JPS6316542A - Discharge lamp with built-in reflector - Google Patents
Discharge lamp with built-in reflectorInfo
- Publication number
- JPS6316542A JPS6316542A JP15923386A JP15923386A JPS6316542A JP S6316542 A JPS6316542 A JP S6316542A JP 15923386 A JP15923386 A JP 15923386A JP 15923386 A JP15923386 A JP 15923386A JP S6316542 A JPS6316542 A JP S6316542A
- Authority
- JP
- Japan
- Prior art keywords
- reflector
- ceramic member
- light emitting
- built
- discharge lamp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 claims abstract description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 4
- 150000004703 alkoxides Chemical class 0.000 claims abstract 2
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 5
- 239000000843 powder Substances 0.000 abstract description 3
- 239000011521 glass Substances 0.000 abstract 1
- 208000028659 discharge Diseases 0.000 description 24
- 239000007789 gas Substances 0.000 description 9
- 229910052724 xenon Inorganic materials 0.000 description 5
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910001507 metal halide Inorganic materials 0.000 description 3
- 150000005309 metal halides Chemical class 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- -1 halide compound Chemical class 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical group [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 241000270666 Testudines Species 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
Landscapes
- Optical Elements Other Than Lenses (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はリフレクターを内蔵し次放電ランプの新規な構
成に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel configuration of a secondary discharge lamp incorporating a reflector.
従沫のリフレクタ−内蔵放電ランプは、高い集光性を得
る交めに米アイエルシー社製サーマツクスランプに代表
されるように、リフレクタ−により直接放電空間が密閉
されたものであった。第2図はその断面図である。The reflector-built-in discharge lamps of the Company had a discharge space directly sealed with a reflector, as typified by the Thermax lamp manufactured by ILC (USA), in order to obtain high light condensing properties. FIG. 2 is a sectional view thereof.
201がリフレクタ一部材、202は放電電極、203
が放電空間である。また放電ガスはキセノンに限定され
ていた。201 is a reflector member, 202 is a discharge electrode, 203
is the discharge space. Furthermore, the discharge gas was limited to xenon.
〔発明が解決しようとする間4点〕
しかし、従来例の放電ランプでは必他的に大きな放電空
間を要し、温度分布の偏りや管壁負荷の減少による効率
の低下が生じる。し次がってキセノンランプのように内
部ガス圧の高いランプには有効であるが、メタルハライ
ドランプ等のHよりランプには使用が難しかつ友。さら
には、二重管構造のHよりランプにみられる数千時間の
寿命に対し、鵠程度の寿命である。[4 points for the invention to solve] However, conventional discharge lamps necessarily require a large discharge space, resulting in a decrease in efficiency due to uneven temperature distribution and a decrease in tube wall load. Although it is effective for lamps with high internal gas pressure, such as xenon lamps, it is more difficult to use for lamps than H, such as metal halide lamps. Furthermore, compared to the several thousand hours of life seen in lamps with a double-tube structure, the lifespan of this lamp is only about that long.
本発明はこのような問題点を解決するもので、その目的
とするところは、集光効率を損わずに、寿命の長い、発
光効率の高い、低コストなリフレクター内蔵放電ランプ
′ft提供するところにある。The present invention is intended to solve these problems, and its purpose is to provide a low-cost discharge lamp with a built-in reflector that has a long life, high luminous efficiency, and does not impair light collection efficiency. There it is.
本発明のリフレクター内蔵放電ランプは、内面にリフレ
クタ−面を有したセラミック部材によって形成される密
閉空間内に発光管を設置し九こと全特徴としている。さ
らにはそのセラミック部材の光出射面にレンズ面を形成
したことを特徴としている。またそのセラミック部材は
、石英ガラスであることを特徴とし、さらには金属プル
コキシドー?倣粉末シリカ等t−原料とするゾル−ゲル
焼結体であること′1に%徴としている。The discharge lamp with a built-in reflector of the present invention has nine features in that the arc tube is installed in a sealed space formed by a ceramic member having a reflector surface on the inner surface. A further feature is that a lens surface is formed on the light exit surface of the ceramic member. In addition, the ceramic member is characterized by being made of quartz glass, and is also made of metal pulkoxide. The percentage mark is '1' indicating that the material is a sol-gel sintered body using a t-raw material such as imitation powder silica.
