Nothing Special   »   [go: up one dir, main page]

JPS6316432B2 - - Google Patents

Info

Publication number
JPS6316432B2
JPS6316432B2 JP58121004A JP12100483A JPS6316432B2 JP S6316432 B2 JPS6316432 B2 JP S6316432B2 JP 58121004 A JP58121004 A JP 58121004A JP 12100483 A JP12100483 A JP 12100483A JP S6316432 B2 JPS6316432 B2 JP S6316432B2
Authority
JP
Japan
Prior art keywords
group
adhesive film
acid
forming material
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58121004A
Other languages
Japanese (ja)
Other versions
JPS6013866A (en
Inventor
Toshio Kawaguchi
Shinichiro Kunimoto
Koji Kusumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP58121004A priority Critical patent/JPS6013866A/en
Publication of JPS6013866A publication Critical patent/JPS6013866A/en
Publication of JPS6316432B2 publication Critical patent/JPS6316432B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Dental Preparations (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な接着性被膜形成材に関する。詳
しくは、(i)カルボキシル基を有する高分子体、(ii)
有機チタネート及び(iii)一般式、
The present invention relates to a novel adhesive film-forming material. Specifically, (i) a polymer having a carboxyl group, (ii)
organic titanate and (iii) general formula,

【式】(但し、nは0、1、 2、3又は4で、Xはアルキル基、アルコキ基、
カルボキシル基又はアシルアルキル基で、Rはア
ルキル基、ハロアルアルキル基、アルコキシアル
キル基、カルボキシアルキル基フエノキシアルキ
ル基、アリール基、アルコキシアリール基、アシ
ル基ハロアシル基、アシルオキシアシル基、アル
コキシカルボニル基、アリル基又はベンジル基で
ある。)示される安息香酸誘導体を主成分とする
接着性被膜形成材である。 従来、接着性被膜形成材例えば接着材は使用分
野によつて、その分野特有の種々の化合物が知ら
れている。特に要求される性状がきびしいのは生
体硬組織に特に湿潤状態で使用する歯科用の接着
材である。該歯科用接着材としては例えばポリア
クリル酸水溶液と無機酸化物で構成されるアイオ
ノマーセメントや、重合性単量体を用いた室温硬
化性の接着材が知られている。 しかし、アイオノマーセメントについては歯質
との接着力は有するが、他の歯科用充填材料との
接着力が無く、しかも耐水性が低いために、水中
ではずれやすいという欠点がある。また重合性単
量体を用いた接着材は、エナメル質には接着する
が象牙質にはほとんど接着しない。このため歯質
を予め高濃度のリン酸水溶液で処理することによ
つて脱灰させ機械的に保持形態を作る必要があつ
た。しかし、この方法は高濃度のリン酸を用いる
ため健全な歯質までも痛めてしまうという欠点が
ある。 また接着材については使用分野に応じて、その
分野特有の性状が要求されるため、ある分野で使
用される接着材が他の分野でも工業的に使用出来
ることはほとんどない。従つて使用分野に応じて
好適な接着材が開発されている。 一方カルボキシル基を有する高分子体を溶解し
た溶媒中に有機チタネートを混合すると、架橋反
応が直ちに進行し、短時間でゲル化するか又は架
橋した硬化物の沈澱が生じることが知られてい
る。従つて、カルボキシル基を有する高分子体と
有機チタネートとを混合して一液性タイプで保存
することは出来ないとされて来た。かかる欠陥を
補うために有機チタネートの安定剤を上記系に添
加し、一液タイプの保存をする試みがなされてい
る。例えば上記の安定剤として乳酸、サリチル酸
等を用いることが提案されているが、これらの安
定剤を用いてもカルボキシル基を有する高分子体
と有機チタネートとが架橋反応を起すことを完全
に防止することは出来ず、工業的に或いは製品と
して両者を一液性タイプの状態で保存することは
できなかつた。そこで、本発明者らは上記欠点を
解決すべく研究を重ねた結果、安息香酸誘導体の
中でも特定の構造式を持つ化合物を有機チタネー
トの安定剤として用いた場合、一液の状態で保存
可能な一液性組成物が得られることを見い出し本
発明を提供するに至つた。 すなわち、本発明は、 (i) カルボキシル基を有する高分子体、 (ii)有機チタネート、 及び、 (iii) 一般式、
[Formula] (where n is 0, 1, 2, 3 or 4, X is an alkyl group, an alkoxy group,
A carboxyl group or an acylalkyl group, R is an alkyl group, a haloaralkyl group, an alkoxyalkyl group, a carboxyalkyl group, a phenoxyalkyl group, an aryl group, an alkoxyaryl group, an acyl group, a haloacyl group, an acyloxyacyl group, an alkoxycarbonyl group , allyl group or benzyl group. ) is an adhesive film-forming material whose main component is the benzoic acid derivative shown below. Conventionally, adhesive film-forming materials, such as adhesives, are known as various compounds specific to the field of use, depending on the field of use. Particularly demanding properties are required for dental adhesives that are used on biological hard tissue, particularly in a wet state. As the dental adhesive, for example, an ionomer cement composed of an aqueous polyacrylic acid solution and an inorganic oxide, and a room temperature curable adhesive using a polymerizable monomer are known. However, although ionomer cement has adhesive strength with tooth structure, it has the disadvantage that it does not have adhesive strength with other dental filling materials