substrate support member, as much as possible.
即ち本発明は、容器内に配置された被処理基板の表面に
所定のガスを供給し、該基板表面に化学的気相成長法に
より薄膜を堆積する薄膜形成装置において、前記被処理
基板を支持する基板支持具と、この基板支持具とは非接
触で且つ前記基板の裏面に実質的に接触した状態で、該
基板を直接加熱する加熱源とを設けるようにしたもので
ある。That is, the present invention provides a thin film forming apparatus that supplies a predetermined gas to the surface of a substrate placed in a container and deposits a thin film on the surface of the substrate by chemical vapor deposition, in which the substrate is supported. The substrate support is provided with a heating source that directly heats the substrate in a state where the substrate support is in non-contact and substantially in contact with the back surface of the substrate.
(作用)
本発明によれば、加熱源を被処理基板の裏面に直接接触
させるので、基板の加熱効率を高めることが可能となり
、また基板支持具を基板の表面温度よりも低くすること
が可能となる。従って、基板支持部材若しくは反応容器
内表面への薄膜形成が抑制されると共に、基板表面への
塵の付着が抑えられる。(Function) According to the present invention, since the heating source is brought into direct contact with the back surface of the substrate to be processed, it is possible to increase the heating efficiency of the substrate, and it is also possible to make the temperature of the substrate support lower than the surface temperature of the substrate. becomes. Therefore, the formation of a thin film on the substrate support member or the inner surface of the reaction vessel is suppressed, and the adhesion of dust to the substrate surface is suppressed.
(実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.
図は本発明の一実施例に係わる薄膜形成装置の概略構成
を示す断面図である。図中11はステンレス等の金属板
で形成された容器であり、その内部は減圧CVD法によ
る1JIII形成のために反応室12を形成している。The figure is a sectional view showing a schematic configuration of a thin film forming apparatus according to an embodiment of the present invention. In the figure, 11 is a container made of a metal plate such as stainless steel, and the inside thereof forms a reaction chamber 12 for forming 1JIII by a low pressure CVD method.
反応室12には、バルブ13a、13bを介して容器1
1の側面から反応ガス供給バイブ14a、14bが引込
まれ、バイブ14a、14bの先端部に、多数のガス吐
出孔を上側に向けて形成した環状のガス導入バイブ15
a、15bが連結されている。反応室12の底部には、
図示しない排気系に接続された排気口16が形成されて
いる。The reaction chamber 12 is connected to the container 1 via valves 13a and 13b.
1. Reaction gas supplying vibes 14a and 14b are drawn in from the side of the annular gas introduction vibe 15, and a large number of gas discharge holes are formed upward at the tips of the vibes 14a and 14b.
a and 15b are connected. At the bottom of the reaction chamber 12,
An exhaust port 16 connected to an exhaust system (not shown) is formed.
反応室12の上部には、有底円筒体の底部を基板径より
も僅かに小さくくり抜いたた基板支持具17が設けられ
ている。この基板支持具17は、平坦な基板載置面17
aを有し、薄膜形成に供される基板18、例えばシリコ
ンウェハはこの面17a上に載置される。このとき、基
板18は基板載置面17aの周辺部の例えば3箇所に立
てられた位置決めビン19により位置決めされる。At the top of the reaction chamber 12, a substrate support 17 is provided, which is formed by hollowing out the bottom of a cylindrical body with a bottom to a diameter slightly smaller than the substrate diameter. This substrate support 17 has a flat substrate mounting surface 17.
A substrate 18, such as a silicon wafer, to be used for forming a thin film is placed on this surface 17a. At this time, the substrate 18 is positioned by positioning bins 19 erected at, for example, three locations on the periphery of the substrate mounting surface 17a.