本発明の上記の*gによれば、リフレクタ−は発光管を
密閉するセラミック部材の内側に形成される。これによ
り発光管の支持材の配置自由度が増し、リフレクタ−の
無効領域が小さく抑えられ、高い集光効率が得られる。According to the above *g of the present invention, the reflector is formed inside the ceramic member that seals the arc tube. This increases the degree of freedom in arranging the support material for the arc tube, keeps the ineffective area of the reflector small, and provides high light collection efficiency.
またこのセラミック部材によって形成される密閉空間に
発光管が配置さj、る九め、放電空間は外気に対して二
重の密閉をされている。これに↓9不純ガス(主に水素
)の侵入を防ぎ、1!極の損傷、不安定な放電、封入v
lJ質の化学変化を抑制することができ、寿命が向上す
る。Further, the arc tube is placed in the sealed space formed by this ceramic member, and the discharge space is doubly sealed from the outside air. This prevents the entry of ↓9 impure gases (mainly hydrogen), 1! Damaged poles, unstable discharge, enclosed v
Chemical changes in lJ quality can be suppressed, improving lifespan.
さらには発光管全閉じ込めることにより、放電空間が小
さく抑えられ、キセノンランプだけでなくメタルハライ
ド等のHよりランプも使用が可能となつmoま次発元管
の使用は管壁負荷を大きくとれ、発光効率を向上できる
ばかりか、不優な温度低下を防止し、発光管全一様な温
度に保持できる。これにより、さらに高効率な発光が得
られる。Furthermore, by completely confining the arc tube, the discharge space can be kept small, making it possible to use not only xenon lamps but also metal halide lamps. Not only can efficiency be improved, but an undesirable drop in temperature can be prevented and the entire arc tube can be maintained at a uniform temperature. Thereby, even more efficient light emission can be obtained.
またセラミック部材に低膨張な石英ガラスを用いること
により、耐熱性に優れ、不純ガスの発生を抑え九ランプ
を得ることができる。Furthermore, by using low-expansion quartz glass for the ceramic member, a lamp with excellent heat resistance and generation of impurity gas can be suppressed.
発光面のセラミック部材にレンズ面を与え、光束強度分
布をさらに制御可能とし、均一な照明を得るものである
。By providing a lens surface to the ceramic member of the light emitting surface, the luminous flux intensity distribution can be further controlled and uniform illumination can be obtained.
またセラミック部材はゾル−ゲル焼結法により作られる
ことで、形状の自由度が増加し、量産性が向上し、低コ
ストでリフンクター内蔵放電ランプを作製できる。Further, since the ceramic member is manufactured by the sol-gel sintering method, the degree of freedom in shape is increased, mass productivity is improved, and a discharge lamp with a built-in refuncter can be manufactured at low cost.
第1図は放電ランプの一例としてメタルノ・ライドラン
プに応用した場合の断面図である。す7レクターが内蔵
されたセラミック部材101の内側にリフレクタ−10
2が形成され、光出射面が形成されたセラミック部材1
06と共に密閉空間104をつくる。密閉空間内には発
光管105が設置され、放電空間106は二重に外気か
ら連断されている。1几密閉空間104は併気口110
から真空に引かれ、さらにゲッター107により不純ガ
スが取り除かれる。’17’Cl0Bは接続用モリブデ
ン箔、109はリード線である。発光管は通常のメタル
ハライドランプと同様なハライド化合物、パニングガス
を封入され文数電管である。FIG. 1 is a cross-sectional view of the case where the present invention is applied to a metalnolide lamp as an example of a discharge lamp. A reflector 10 is placed inside the ceramic member 101 that has a built-in reflector.
2 is formed, and a ceramic member 1 is formed with a light emitting surface.
06 to create a closed space 104. An arc tube 105 is installed in the sealed space, and the discharge space 106 is doubly isolated from the outside air. 1 liter closed space 104 is a double air vent 110
It is evacuated, and impurity gas is removed by a getter 107. '17'Cl0B is a molybdenum foil for connection, and 109 is a lead wire. The arc tube is filled with a halide compound and panning gas similar to ordinary metal halide lamps.