and has low water resistance, so it easily comes off in water. Furthermore, adhesives using polymerizable monomers adhere to enamel, but hardly adhere to dentin. For this reason, it was necessary to demineralize the tooth substance by previously treating it with a high-concentration phosphoric acid aqueous solution and create a mechanical retention form. However, this method has the disadvantage that it uses highly concentrated phosphoric acid, which can damage even healthy tooth structure. Further, since adhesives are required to have properties specific to each field depending on the field of use, adhesives used in one field are rarely able to be used industrially in other fields. Therefore, suitable adhesives have been developed depending on the field of use. On the other hand, it is known that when an organic titanate is mixed into a solvent in which a polymer having a carboxyl group is dissolved, a crosslinking reaction immediately proceeds, resulting in gelation in a short time or precipitation of a crosslinked cured product. Therefore, it has been considered impossible to mix a polymer having a carboxyl group and an organic titanate and store the mixture in a one-component type. In order to compensate for such deficiencies, attempts have been made to add organic titanate stabilizers to the above system for one-component storage. For example, it has been proposed to use lactic acid, salicylic acid, etc. as the above-mentioned stabilizers, but even if these stabilizers are used, the crosslinking reaction between the polymer having a carboxyl group and the organic titanate cannot be completely prevented. Therefore, it was not possible to store both in a one-component state industrially or as a product. Therefore, the present inventors have conducted repeated research to solve the above drawbacks, and have found that when a compound with a specific structural formula among benzoic acid derivatives is used as a stabilizer for organic titanates, it is possible to store them as a single solution. The present inventors have discovered that a one-component composition can be obtained and have provided the present invention. That is, the present invention provides (i) a polymer having a carboxyl group, (ii) an organic titanate, and (iii) a general formula,

【式】 (但し、nは0、1、2、3又は4で、Xはア
ルキル基、アルコキシ基、カルボキシル基又は
アシルアルキル基で、Rはアルキル基、ハロア
ルアルキル基、アルコキシアルキル基、カルボ
キシルアルキル基、フエノキシアルキル基、ア
リール基、アルコシキアリール基、アシル基ハ
ロキシル基、アシルオキシアシル基、アルコキ
シカルボニル基、アリル基又はベンジル基であ
る。)で示される安息香酸誘導体、を主成分と
する接着性被膜形成材である。 本発明の接着性被膜形成材の主成分の1つはカ
ルボキシル基又は無水カルボン酸基を有する高分
子体である。該高分子体にカルボキシル基を有し
ている必要性は例えば歯科用裏装材、歯科用接着
材等のように湿潤状態で使用する場合も十分な接
着力を有し使用に耐えうるものとするためであ
る。特に該当カルボキシル基が、2個結合した高
分子更には隣接する炭素原子に2つのカルボキシ
ル基が結合した高分子が効果的である。また接着
性被膜形成材に耐水性を付与し、被接着性材料と
のなじみを付与するために、該高分子体に疎水性
基を有するものを選ぶと更に好適である。 前記カルボキシル基を有する高分子体は特に限
定されず公知のものを用いうるが一般には分子量
が1000〜100000の範囲のものが最も好適である。
また該高分子体を得る方法は特に限定されず公知
の方法が採用出来る。一般にはカルボキシル基を
有するビニルモノマーを単独重合させるか該官能
基を有する共重合可能なビニルモノマーと他の共
重合可能なビニルモノマー就中疎水性基を有する
ビニルモノマーとを共重合させて製造する方法が
好適である。またカルボン酸エステル基を有する
ビニルモノマーと他の共重合可なビニルモノマー
とを共重合させ、得られた共重合体のカルボン酸
エステ基を加水分解してカルボキシル基に変換す
る方法も好適に採用される。 本発明の接着性被膜形成材に接着性を付与する
ためには上記高分子体中に占めるカルボキシル基
の量が、高分子体1gに対して0.001モル以上に
含むのが好適である。 前記カルボキシル基を有するビニルモノマーは
特に限定されず用いうるが一般に好適に使用され
るものを例示すれば次ぎの通りである。即ち、ア
クリル酸、メタクリル酸等のアクリル酸系ビニル
モノマー、マレイン酸、フマル酸、イタコン酸、
無水マレイン酸、無水イタコン酸の不飽和二塩基
性カルボン酸モノマー;4−メタクリロキシエチ
ルトリメリツト酸ような芳香族系不飽和カルボン
酸モノマー、或いはこれらのビニルモノマーに置
換基を置換した置換誘導体等が好適に使用され
る。 また前記カルボキシル基又は無水カルボン酸を
有するビニルモノマーと共重合可能なビニルモノ
マーも特に限定されず公知のものが使用出来る。
一般に好適に使用される代表的なものを具体的に
示せば、例えば、エチレン、プロピレン、ブテン
等のオレフイン化合物および塩化ビニル、ヘキサ
フルオロプロピレン等のオレフイン化合物のハロ
ゲン誘導体;ブタジエン、ペンタジエン等のジオ
レフイン化合物およびそのハロゲン誘導体;スチ