基板18の上面(裏面)には加熱源2oが接触して設け
られている。この加熱源20は、石英製のヒータ支持具
21の下面に凹部を形成し、この凹部にヒータ22を埋
込んで構成される。ヒータ22は、例えばタングステン
線からなるもので、その一部はヒータ支持具21の下面
よりも僅かに下側に突出している。そして、この突出し
たヒータ22が前記基板18の裏面に接触するものとな
っている。A heating source 2o is provided in contact with the upper surface (back surface) of the substrate 18. This heat source 20 is constructed by forming a recess on the lower surface of a heater support 21 made of quartz, and embedding a heater 22 in this recess. The heater 22 is made of, for example, a tungsten wire, and a portion thereof protrudes slightly below the lower surface of the heater support 21. The protruding heater 22 comes into contact with the back surface of the substrate 18.
前記基板支持具17は、容器11の土壁を貫通した空圧
ベローバルブ31に連結されたシャフト32で支持され
ており、このシャフト32の伸縮により上下動するもの
となっている。また、容器11の側壁には、蓋33によ
り開閉可能な基板挿脱口が設けられている。そして、上
記シャフト32の伸長により基板支持具17が下降し、
この状態で容器11の側壁に設けらた基板挿脱口を介し
て、基板18の交換が行われるものとなっている。The substrate support 17 is supported by a shaft 32 connected to a pneumatic bellows valve 31 that penetrates the earthen wall of the container 11, and moves up and down as the shaft 32 expands and contracts. Further, a side wall of the container 11 is provided with a board insertion/removal opening that can be opened and closed by a lid 33. Then, the substrate support 17 descends due to the extension of the shaft 32,
In this state, the board 18 is replaced through a board insertion/removal port provided on the side wall of the container 11.
なお、第1図中34は加熱源20と基板支持具17との
間に配置された円筒状の熱遮蔽体、35は前記ヒータ2
2のリード線を示している。また、36は加熱3!20
の表面にArガスを流し、基板加熱中に反応室12側の
圧力よりも基板裏面側の圧力を0.01〜10torr
を高くするためのガス供給バイブ、37はこのバイブ3
6に接続されたバルブを示している。In FIG. 1, 34 is a cylindrical heat shield placed between the heat source 20 and the substrate support 17, and 35 is the heater 2.
2 lead wires are shown. Also, 36 is heating 3!20
Ar gas is flowed over the surface of the substrate, and the pressure on the back side of the substrate is set to 0.01 to 10 torr than the pressure on the reaction chamber 12 side while heating the substrate.
A gas supply vibe to raise the temperature, 37 is this vibe 3
The valve connected to 6 is shown.
次に、本装置を用いて基板18上にタングステン薄膜を
形成する手順について説明する。Next, a procedure for forming a tungsten thin film on the substrate 18 using this apparatus will be described.
まず、薄膜形成に先立ち、排気口16を介して反応室1
2内を真空排気する。次いで、例えばバイブ14aを通
じてガス導入バイブ15aからArを500cc/ m
i n流して、反応室12内を例えば1Qtorrの
圧力状態にする。これと平行してガス供給バイア36か
らArを50cc/1n流し、基板支持具17の内部空
間を例えば11tOrrの圧力状態にする。この状態で
加熱源20のヒータ22に通電を行い、基板18を加熱
する。この場合、基板支持具17の内部空間が反応室1
2内より若干高い圧力に設定されていることで、基板1
8は効果的に加熱される。さらに、加熱ヒータ22が基
板18の裏面に直接接しているので、加熱効率は高く速
やかに所定温度、例えば200〜1000℃まで加熱さ
れる。First, prior to thin film formation, the reaction chamber 1 is
Evacuate the inside of 2. Next, for example, 500 cc/m of Ar is supplied from the gas introducing vibrator 15a through the vibrator 14a.
i.n. to bring the inside of the reaction chamber 12 into a pressure state of, for example, 1 Qtorr. In parallel with this, 50 cc/1n of Ar is flowed from the gas supply via 36 to bring the internal space of the substrate support 17 into a pressure state of, for example, 11 tOrr. In this state, the heater 22 of the heat source 20 is energized to heat the substrate 18. In this case, the internal space of the substrate support 17 is
By setting the pressure slightly higher than that in board 1,
8 is effectively heated. Further, since the heater 22 is in direct contact with the back surface of the substrate 18, the heating efficiency is high and the substrate 18 is quickly heated to a predetermined temperature, for example, 200 to 1000°C.