リフレクタ−面は本実施例の場合回転放物面を形成し、
その焦点位置に発光管が置かれている。ま几出射面に形
成されたレンズは本実施の場合、平凸ランプ作用をし、
リフレクタ−から放射される光を集束する。In this embodiment, the reflector surface forms a paraboloid of revolution,
An arc tube is placed at the focal point. In this case, the lens formed on the output surface acts as a plano-convex lamp,
Focuses the light emitted from the reflector.
一般に放電ランプは、発光による水分からの不純ガスの
発生、あるいは汚れや外気からの不純ガスの侵入により
移動電圧の上昇、ハロイド化合物の変質などが生じ、寿
命の低下を招く、このため−重管構造の放電ランプは数
100時間の寿命である。これに対し、外管を用い九二
重管構造のものは1桁程寿命が向上する。本実施例にお
いても、リフレクタ一部材により二亘管W4造がとられ
、数千時間の長寿命な放電ランプが得られた。In general, in discharge lamps, the generation of impure gases from moisture due to light emission, or the intrusion of dirt or impure gases from the outside air, causes an increase in moving voltage and deterioration of halide compounds, resulting in a shortened lifespan. The discharge lamp of this construction has a lifespan of several hundred hours. On the other hand, those with a nine-ply tube structure using an outer tube improve the life by one order of magnitude. In this example as well, a two-tube W4 structure was used with one reflector member, and a discharge lamp with a long life of several thousand hours was obtained.
ま文、密閉空間よりもきわめて小さな放電空間内にアー
クを閉じ込めることができ、従来、管壁負荷が小さいと
発光効率が低く使用が難しかつ几Hよりランプも使用可
能となつ次。1友管壁負荷の上昇は一般に発光効率を向
上させる働きをする。It is possible to confine the arc in a discharge space that is much smaller than a closed space, and it is difficult to use because the luminous efficiency is low when the load on the tube wall is small, and it is now possible to use a lamp instead of the conventional method. An increase in tube wall loading generally serves to improve luminous efficiency.
次にセラミック部材の製作法について説明する。Next, a method of manufacturing the ceramic member will be explained.
放電ランプ等の高熱発生に耐え、化学的安定性上維持で
きる材料として発光管には石英ガラスが一般的に使用さ
れている。リフレクタ−に用いられる部材についても、
発光管の発熱に対する耐性が要求される。そこで本実施
例では発光管と同じ石英ガラスを用いた。′!文リフレ
クタ、レンズを形成するセラミック部材は以下に示すゾ
ル−ゲル焼結法に↓り作製し友。Quartz glass is generally used for arc tubes as a material that can withstand high heat generated by discharge lamps and the like and maintains chemical stability. Regarding the materials used in reflectors,
The arc tube requires resistance to heat generation. Therefore, in this embodiment, the same quartz glass as the arc tube was used. ′! The ceramic members forming the reflector and lens were fabricated using the sol-gel sintering method described below.
市販のケイ酸エチル208g(1モル)にα02規定の
塩酸180gItを加え、激しく攪拌し、刃口水分解し
友。このゾルに微粉末シリカ(Aθvosil○x50
日本アエロジル社製等)t−7五22(1,22モル
)攪拌しながら加え、超音波や遠心分X出により均一な
ゾルとした。このゾルにα1規定のアンモニア水を滴下
し、PH14,Oに調整した。このゾルを第3図に示す
ようなリフレクター形状の雌型に流し込みゲル化させた
。301はゾルの流入口である。Add 180 g of α02 normal hydrochloric acid to 208 g (1 mol) of commercially available ethyl silicate, stir vigorously, and dissolve water at the cutting edge. Add fine powder silica (Aθvosil○x50) to this sol.
t-7522 (manufactured by Nippon Aerosil Co., Ltd., etc.) (1.22 mol) was added with stirring, and a homogeneous sol was obtained by ultrasonication or centrifugal fractionation. To this sol, α1 normal ammonia water was added dropwise to adjust the pH to 14.0. This sol was poured into a reflector-shaped female mold as shown in FIG. 3 and gelled. 301 is a sol inlet.