レン、ジビニルベンゼン、ビニルナフタレン等の
芳香族ビニル化合物:酢酸ビニル等のビニルエス
テル化合物;アクリル酸メチル、メタクリル酸エ
チル、2−ヒドロキシエチルメタクリレート、エ
チレングリコールジアクリレート、ジエチレング
リコールジメタクリレート、アクリル酸アミド、
メタクリル酸アミド等のアクリル酸及びメタクリ
ル酸誘導体;アクリロニトリル等の不飽和ニトリ
ル化合物;メチルビニルエーテル等のビニルエー
テル化合物等が挙げられる。 さらに、前記した如く本発明の原料として用い
る共重合可能なビニルモノマーにおいて、疎水性
基を有するビニルモノマーは好適に用いられる。
疎水性基を有するビニルモノマーを用いることに
より、高分子体中に、カルボキシル基による親水
性基と疎水性基の両者の性質を備えることができ
る。この場合は後述する様に親水性表面を有する
材料と疎水性表面を有する材料のような異種材料
の接着において特にその性能を向上させることが
できる。 前記疎水性基は特に限定されず公知なものが使
用できるが一般に好適に使用される疎水性基の代
表的なものを挙げると例えばフエニル基、ナフチ
ル基等のアリール基;メチル基、エチル基、プロ
ピル基等のアルキル基;エトキシ基、ブトキシ基
等のアルコキシ基;アセチルオキシ基等のアシル
オキシ基;エトキシカルボニル基、ブトキシカル
ボニル基等のアルコキシカルボニル基等である。 これらの官能基を有するビニルモノマーは公知
のものが特に制限されず用いられる。一般に好適
なビニルモノマーを具体的に挙げれば、スチレ
ン、メチルスチレン、ビニルナフタレン、プロピ
レン、ブテン、エチルビニールエーテル、ブチル
ビニールエーテル、酢酸ビニル、メタクリル酸エ
チル、アクリル酸ブチルなどである。また同一分
子内にカルボキシル基と疎水性基を持つものとし
て4−メタクリロキシエチルトリメリツト酸ある
いはその酸無水物なども好適に用いられる。 上記、疎水性基を有するビニルモノマーに由来
する疎水性基はカルボキシル基を有する高分子体
中と40モル%〜90モル%含まれている事が好まし
い。疎水性基が40モル%より少ない場合は本発明
の接着性被膜形成材を特に歯科用の接着剤として
用いた場合耐水性が充分でなくなる傾向がある。
また、90モル%を越えると歯質との接着力が得ら
れなくなる傾向がある。上記のビニルモノマーは
カルボキシル基又は無水カルボン酸基を有するビ
ニルモノマーに対して一種又は二種以上を混合し
て共重合させる事も可能である。上記重合を実施
する方法については特に限定されず、公知の方法
が用いられるが、特にラジカル重合が好適に用い
られる。ラジカル重合において用いられる重合開
始剤についても一般に公知のものが採用される。
例えば、過酸化ベンゾイル、過酸化ラウロイルな
どの有機過酸化物;ペルオキソに硫酸カリウム、
ペルオキソに硫酸アンモニウムなどのペルオキソ
に硫酸塩;アゾビスイソブチロニトリルなどのア
ゾ化合物;トリブチルホウ素などの有機金属化合
物またはレドツクス系開始剤を用いて行なう重合
が好適に利用できる。 これらの重合開始剤は、不飽和カルボン酸、不
飽和カルボン酸エステル又は酸無水物、共重合可
能なビニル系単量体等のモノマー成分に対して
0.01〜3重量%の範囲で使用すれば十分である。 本発明の接着性被膜形成材の主成分の他%は有
機チタネートである。 本発明において用いる有機チタネートは特に限
定されず公知のものが使用できる。例えば、テト
ラ−iso−プロピルチタネート、テトラ−n−ブ
チルチタネート、テトラキス(2−エチルヘキシ
ル)チタネート、テトラステアリルチタネート、
トリ−n−ブトキシモノステアリルチタネートの
ようなアルキルチタネート類;ジ−iso−プロポ
キシ・ビス(アセチルアセトン)チタネート、ジ
−n−ブトキシ・ビス(トリエタノールアミン)
チタネート、ジヒドロキシ・ビス(ラクテイクア
シド)チタネート、テトラオクチレングリコール
チタネート、;イソプロピルトリ−iso−ステアロ
イルチタネート、イソプロピルトリドデシルベン
ゼンスルホニルチタネート、イソプロピルトリス
(ジオクチルパイロホスフエート)チタネート、
テトラ−iso−プロピルビス(ジオクチルホスフ
アイト)チタネート、トラオクチルビス(ジトリ
デシルホスフアイト)チタネート、テトラ(2,
2−ジアリルオキシメチル−1−ブチル)ビス
(ジ−トリデシル)ホスフアイトチタネート、ビ
ス(ジオクチルパイロホスフエート)オキシアセ
チートチタネート、ビス(ジオクチルパイロホス
フエート)エチレンチタネートなどが単独でまた
は組合せて使用される。また本発明で使用する有
機チタネートは、特に下記一般式で示されるよう
なアルキルチタネート類に対しても十分に一液性
タイプの保存が可能である。即ち、一般に保存安
定性が乏しいとされている、一般式、 (但し、Rはアルキル基で、nは0又は20までの
数である)で表わされる有機チタネートに対して
も十分に効果的である。 本発明の接着性被膜形成材中の有機チタネート
の使用量は特に限定されないが一般にはカルボキ
シル基を有する高分子体のカルボキシル基1モル
に対して、0.02モル〜1.0モルの割合で添加する
ことが好ましい。該有機チタネートの添加量が
0.02モルより少ない場合には、接着性被膜形成材
の耐水性が低下する場合があり、使用分野が制限
される場合もある。また、該有機チタネート添加
量が1.0モルを越えると硬化を行なう際、硬化時
間が短かくなり過ぎ操作性が低下する場合があ
り、使用分野を限られる場合もある。従つて本発
明に於ける各添加割合は使用分野に要求される物
性に応じて予め決定するのが好ましい。 本発明の接着性被膜形成材に使用する第三の成
分は、一般式、 (但し、nは0、1、2、3又は4で、Xはアル
キル基、アルコキシ基、カルボキシル基、又はア
シルアルキル基で、Rはアルキル基、ハロアルキ
ル基、アルコキシアルキル基、カルボキシアルキ
ル基、フエノキシアルキル基、アリール基、アル
コキシアリール基、アシル基、ハロアシル基、ア
シルオキシアシル基、アルコキシカルボニル基、
アリル基又はベンジル基である。)で示される安
息香酸誘導体である。 本発明の上記一般式で示される安息香酸誘導体
がどのような反応機構で、カルボキシル基を有す
る高分子体と有機チタネートとを一液性タイプと
して取扱うことが出来るのか、その理由は現在尚
明確ではない。しかし統計的な実験の結果から次
ぎのような結論が推定される。即ち前記一般式中
の、−OR基と−COOH基はベンゼン環のオルト
位に位置することが必要である。この点はチタン
が前記−OR基と−COOH基の酸素原子間に配位
結合を起し6員隅の安定した状態を保持するので
はないかと推測される。しかし上記−OR基が−
OH基であつてもまた−COOH基の水素原子が他
の位置基に置換されていても或いはこれらが同時
に満足される化合物例えばサルチル酸であつても
本発明の効果を発揮させることは出来ない。但し
前記一般式の如く−COOH基と−OR基がオルト
位に存在する限り、ベンゼン環の水素が他の置換
基(前記一般式のX)で置換されても或いは置換
基の数の如何にかかわらず、本発明の効果は十分
に発揮される。上記の結果から、本発明の作用効
果はベンゼン環に存在するカルボキシル基(−
COOH)と−OR基がオルト位に位置するように
存在し、しかも−OR基のRが水素原子でない場
合に選択的にチタンを安定に保持するように作用
するものと推定される。 本発明で使用する安息香酸誘導体は前記一般式
で示されるものであれば特に限定されず公知の化
合物が使用出来る。一般に工業的に入手容易さ、
取扱いの容易さ等の関係から前記一般式で示され
る、X又はRのアルキル基、アルコキシ基、ハロ
アルキル基、フエノキシアルキル基等のアルキル
基は低級アルキル基例えば炭素原子1〜4個のも
のが好適で、またハロアルキル基、ハロアシル基
のハロゲン原子は塩素、臭素、沃素、弗素が特に
塩素、臭素が好適に使用される。更にまた前記一
般式で示されるRのフエノキシアルキル基は該フ
エノキシ基の水素原子がニトロ基で置換されたニ
トロフエノキシ基又はカルボキシフエノキシ基が
好適である。 また工業的に入手容易な前記一般式で示される
安息香酸導体は次ぎの化合物である。即ち一般
式、 (但し、Xは1〜4の整数で、Xはアルキル基、