次いで、バルブ13aを閉じてガス導入パイプ15aか
らのArの供給を止め、続けてバルブ13a、13bを
開き、ガス供給バイブ14a。Next, the valve 13a is closed to stop the supply of Ar from the gas introduction pipe 15a, and then the valves 13a and 13b are opened to close the gas supply vibrator 14a.
14bからそれぞれW F sガス0.1〜5 tor
r。14b to WFs gas 0.1 to 5 tor, respectively.
r.
H2ガス0.5〜10torrを導入する。導入された
これら2種のガスをガス導入バイブ15a、15bから
反応室12内に吐出させる。この状態で反応室12内は
減圧状態に保持され、基板18の表面にCvDによるタ
ングステン1119が形成されることになる。このとき
、反応W12内が減圧状態であることから、加熱源20
及び基板18から基板支持具17への熱伝導が著しく減
少するため、基板支持具17の表面温度は基板18の表
面温度(約500℃)より十分低くなり、この状態で基
板18にタングステン+1膜が堆積する。Introduce H2 gas from 0.5 to 10 torr. These two types of introduced gases are discharged into the reaction chamber 12 from the gas introduction vibes 15a and 15b. In this state, the inside of the reaction chamber 12 is maintained in a reduced pressure state, and tungsten 1119 is formed on the surface of the substrate 18 by CvD. At this time, since the inside of the reaction W12 is in a reduced pressure state, the heat source 20
Since the heat conduction from the substrate 18 to the substrate support 17 is significantly reduced, the surface temperature of the substrate support 17 becomes sufficiently lower than the surface temperature of the substrate 18 (approximately 500°C), and in this state, the tungsten+1 film is applied to the substrate 18. is deposited.
かくして本装置によれば、従来と同様に基板18の表面
にタングステン7allを堆積できるのは勿論のこと、
次のような効果が得られる。即ち、基板18の温度に比
べて基板支持具17の温度は十分に低くなっているので
、基板支持具17に堆積する薄膜の堆積速度は著しく低
くなる。さらに、容器11の内壁における薄膜の堆積速
度も同様に低くなる。つまり、基板18以外の部分への
タングステン薄膜の被着を抑制することができる。この
ため、基板18以外の基板支持具17等に付着した薄膜
が剥離して基板18上に塵として付着する等の不都合を
防止することができ、集積回路等の歩留り向上に寄与す
ることができる。さらに、基板18以外へのi’1ll
lの付着が少ないことから、反応室12内に導入したガ
スの利用効率を高めることができ、基板18へのII!
lの堆積速度が向上する。また、基板支持具17等への
薄膜の堆積が少なくなることから、副生成ガスの発生量
が減少することになり、例えば選択的な薄膜形成を行う
場合に選択性の向上をはかることができる。Thus, according to the present apparatus, not only can tungsten 7all be deposited on the surface of the substrate 18 in the same way as in the conventional method, but also
The following effects can be obtained. That is, since the temperature of the substrate support 17 is sufficiently lower than the temperature of the substrate 18, the deposition rate of the thin film deposited on the substrate support 17 is extremely low. Furthermore, the rate of deposition of the thin film on the inner wall of the container 11 is similarly reduced. In other words, adhesion of the tungsten thin film to parts other than the substrate 18 can be suppressed. Therefore, it is possible to prevent inconveniences such as the thin film attached to the substrate support 17 and the like other than the substrate 18 peeling off and adhering as dust on the substrate 18, contributing to an improvement in the yield of integrated circuits, etc. . Furthermore, i'1ll to other than the board 18
Since there is little adhesion of II! to the substrate 18, the utilization efficiency of the gas introduced into the reaction chamber 12 can be increased.
The deposition rate of l is increased. In addition, since less thin film is deposited on the substrate support 17 etc., the amount of by-product gas generated is reduced, and for example, selectivity can be improved when performing selective thin film formation. .
なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記形成する薄膜はタングステンに限らず
、SiO2や多結晶シリコン等のiiI膜形成にも適用
できる。S i 02の場合、例えば基板温度を500
〜800℃として、TE01 (テトラエチルオルソシ
リケート)ガスを1〜200torr/1n 、 N2
ガスを100〜1000torr/ 1n供給して堆積
を行えばよい。さらに、多結晶シリコンの場合、基板温
度を800〜1000℃に設定し、SiH4ガスを0.
1〜1 torr/1n 、 H2ガスを1〜10tO
rr/ff1in供給して堆積を行えばよい。Note that the present invention is not limited to the embodiments described above. For example, the thin film to be formed is not limited to tungsten, but can also be applied to III film formation of SiO2, polycrystalline silicon, and the like. In the case of S i 02, for example, the substrate temperature is set to 500
~800°C, TE01 (tetraethyl orthosilicate) gas at 1~200 torr/1n, N2
Deposition may be performed by supplying gas at 100 to 1000 torr/1n. Furthermore, in the case of polycrystalline silicon, the substrate temperature is set at 800 to 1000°C, and the SiH4 gas is heated at 0.5°C.
1-1 torr/1n, H2 gas 1-10tO
Deposition may be performed by supplying rr/ff1in.
また、加熱源を構成するヒータやヒータ支持具は、タン
グステンや石英等に限るものではなく、被処理基板に対
して汚染源とならないものであればよい。さらに、実施
例では基板表面を下にして111g!堆積を行う例で説
明したが、基板表面を上にしてWJ膜堆積を行う方式に
も適用可能である。また、加熱源と基板裏面とは必ずし
も完全に密着状態である必要はなく、実質的に接触状態
であればよい。その他、本発明の要旨を逸脱しない範囲
で、種々変形して実施することができる。Further, the heater and heater support constituting the heat source are not limited to tungsten, quartz, etc., and may be made of any material that does not become a source of contamination to the substrate to be processed. Furthermore, in the example, the weight was 111g with the substrate surface facing down! Although the description has been given using an example in which deposition is performed, it is also applicable to a method in which WJ film is deposited with the substrate surface facing upward. Furthermore, the heating source and the back surface of the substrate do not necessarily need to be in complete contact with each other, but only need to be in substantial contact with each other. In addition, various modifications can be made without departing from the gist of the present invention.
[発明の効果]
以上詳述したように本発明によれば、被処理基板を直接
的に加熱し、該基板以外の部分が加熱されるのを極力抑
えているので、基板以外への薄膜の形成を低減すること
ができる。従って、基板への塵の付着等を未然に防止す
ることができ、集積回路の製造歩留り向上等に寄与でき
、さらに薄膜形成速度の向上をはかることができる。[Effects of the Invention] As detailed above, according to the present invention, the substrate to be processed is directly heated and heating of parts other than the substrate is suppressed as much as possible. formation can be reduced. Therefore, it is possible to prevent dust from adhering to the substrate, thereby contributing to improving the manufacturing yield of integrated circuits, and further improving the thin film formation speed.
図は本発明の一実施例に係わるCVD法を利用した薄膜
形成装置の概略構成を示す断面図である。
11・・・容器、12・・・反応室、13a、〜。
13c、37・・・バルブ、14a、 〜、14c。
36・・・ガス供給パイプ、15a、〜、15C・・・
ガス導入パイプ、16・・・排気口・、17・・・基板
支持具、18・・・被処理基板、20・・・加熱源、2
1・・・ヒータ支持具、22・・・加熱ヒータ。The figure is a sectional view showing a schematic configuration of a thin film forming apparatus using a CVD method according to an embodiment of the present invention. 11... Container, 12... Reaction chamber, 13a, -. 13c, 37... valve, 14a, ~, 14c. 36... Gas supply pipe, 15a, ~, 15C...
Gas introduction pipe, 16... Exhaust port, 17... Substrate support, 18... Substrate to be processed, 20... Heat source, 2
1... Heater support, 22... Heater.