このゲルを容器から外し、60℃で7日間乾燥しドライ
ゲルとした。ドライゲル状態で電極封入口、排気口等の
細部の加工を行った。これを1300℃で焼結すること
によりリフレクタ一部材が侍られた。ゲルは乾燥、焼成
の際に体積が減少するため、雌型はそれを計算した数倍
のサイズにしである。次にリフレクタ−面に反射コート
が施される。This gel was removed from the container and dried at 60° C. for 7 days to obtain a dry gel. In the dry gel state, details such as the electrode sealing port and exhaust port were processed. A reflector member was prepared by sintering this at 1300°C. The volume of the gel decreases when it is dried and fired, so the female mold is several times the calculated size. A reflective coating is then applied to the reflector surface.
光出射面部材も同様にゾル−ゲル法により製作され、リ
フレクタ一部材と接置される6形状によっては、レンズ
部材、リフレクタ一部材全一1+化成形することも可能
でるる。発光管の封止、光出射面部材の接会には炭酸ガ
スレーザー加工法を用い友、この方法は従来の酸水系炎
バーナー加工法に比べ、水素の侵入を極力抑えることが
可能である。−!たゾル−ゲル法により製作される石英
部材も、真空溶解石英ガラスと四等な水酸基濃度を有し
、部材からの不純ガス発生を抑制できるものである。The light emitting surface member is similarly manufactured by the sol-gel method, and depending on the shape of the lens member and the reflector member, it is also possible to mold the lens member and the reflector member into a single unit. Carbon dioxide laser processing is used to seal the arc tube and attach the light-emitting surface member, and compared to the conventional acid-water flame burner processing method, this method can minimize the intrusion of hydrogen. -! The quartz member manufactured by the sol-gel method also has a hydroxyl group concentration equal to that of vacuum melted silica glass, and can suppress the generation of impurity gas from the member.
以上は型成形により部材を得たものであるが、多部材は
通常の研磨、加熱加工によって成形されても工い。Although the parts described above were obtained by molding, multi-parts can also be molded by ordinary polishing and heating processing.
しかし型成形法は量産性に優れ、ランプのコスト低減に
非常に有効である。However, the molding method has excellent mass productivity and is very effective in reducing the cost of lamps.
この工うにして得られ几すフレクター内斌放電ランプは
、優れfc集光効率を有し、数1000時間の寿命を得
文。The reflector internal discharge lamp obtained in this way has excellent fc light collection efficiency and has a lifespan of several thousand hours.
以上述べ友工うに本発明によれば、リフレクタ−面を有
するセラミック部材によって形成される密閉空間内に発
光管を設置することにより、高い集光効率、長寿命、扁
い発光効率、量産性に優れたリフレクター内蔵放電ラン
プを得ることができ友。筐窺発元管内に放゛亀空間ft
限定することにより、Hよりランプへの応用が可能とな
った。さらには、キセノンランプのような爆発性のラン
プに対して、安全性を向上させることができる。ま九光
出射部にレンズ面金形成することで、より細かな配光制
御を行なうことができた。As described above, according to the present invention, by installing an arc tube in a closed space formed by a ceramic member having a reflector surface, high light collection efficiency, long life, low luminous efficiency, and mass productivity can be achieved. You can get a good reflector built-in discharge lamp for your friend. A radiating turtle space ft within the source tube of the cabinet
By limiting H, it became possible to apply it to lamps. Furthermore, safety can be improved against explosive lamps such as xenon lamps. By forming a metal lens surface on the light emitting part, it was possible to perform more precise control of light distribution.
第1図は本発明のリフレクター内蔵放電ランプの断面図
。
第2図は従来のリフレクター内域キセノンランプの断面
図。
第3図はりコレクターの雌型の断面図である。
101・・・リフレクターヲ肩したセラミック部材
102・・・光出射側セラミック部材
104・・・密閉空間
105・・・@光管
106・・・放!空間 以上
他1名
11 図
、、x3
第21!1
第3図FIG. 1 is a sectional view of a discharge lamp with a built-in reflector according to the present invention. FIG. 2 is a cross-sectional view of a conventional reflector internal xenon lamp. FIG. 3 is a sectional view of the female type of the beam collector. 101... Ceramic member carrying a reflector 102... Ceramic member on the light output side 104... Sealed space 105... @ Light tube 106... Release! Space Above and 1 other person 11 Figure,,x3 21!1 Figure 3
Claims (4)
ンプにおいて、内面にリフレクター面を有したセラミッ
ク部材によつて形成される密閉空間内に発光管を設置し
たことを特徴とするリフレクター内蔵放電ランプ。(1) A discharge lamp with a built-in reflector that focuses light from a light source, characterized in that an arc tube is installed in a closed space formed by a ceramic member having a reflector surface on the inner surface.