アルコキシ基、カルボキシル基又はアシルアルキ
ル基で、R′はアルキル基である)で示される安
息香酸誘導体、又は、一般式、 (但し、R″はアルキル基、ハロアルキル基、ア
ルコキシアルキル基、カルボキシアルキル基、フ
エノキシアルキル基、アリール基、アルコキシア
リール基、アシル基、ハロアシル基、アリル基又
はベンジル基である)で示される安息香酸誘導体
である。 更に具体的に、本発明の前記一般式で示される
代表的な化合物を例示すれば次ぎの通りである。
即ち前記一般式()で示される代表的な化合物
としては、2−メチル−6−メトキシ安息香酸;
2,4−ジメチル−6−エトキシ安息香酸;2,
3,5−トリメチル−6−メトキシ安息香酸;
2,4,5−トリメチル−3,6−ジメトキシ安
息香酸;3,4−ジメチル−2,6−ジメトキシ
安息香酸;オルシノールジカルボン酸ジメチルエ
ーテル;オリベトン酸ジメチルエーテル等であ
る。また前記一般()で示される代表的な化合
物としては、2−メトキシ安息香酸、2−エトキ
シ安息香酸、2−プロポキシ安息香酸、2−イソ
プロポキシ安息香酸、2−〔β−ブロモエトキシ〕
安息香酸2−メトキシメトキシ安息香酸、フエノ
キシ酢酸−O−カルボン酸、α−フエノキシプロ
ピオン酸−O−カルボン酸、α−フエノキシブタ
ン酸−O−カルボン酸、α−フエノキシイソブタ
ン酸−O−カルボン酸、α−フエノキシバレリン
酸、2−〔β−(2−ニトロフエノキシ)−エトキ
シ〕安息香酸、2〔β−(4−ニトロフエノキシ)
−エトキシ〕安息香酸、エチレンジサリチル酸、
2−フエノキシ安息香酸、2−O−クレゾキシ安
息香酸、2−m−クレゾキシ安息香酸、2−p−
クレゾキシ安息香酸、2−(2,4−ジメチル−
フエノキシ)安息香酸、2−β−ナフチロキシ安
息香酸、2−(2−メトキシフエノキシ)安息香
酸、2−アセトキシ安息香酸、2−ベンゾイロキ
シ安息香酸、2−トリクロロアセトキシ安息香
酸、2−ブロモアセトキシ安息香酸、2−トリブ
ロモアセトキシ安息香酸、サクシニルジサリチル
酸、カルボメトキシサリチル酸、カルボエトキシ
サリチル酸、2−アリロキシ安息香酸、2−ベン
ジロキシ安息香酸等である。 本発明で用いる前記安息香酸誘導体は一種或い
は二種以上を、必要に応じて有機溶媒と共に使用
すればよい。該有機溶媒は特に限定されず公知の
ものが使用出来るが一般には沸点が低く、後で除
去が「容易なものがよく、例えばメタノール、エ
タノール、酢酸エチル等の有機溶媒が好適に使用
される。また本発明で用いる前記一般式で示され
る安息香酸誘導体の使用量は特に限定されず、本
発明で得られる接着性被膜形成材を使用する用途
分野に応じて、適宜決定すればよい。一般には本
発明の1つの成分である前記有機チタネート1モ
ルに対し、0.1モル〜4モル好ましくは0.5モル〜
2モルの範囲で使用すると好適である。該安息香
酸誘導体を該有機チタネートに対して多く使用す
ると接着性被膜形成材の使用に際し、一般に該接
着性被膜形成材を他の混合物と混合するときの操
作時間が長くなつたり、硬化物の生成速度が遅く
なる傾向がある。 本発明における前記カルボキシル基を有する高
分子体、有機チタネート及び前記安息香酸誘導体
は一液性タイプで保存が出来、長期間硬化するこ
とはない。該保存方法は特に限定されないが、有
機溶媒の存在下に保存する方法が最も好適に用い
られる。該有機溶媒については前記に説明したよ
うに、特に限定されないが一般に沸点が低く除去
が容易に行いうるメタノール、エタノール、イソ
プロピルアルコール、酢酸エチルなどが好適に用
いられる。また本発明の接着性被膜形成材を有機
溶媒に溶解して用いる時の該形成材の濃度は特に
限定されないが一般には1〜30重量%の範囲にす
ると、該接着性被膜形成材を被膜として使用でき
るので好ましい。上記溶媒と共に用いても使用時
には、塗布した後溶媒を蒸発させる事によつて硬
化反応が始まるため室温での使用が容易である。 上記の一液での保存方法の他に、勿論本発明の
接着性被膜形成材の前記三成分をそれぞれ別々に
保存し、硬化時に三成分を混合する方法、有機チ
タネートと安息香酸誘導体とを予め混合して保存
しておき、硬化時にカルボキシル基を有する高分
子体を混合する方法等も採用出来る。 本発明の接着性被膜形成材は前記カルボキシル
基を有する高分子体、有機チタネートおよび前記
安息香酸誘導体の三成分のみで十分な硬化形成体
を得る事ができるが、更に必要に応じ重合可能な
ビニルモノマー及び開始剤の共存下に硬化させる
事によつて硬化物の強度あるいは接着力を向上さ
せる事も可能である。 上記の重合可能なビニルモノマーとしては、既
に説明した共重合可能なビニルモノマーがそのま
ま使用される。該共重合可能なビニルモノマー中
でも特に、アクリル酸ならびにメタクリル酸誘導
体は室温重合が可能であるために好適に用いられ
る。 前記開始剤は特に限定されないが、一般に過酸
化物とアミンの混合系を用いると好適である。該
過酸化物としては通常硬化剤として用いられる過
酸化物であればいずれでもよく、特にジベンゾイ
ルパーオキサイド、ジラウロイルパーオキサイド
等が好適に用いられる。 またアミンとしては、N,N′−ジメチルアニ
リン、N,N′−ジメチル−P−トルイジン、N
−メチル、N′−β−ヒドロキシエチル−アニリ
ン、N,N′−ジメチル−P−(β−ヒドロキシエ
チル)−アニリン、N,N′−ジ(β−ヒドロキシ
ルエチル)−P−トルイジン等が好適に使用され
る。さらに前記開始剤に加えて例えばスルフイン
酸又はカルボン酸等の金属塩の如き助触媒を用い
ることもしばしば好ましい態様である。 本発明の接着性被膜形成材は、一液性タイプの
硬化用組成物として用いる事が可能であり、しか
も、硬化時の硬化時間が適度であるため操作性が
向上する。また生成した被膜は、秀れた耐候性、
耐薬品性、耐溶剤性、接着性を示し、その上光沢
性も有する強靭な被膜となる。 本発明の接着性被膜形成材は、例えば塗料用ベ
ース、樹脂やガラスのコーテイング材、歯科用治
療修復材などに有用なものである。 上記歯科用治療修復材とは、歯牙の治療修復の
際に使用され、歯牙の表面或いは歯牙に設けられ
た窩洞等の表面に塗布される材料をいい、本発明
の接着性被膜形成材の最も重要な用途である。こ
のような材料としては、例えば、歯牙用接着材、
歯髄保護用裏装材、歯牙と充填材との辺縁封鎖材
等が挙げられる。 本発明の接着性被膜形成材を歯科用治療修復材
として用いた場合について以下説明する。 従来、歯牙の治療修復に於いて、歯牙の窩洞に
複合修復レジン等の充填材を充填する際、歯質と
充填材との接着に接着材が用いられている。しか
し、従来の接着材は歯質に対してほとんど接着性
を示さないため、歯質を予め高濃度のリン酸水溶
液で処理する事によつて脱灰させ機械的に保持形
態を作る必要があつた。しかし、この方法は高濃
度のリン酸水溶液を用いるため健全な歯質までも
痛めてしまうと言う欠点があり、特に象牙質をエ
ツチングした場合接着力があまり期待できないだ
けでなく、象牙細管を通じて歯髄にまでリン酸水
溶液の影響が及ぶ恐れがある。また、前記方法は
どうしても未反応のモノマーが残つてしまうた
め、このモノマーによる歯髄為害性を起こす恐れ
も生じてくる。 ところが、本発明の接着性被膜形成材を接着材
として用いるときは、前記リン酸水溶液で前処理
する事なく直接象牙質に接着しうるし、しかも硬
化物自体が本来ポリマーであるため未反応モノマ
ーによる歯髄為害性がないという優れた効果が発
揮される。 次に、従来の歯髄保護用の裏装材としては、水
酸化カルシウム系のものやセメントなどが用いら
れており、複合修復レジン等の充填材の充填の際
に行なうリン酸エツチングから象牙質を守るため
等に用いられている。ところが、これらの材料は
どうしても厚い被膜になつてしまう事と、充填材
との接着性を有しないと言う事から、浅い窩洞に
充填すると言う事がほとんど不可能であつた。そ
こで、本発明の接着性被膜形成材を有機溶媒に溶
かして前記裏装材として用いる事により、薄い膜
でありながらリン酸エツチング液から歯質を守る
事が出来、しかも充填材と接着すると言う秀れた
機能を発揮する。 又、金属と歯質の接着に現在でも良く使用され
ているリン酸亜鉛セメントは組成物の中に多量の
リン酸を含んでいるため歯髄為害性を起こす恐れ