Claims (4)
スを供給し、該基板表面に化学的気相成長法により薄膜
を堆積する薄膜形成装置において、前記被処理基板を支
持する基板支持具と、この基板支持具と非接触で且つ前
記基板の裏面に接触して設けられ、該基板を直接加熱す
る加熱源とを具備してなることを特徴とする薄膜形成装
置。(1) In a thin film forming apparatus that supplies a predetermined gas to the surface of a substrate to be processed placed in a container and deposits a thin film on the surface of the substrate by chemical vapor deposition, a substrate that supports the substrate to be processed. A thin film forming apparatus comprising: a support; and a heat source that is provided in a non-contact manner with the substrate support and in contact with the back surface of the substrate, and directly heats the substrate.
面に凹部を設け、この凹部内に前記被処理基板の裏面と
接触するヒータを埋込んでなるものであることを特徴と
する特許請求の範囲第1項記載の薄膜形成装置。(2) A patent characterized in that the heat source is formed by providing a recess in the surface of a quartz plate serving as a heater fixture, and embedding a heater in contact with the back surface of the substrate to be processed in the recess. A thin film forming apparatus according to claim 1.
とする特許請求の範囲第2項記載の薄膜形成装置。(3) The thin film forming apparatus according to claim 2, wherein the heater is a tungsten wire.
して該基板を支持するものであることを特徴とする特許
請求の範囲第1項記載の薄膜形成装置。(4) The thin film forming apparatus according to claim 1, wherein the substrate support supports the substrate to be processed with its surface facing down.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1009487A JPS63179077A (en) | 1987-01-21 | 1987-01-21 | Thin film forming device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1009487A JPS63179077A (en) | 1987-01-21 | 1987-01-21 | Thin film forming device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63179077A true JPS63179077A (en) | 1988-07-23 |
Family
ID=11740744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1009487A Pending JPS63179077A (en) | 1987-01-21 | 1987-01-21 | Thin film forming device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63179077A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5556472A (en) * | 1991-12-09 | 1996-09-17 | Sumitomo Electric Industries, Ltd | Film deposition apparatus |
-
1987
- 1987-01-21 JP JP1009487A patent/JPS63179077A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5556472A (en) * | 1991-12-09 | 1996-09-17 | Sumitomo Electric Industries, Ltd | Film deposition apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6599367B1 (en) | Vacuum processing apparatus | |
US5972114A (en) | Film deposition apparatus with anti-adhesion film and chamber cooling means | |
US4263336A (en) | Reduced pressure induction heated reactor and method | |
JP5393895B2 (en) | Semiconductor device manufacturing method and substrate processing apparatus | |
US6913996B2 (en) | Method of forming metal wiring and semiconductor manufacturing apparatus for forming metal wiring | |
JPH06293595A (en) | Deposited polysilicon film improved in evenness and device therefor | |
JPH0830273B2 (en) | Thin film forming method and apparatus | |
JPH03224223A (en) | Selective cvd method and cvd device | |
JP2010059522A (en) | Film forming method and film forming apparatus | |
JP2002155364A (en) | Shower head structure, device and method for film formation, and method for cleaning | |
KR102388169B1 (en) | METHOD OF FORMING RuSi FILM AND FILM-FORMING APPARATUS | |
US10982324B2 (en) | Method and device for producing coated semiconductor wafers | |
JPH1112738A (en) | Cvd film forming method | |
JPH1154441A (en) | Catalytic chemical evaporation device | |
US20030175426A1 (en) | Heat treatment apparatus and method for processing substrates | |
JPS63179077A (en) | Thin film forming device | |
JP4329171B2 (en) | Film forming method and film forming apparatus | |
JPH05109654A (en) | Film formation treatment system | |
JPH09199424A (en) | Epitaxial growth | |
JPH10223620A (en) | Semiconductor manufacturing device | |
JP4804636B2 (en) | Deposition method | |
JPH1192280A (en) | Silicon epitaxial vapor-phase growth apparatus | |
JPH08274033A (en) | Vapor growth method and device | |
JPS63270471A (en) | Plasma cvd device | |
JPH11186170A (en) | Method and device for forming film |