したことを特徴とする特許請求の範囲第1項記載のリフ
レクター内蔵放電ランプ。(2) A discharge lamp with a built-in reflector according to claim 1, wherein a lens surface is formed on the light exit surface of the ceramic member.
徴とする特許請求の範囲第1項記載のリフレクター内蔵
放電ランプ。(3) A discharge lamp with a built-in reflector according to claim 1, wherein the ceramic member is made of quartz glass.
シリカ等を原料とするゾル−ゲル焼結体であることは特
徴とする特許請求の範囲第1項記載のリフレクター内蔵
放電ランプ。(4) The discharge lamp with a built-in reflector according to claim 1, wherein the ceramic member is a sol-gel sintered body made of metal alkoxide, finely powdered silica, or the like.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15923386A JPS6316542A (en) | 1986-07-07 | 1986-07-07 | Discharge lamp with built-in reflector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15923386A JPS6316542A (en) | 1986-07-07 | 1986-07-07 | Discharge lamp with built-in reflector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6316542A true JPS6316542A (en) | 1988-01-23 |
Family
ID=15689249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15923386A Pending JPS6316542A (en) | 1986-07-07 | 1986-07-07 | Discharge lamp with built-in reflector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6316542A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006030370A1 (en) * | 2004-09-16 | 2006-03-23 | Koninklijke Philips Electronics N.V. | Lamp assembly with lamp and reflector. |
-
1986
- 1986-07-07 JP JP15923386A patent/JPS6316542A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006030370A1 (en) * | 2004-09-16 | 2006-03-23 | Koninklijke Philips Electronics N.V. | Lamp assembly with lamp and reflector. |
US8278805B2 (en) | 2004-09-16 | 2012-10-02 | Speziallampenfabrik Dr. Fischer Gmbh | Lamp assembly with lamp and reflector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2589043B2 (en) | High temperature lamp with UV absorbing quartz envelope | |
US4281267A (en) | High intensity discharge lamp with coating on arc discharge tube | |
US7030543B2 (en) | Reflector lamp having reduced seal temperature | |
JPH0538531Y2 (en) | ||
EP1056119A2 (en) | Cold-end device of a low-pressure mercury vapour discharge lamp | |
JPH07240184A (en) | Ceramic discharge lamp, projector device using this lamp, and manufacture of ceramic discharge lamp | |
JPS6316542A (en) | Discharge lamp with built-in reflector | |
KR930008705B1 (en) | Ceramic electric-discharge lamp | |
JPH0475204A (en) | Bulb type fluorescent lamp device | |
JPH09153348A (en) | Metal halide lamp, its lighting device, floodlight device and projector device | |
JPH0696734A (en) | Ceramic discharge lamp with reflecting mirror | |
JP3635796B2 (en) | Metal vapor discharge lamp | |
JP2001319618A (en) | Ultrahigh-pressure mercury lamp and its manufacturing method | |
JPH08222183A (en) | Bulb type fluorescent lamp | |
JPS5913745Y2 (en) | Double tube fluorescent lamp | |
JPH0130782Y2 (en) | ||
JPH1167147A (en) | Metal halide discharge lamp and lighting system | |
JPH07220685A (en) | Reflection discharge lamp and lighting device thereof | |
JPS60138841A (en) | Fluorescent lamp | |
JPH0452931Y2 (en) | ||
JPH04129162A (en) | Illuminant for projection | |
JPS5937643A (en) | Metal halide lamp | |
JPH0432150A (en) | High pressure metallic vapor discharge lamp | |
JPS59191252A (en) | Fluorescent lamp | |
Van Lierop et al. | 4000K Low Wattage Metal Halide Lamps with Ceramic Envelopes: A Breakthrough in Color Quality |