があり、本来ならば象牙質を保護するために裏装
材を用いることが含まれていた。 ところが、従来のように被膜の厚い裏装材で
は、それ自体の圧縮強度が問題となるため使用が
不可能であつた。 そこで、本発明の接着性被膜形成材を該裏装材
として用いた場合、薄膜であるため、それ自身の
強度は、それ程必要でなく、しかもリン酸を透さ
ないという理想的な効果を発揮するのである。 更に本発明の接着性被膜形成材の第三の機能と
して辺縁封鎖性が挙げられる。 上記機能を期待するものとして公知物質は例え
ばアマルガム充填の際に用いる、コーパライト等
の樹脂を有機溶媒に溶かしたものが知られてい
る。この材料は、確かに薄膜が形成されるが、歯
質やアマルガムとの接着力が無く、辺縁封鎖につ
いても、それ程効果が無い。本発明の接着性被膜
形成材を該辺縁封鎖材として用いる事により、辺
縁封鎖性に関して著しい効果を示す。 上記働きは、該接着性被膜形成材が歯質には接
着するが、アマルガムには接着しないと言う事実
から考えて接着性以外の性質、例えば密着性、疎
水性に基因していると思われる。 又、アマルガム充填以外のものとして複合修復
レジン、セメント充填やゴムキヤツピングなどに
おいても上記接着性被膜形成材を用いる事によつ
て辺縁封鎖性を向上させる事も可能である。 上記の用途以外にも本発明の接着性被膜形成材
を用いる事は可能である。例えば、歯牙の窩洞に
充填していた材料を除去した場合や、歯けい部の
楔状欠損部に発明の接着性被膜形成材を塗布する
事によつて外部刺激に対する遮断材として用いる
事も可能である。 以上に、歯牙用接着材、歯髄保護用裏装材、辺
縁封鎖材としての機能を個々に説明したが、本発
明の接着性被膜形成材は、これらの機能を併せ有
するものであるため、一つの症例に於て本発明の
接着性被膜形成材を用いるのみで上記の機能をす
べて発揮させることができる。従つて、従来、一
つの症例において普通は、複数の材料を併用する
必要があり操作が非常に煩雑になる事や、複数の
ものを併用したためにかえつてお互いに機能が低
下するという欠点を有していたことを考えれば、
本発明の接着性被膜形成材は、歯科用治療修復材
として極めて有用な組成物である。 本発明の接着性被膜形成材を歯科用治療修復材
として用いる場合には、本発明の一つの成分であ
るカルボキシル基を有する高分子体は疎水性基を
併せて有する事が、上記の歯科用治療修復材とし
ての機能をさらに優れたものとするために好まし
い。これは、口腔中が100%湿度の苛酷な条件下
にあるために耐水性を付与するために有効であ
る。また、歯質と複合修復レジンの接着剤に本発
明の接着性被膜形成材を用いた場合には、カルボ
キシル基は歯質に対して親和性を有しており、一
方疎水性基は、複合修復レジンに対して親和性を
有しているため従来の接着材に比べて著しい接着
力の向上が見られるものである。 本発明を更に具体的に説明するために、以下実
施例を挙げて説明するが、本発明はこれらの実施
例に限定されるものではない。 製造例 1 500ml容量のガラス製セパラブルフラスコにシ
クロヘキサン200mlを入れ、これにスチレン5.2
g、無水マレイン酸4.9gならびにベンゾイルパ
ーオキサイド(以下BPOと略記する)0.05gを加
えて充分撹拌した。 次に、容器内を減圧、窒素置換した後、80℃で
4時間撹拌下に加熱重合を行ない室温まで冷却
後、生成した沈澱物を濾別した。得られた固体を
さらにベンゼン300mlで十分洗浄した後乾燥し白
色のポリマー8.7gを得た。このものの元素分析
から生成共重合体の組成を求めた結果、スチレン
48.4mol%、無水マレイン酸51.6molであつた。 次に、この生成物を80mlのジオキサンに溶か
し、500ml容量のフラスコに入れて充分撹拌しな
がら、5重量パーセントの水酸化カリウム水溶液
100mlを加え10時間室温で反応させた。次に、濃
塩酸を加えて中和しさらに過剰の塩酸を加えるこ
とによつて白色固体の沈澱物を得た。この固体を
濾別後、中性になるまで充分水洗を繰返し、さら
に乾燥して8.0gの共重合体を得た。この生成物
の赤外吸収スペクトルを測定した結果、無水マレ
イン酸のカルボニル基に由来する特性吸収(1850
cm-1、1775cm-1)が完全消失し、新たにマレイン
酸のカルボニル基に由来する特性吸収が1720cm-1
に出現しておりほぼ定量的に加水分解反応が進行
していることが確認できた。すなわち、上記で得
た白色固体はスチレン48.4mol%、マレイン
51.6mol%を含有する共重合体であることが確認
できた。 製族例 2〜3 スチレン−無水マレイン酸の共重合体として
Table1に示した組成の異なる二種の市販品
(Arco Chemical社製)を用いて、製造例1と同
様な方法で加水分解を行ない、原料共重合体の元
素分析結果及び加水分解後の赤外吸収スペクトル
の測定結果から同じく表1に示した組成のスチレ
ン−マレイン酸共重合体を得た。
[Formula] (where n is 0, 1, 2, 3, or 4, X is an alkyl group, alkoxy group, carboxyl group, or acylalkyl group, and R is an alkyl group, haloaralkyl group, alkoxyalkyl group, carboxyl group) The main component is a benzoic acid derivative represented by an alkyl group, a phenoxyalkyl group, an aryl group, an alkoxyaryl group, an acyl group, a haloxyl group, an acyloxyacyl group, an alkoxycarbonyl group, an allyl group, or a benzyl group. It is an adhesive film forming material. One of the main components of the adhesive film forming material of the present invention is a polymer having a carboxyl group or a carboxylic anhydride group. The need for the polymer to have carboxyl groups is such that it has sufficient adhesive strength and can withstand use even when used in wet conditions, such as in dental lining materials, dental adhesives, etc. This is to do so. Particularly effective are polymers in which two carboxyl groups are bonded, and moreover, polymers in which two carboxyl groups are bonded to adjacent carbon atoms. Further, in order to impart water resistance to the adhesive film-forming material and impart compatibility with the material to be adhered to, it is more preferable to select a polymer having a hydrophobic group. The carboxyl group-containing polymer is not particularly limited and any known polymer may be used, but in general, those having a molecular weight in the range of 1,000 to 100,000 are most suitable.
Furthermore, the method for obtaining the polymer is not particularly limited, and any known method can be employed. Generally, it is produced by homopolymerizing a vinyl monomer having a carboxyl group or by copolymerizing a copolymerizable vinyl monomer having the functional group with another copolymerizable vinyl monomer, especially a vinyl monomer having a hydrophobic group. The method is preferred. Also preferably employed is a method in which a vinyl monomer having a carboxylic acid ester group is copolymerized with another copolymerizable vinyl monomer, and the carboxylic acid ester group in the resulting copolymer is hydrolyzed to convert it into a carboxyl group. be done. In order to impart adhesive properties to the adhesive film-forming material of the present invention, the amount of carboxyl groups in the polymer is preferably 0.001 mol or more per 1 g of the polymer. The carboxyl group-containing vinyl monomer is not particularly limited and can be used, but the following are examples of those that are generally suitably used. That is, acrylic acid-based vinyl monomers such as acrylic acid and methacrylic acid, maleic acid, fumaric acid, itaconic acid,
Unsaturated dibasic carboxylic acid monomers such as maleic anhydride and itaconic anhydride; aromatic unsaturated carboxylic acid monomers such as 4-methacryloxyethyl trimellitic acid, or substituted derivatives of these vinyl monomers with substituents, etc. is preferably used. Furthermore, the vinyl monomer that can be copolymerized with the vinyl monomer having a carboxyl group or carboxylic acid anhydride is not particularly limited, and known ones can be used.
Typical examples that are generally preferably used include, for example, olefin compounds such as ethylene, propylene, butene, and halogen derivatives of olefin compounds such as vinyl chloride and hexafluoropropylene; diolefin compounds such as butadiene and pentadiene. and its halogen derivatives; aromatic vinyl compounds such as styrene, divinylbenzene, and vinylnaphthalene; vinyl ester compounds such as vinyl acetate; methyl acrylate, ethyl methacrylate, 2-hydroxyethyl methacrylate, ethylene glycol diacrylate, diethylene glycol dimethacrylate, Acrylic acid amide,
Examples include acrylic acid and methacrylic acid derivatives such as methacrylic acid amide; unsaturated nitrile compounds such as acrylonitrile; and vinyl ether compounds such as methyl vinyl ether. Furthermore, as described above, among the copolymerizable vinyl monomers used as raw materials in the present invention, vinyl monomers having a hydrophobic group are preferably used.
By using a vinyl monomer having a hydrophobic group, the polymer can have the properties of both a hydrophilic group and a hydrophobic group due to carboxyl groups. In this case, as will be described later, the performance can be particularly improved in bonding dissimilar materials such as a material having a hydrophilic surface and a material having a hydrophobic surface. The hydrophobic group is not particularly limited and any known one can be used, but typical hydrophobic groups that are generally preferably used include, for example, aryl groups such as phenyl group and naphthyl group; methyl group, ethyl group, Alkyl groups such as propyl groups; alkoxy groups such as ethoxy groups and butoxy groups; acyloxy groups such as acetyloxy groups; alkoxycarbonyl groups such as ethoxycarbonyl groups and butoxycarbonyl groups. Known vinyl monomers having these functional groups can be used without particular restriction. Specific examples of generally suitable vinyl monomers include styrene, methylstyrene, vinylnaphthalene, propylene, butene, ethyl vinyl ether, butyl vinyl ether, vinyl acetate, ethyl methacrylate, butyl acrylate, and the like. Furthermore, 4-methacryloxyethyl trimellitic acid or its acid anhydride is preferably used as a compound having a carboxyl group and a hydrophobic group in the same molecule. The hydrophobic group derived from the vinyl monomer having a hydrophobic group is preferably contained in the polymer having a carboxyl group in an amount of 40 mol % to 90 mol %. When the hydrophobic group content is less than 40 mol %, the adhesive film forming material of the present invention tends to have insufficient water resistance, especially when used as a dental adhesive.
Moreover, if it exceeds 90 mol%, there is a tendency that adhesive strength with the tooth structure cannot be obtained. The above-mentioned vinyl monomers can be copolymerized singly or in combination of two or more vinyl monomers having a carboxyl group or a carboxylic anhydride group. The method for carrying out the above polymerization is not particularly limited, and any known method may be used, but radical polymerization is particularly preferably used. Generally known polymerization initiators used in radical polymerization are also employed.
For example, organic peroxides such as benzoyl peroxide and lauroyl peroxide; potassium sulfate for peroxo,
Polymerization carried out using a peroxo-sulfate such as ammonium sulfate; an azo compound such as azobisisobutyronitrile; an organometallic compound such as tributylboron, or a redox initiator can be suitably used. These polymerization initiators are effective against monomer components such as unsaturated carboxylic acids, unsaturated carboxylic esters or acid anhydrides, and copolymerizable vinyl monomers.
It is sufficient to use it in a range of 0.01 to 3% by weight. The main component of the adhesive film-forming material of the present invention is an organic titanate. The organic titanate used in the present invention is not particularly limited, and any known organic titanate can be used. For example, tetra-iso-propyl titanate, tetra-n-butyl titanate, tetrakis(2-ethylhexyl) titanate, tetrastearyl titanate,
Alkyl titanates such as tri-n-butoxy monostearyl titanate; di-iso-propoxy bis(acetylacetone) titanate, di-n-butoxy bis(triethanolamine)
Titanate, dihydroxy bis(lacteiacide) titanate, tetraoctylene glycol titanate,; isopropyl tri-iso-stearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl tris(dioctylpyrophosphate) titanate,
Tetra-iso-propyl bis(dioctyl phosphite) titanate, trioctyl bis(ditridecyl phosphite) titanate, tetra(2,
2-Diallyloxymethyl-1-butyl)bis(di-tridecyl)phosphite titanate, bis(dioctylpyrophosphate)oxyacetate titanate, bis(dioctylpyrophosphate)ethylene titanate, etc. are used alone or in combination. Ru. Furthermore, the organic titanate used in the present invention can be sufficiently stored as a one-component type, especially for alkyl titanates such as those represented by the following general formula. That is, the general formula, which is generally considered to have poor storage stability, (However, R is an alkyl group, and n is a number of 0 or up to 20.) It is also sufficiently effective against organic titanates represented by the following formula. The amount of organic titanate used in the adhesive film-forming material of the present invention is not particularly limited, but it is generally added at a ratio of 0.02 mol to 1.0 mol per 1 mol of carboxyl groups of the polymer having carboxyl groups. preferable. The amount of the organic titanate added is
If the amount is less than 0.02 mol, the water resistance of the adhesive film-forming material may decrease, and the field of use may be restricted. Furthermore, if the amount of the organic titanate added exceeds 1.0 mol, the curing time may become too short during curing, resulting in a decrease in operability, which may limit the field of use. Therefore, in the present invention, each addition ratio is preferably determined in advance depending on the physical properties required in the field of use. The third component used in the adhesive film forming material of the present invention has the general formula: (However, n is 0, 1, 2, 3, or 4, X is an alkyl group, alkoxy group, carboxyl group, or acylalkyl group, and R is an alkyl group, haloalkyl group, alkoxyalkyl group, carboxyalkyl group, Enoxyalkyl group, aryl group, alkoxyaryl group, acyl group, haloacyl group, acyloxyacyl group, alkoxycarbonyl group,
It is an allyl group or a benzyl group. ) is a benzoic acid derivative represented by At present, it is not clear what kind of reaction mechanism the benzoic acid derivative shown by the above general formula of the present invention uses, and why a polymer having a carboxyl group and an organic titanate can be treated as a one-component type. do not have. However, the following conclusions can be deduced from the results of statistical experiments. That is, the -OR group and the -COOH group in the above general formula need to be located at the ortho position of the benzene ring. It is speculated that this is because titanium forms a coordinate bond between the oxygen atoms of the -OR group and -COOH group, thereby maintaining a stable state of the six-membered corner. However, the above −OR group is −
Even if it is an OH group, even if the hydrogen atom of the -COOH group is substituted with a group at another position, or even if it is a compound that satisfies both of these at the same time, such as salicylic acid, the effects of the present invention cannot be exhibited. . However, as in the above general formula, as long as the -COOH group and -OR group are present in the ortho position, no matter if the hydrogen of the benzene ring is substituted with another substituent (X in the above general formula) or regardless of the number of substituents. Regardless, the effects of the present invention are fully exhibited. From the above results, the effect of the present invention is that the carboxyl group (-
COOH) and the -OR group are present in the ortho position, and when R of the -OR group is not a hydrogen atom, it is presumed that titanium acts selectively to stably hold the titanium. The benzoic acid derivative used in the present invention is not particularly limited as long as it is represented by the above general formula, and any known compound can be used. Generally easy to obtain industrially,
For ease of handling, the alkyl group represented by X or R, such as an alkyl group, an alkoxy group, a haloalkyl group, or a phenoxyalkyl group, represented by the above general formula is a lower alkyl group, such as one having 1 to 4 carbon atoms. The halogen atom of the haloalkyl group or haloacyl group is preferably chlorine, bromine, iodine or fluorine, particularly chlorine or bromine. Furthermore, the phenoxyalkyl group represented by R in the above general formula is preferably a nitrophenoxy group or a carboxyphenoxy group in which the hydrogen atom of the phenoxy group is substituted with a nitro group. Furthermore, the benzoic acid conductor represented by the above general formula, which is industrially easily available, is the following compound. That is, the general formula, (However, X is an integer of 1 to 4, X is an alkyl group,
a benzoic acid derivative represented by an alkoxy group, a carboxyl group, or an acylalkyl group, in which R' is an alkyl group, or a general formula, (However, R″ is an alkyl group, haloalkyl group, alkoxyalkyl group, carboxyalkyl group, phenoxyalkyl group, aryl group, alkoxyaryl group, acyl group, haloacyl group, allyl group, or benzyl group) It is a benzoic acid derivative. More specifically, representative compounds represented by the above general formula of the present invention are exemplified as follows.
That is, representative compounds represented by the general formula () include 2-methyl-6-methoxybenzoic acid;
2,4-dimethyl-6-ethoxybenzoic acid; 2,
3,5-trimethyl-6-methoxybenzoic acid;
2,4,5-trimethyl-3,6-dimethoxybenzoic acid; 3,4-dimethyl-2,6-dimethoxybenzoic acid; orcinoldicarboxylic acid dimethyl ether; olivetonic acid dimethyl ether, and the like. In addition, typical compounds represented by the above general () include 2-methoxybenzoic acid, 2-ethoxybenzoic acid, 2-propoxybenzoic acid, 2-isopropoxybenzoic acid, 2-[β-bromoethoxy]
Benzoic acid 2-methoxymethoxybenzoic acid, phenoxyacetic acid-O-carboxylic acid, α-phenoxypropionic acid-O-carboxylic acid, α-phenoxybutanoic acid-O-carboxylic acid, α-phenoxyisobutanoic acid-O- Carboxylic acid, α-phenoxyvaleric acid, 2-[β-(2-nitrophenoxy)-ethoxy]benzoic acid, 2[β-(4-nitrophenoxy)]
-Ethoxy]benzoic acid, ethylene disalicylic acid,
2-phenoxybenzoic acid, 2-O-cresoxybenzoic acid, 2-m-cresoxybenzoic acid, 2-p-
Cresoxybenzoic acid, 2-(2,4-dimethyl-
phenoxy)benzoic acid, 2-β-naphthyloxybenzoic acid, 2-(2-methoxyphenoxy)benzoic acid, 2-acetoxybenzoic acid, 2-benzoyloxybenzoic acid, 2-trichloroacetoxybenzoic acid, 2-bromoacetoxybenzoic acid acids, 2-tribromoacetoxybenzoic acid, succinyldisalicylic acid, carbomethoxysalicylic acid, carboethoxysalicylic acid, 2-allyloxybenzoic acid, 2-benzyloxybenzoic acid, and the like. One or more of the benzoic acid derivatives used in the present invention may be used together with an organic solvent if necessary. The organic solvent is not particularly limited and any known organic solvent can be used, but it is generally preferable to use one that has a low boiling point and is easy to remove afterwards, for example, organic solvents such as methanol, ethanol, and ethyl acetate are preferably used. Furthermore, the amount of the benzoic acid derivative represented by the above general formula used in the present invention is not particularly limited, and may be determined as appropriate depending on the field of application in which the adhesive film forming material obtained in the present invention is used. 0.1 mol to 4 mol, preferably 0.5 mol to 1 mol of the organic titanate, which is one component of the present invention.
It is preferable to use it in a range of 2 moles. If the benzoic acid derivative is used in a large amount relative to the organic titanate, the operation time when mixing the adhesive film forming material with other mixtures will generally become longer, or the formation of a cured product will occur. It tends to be slower. The carboxyl group-containing polymer, organic titanate, and benzoic acid derivative in the present invention can be stored as one-component type and will not harden for a long period of time. The storage method is not particularly limited, but a method of storing in the presence of an organic solvent is most preferably used. As described above, the organic solvent is not particularly limited, but methanol, ethanol, isopropyl alcohol, ethyl acetate, etc., which generally have a low boiling point and can be easily removed, are preferably used. Further, when the adhesive film forming material of the present invention is dissolved in an organic solvent and used, the concentration of the forming material is not particularly limited, but generally it is in the range of 1 to 30% by weight. It is preferable because it can be used. Even when used together with the above solvents, the curing reaction starts by evaporating the solvent after coating, so it is easy to use at room temperature. In addition to the above-mentioned method of storing the adhesive film-forming material as a single solution, there is also a method of storing the three components of the adhesive film-forming material of the present invention separately and mixing the three components at the time of curing. It is also possible to adopt a method in which the materials are mixed and stored, and then a polymer having a carboxyl group is mixed therein at the time of curing. In the adhesive film-forming material of the present invention, a sufficient cured product can be obtained using only the three components, the polymer having a carboxyl group, the organic titanate, and the benzoic acid derivative. It is also possible to improve the strength or adhesive strength of the cured product by curing it in the coexistence of a monomer and an initiator. As the above-mentioned polymerizable vinyl monomer, the copolymerizable vinyl monomers already explained can be used as they are. Among the copolymerizable vinyl monomers, acrylic acid and methacrylic acid derivatives are particularly preferably used because they can be polymerized at room temperature. The initiator is not particularly limited, but it is generally preferable to use a mixed system of peroxide and amine. The peroxide may be any peroxide commonly used as a curing agent, and dibenzoyl peroxide, dilauroyl peroxide, etc. are particularly preferably used. The amines include N,N'-dimethylaniline, N,N'-dimethyl-P-toluidine, N,N'-dimethylaniline, N,N'-dimethyl-P-toluidine,
-methyl, N'-β-hydroxyethyl-aniline, N,N'-dimethyl-P-(β-hydroxyethyl)-aniline, N,N'-di(β-hydroxylethyl)-P-toluidine, etc. are preferred. used for. Furthermore, it is often a preferred embodiment to use co-catalysts, such as metal salts of sulfinic acids or carboxylic acids, in addition to the initiators. The adhesive film forming material of the present invention can be used as a one-component type curing composition, and moreover, since the curing time during curing is appropriate, operability is improved. The resulting film also has excellent weather resistance and
The result is a tough coating that exhibits chemical resistance, solvent resistance, and adhesion, as well as gloss. The adhesive film-forming material of the present invention is useful, for example, as a paint base, a coating material for resin or glass, a dental treatment restorative material, and the like. The above-mentioned dental treatment and restorative material refers to a material that is used in tooth treatment and restoration and is applied to the surface of a tooth or a cavity provided in a tooth, and is the most preferred adhesive film-forming material of the present invention. This is an important use. Examples of such materials include tooth adhesives,
Examples include lining materials for protecting the dental pulp, and materials for sealing the edges of teeth and filling materials. The case where the adhesive film-forming material of the present invention is used as a dental treatment and restorative material will be described below. BACKGROUND ART Conventionally, in dental treatment and restoration, when a tooth cavity is filled with a filling material such as a composite restorative resin, an adhesive is used to bond the tooth substance and the filling material. However, since conventional adhesives exhibit almost no adhesion to the tooth structure, it is necessary to demineralize the tooth structure by pre-treating the tooth structure with a highly concentrated phosphoric acid aqueous solution and create a mechanical retention form. Ta. However, this method uses a highly concentrated phosphoric acid aqueous solution, which has the disadvantage of damaging even the healthy tooth structure.Especially when etching dentin, not only is the adhesive strength less than expected, but also the dental pulp is passed through the dentinal tubules. The effects of the phosphoric acid aqueous solution may even be felt. Furthermore, since the above method inevitably leaves unreacted monomers, there is a risk that these monomers may cause damage to the dental pulp. However, when the adhesive film-forming material of the present invention is used as an adhesive, it can be directly adhered to dentin without being pretreated with the phosphoric acid aqueous solution, and since the cured product itself is originally a polymer, it is free from unreacted monomers. It has an excellent effect of being non-toxic to the pulp. Next, conventional lining materials for pulp protection include calcium hydroxide-based materials and cement, and the dentin is removed from the phosphoric acid etching performed when filling with composite restorative resins and other filling materials. It is used for protection, etc. However, these materials inevitably form a thick film and do not have adhesive properties with the filling material, making it almost impossible to fill shallow cavities. Therefore, by dissolving the adhesive film-forming material of the present invention in an organic solvent and using it as the lining material, it is possible to protect the tooth structure from the phosphoric acid etching solution even though it is a thin film, and it also adheres to the filling material. Demonstrates excellent functionality. Furthermore, zinc phosphate cement, which is still commonly used for adhesion between metal and tooth structure, contains a large amount of phosphoric acid in its composition, which may cause damage to the pulp. This included using a backing material for protection. However, conventional lining materials with thick coatings could not be used because their own compressive strength was a problem. Therefore, when the adhesive film-forming material of the present invention is used as the backing material, since it is a thin film, it does not require much strength on its own, and moreover, it exhibits the ideal effect of not allowing phosphoric acid to pass through. That's what I do. Furthermore, a third function of the adhesive film-forming material of the present invention is edge sealing properties. As a known substance that is expected to have the above function, for example, a resin such as copalite dissolved in an organic solvent, which is used in amalgam filling, is known. Although this material does form a thin film, it has no adhesive strength with tooth structure or amalgam, and is not very effective in sealing the margins. By using the adhesive film-forming material of the present invention as the edge sealing material, remarkable effects are exhibited in terms of edge sealing properties. Considering the fact that the adhesive film-forming material adheres to tooth structure but not to amalgam, the above function is thought to be due to properties other than adhesiveness, such as adhesion and hydrophobicity. . In addition to amalgam filling, it is also possible to improve the margin sealing properties by using the above-mentioned adhesive film forming material in composite repair resin, cement filling, rubber capping, etc. It is possible to use the adhesive film forming material of the present invention for purposes other than those described above. For example, it can be used as a shield against external stimuli by removing the material that filled the cavity of a tooth or by applying the adhesive film-forming material of the invention to a wedge-shaped defect in the gum region. be. Above, the functions as a tooth adhesive material, a lining material for protecting the pulp, and a margin sealing material have been explained individually, but since the adhesive film forming material of the present invention has all of these functions, In one case, all of the above functions can be achieved by simply using the adhesive film-forming material of the present invention. Therefore, in the past, in one case, it was necessary to use multiple materials in combination, which made the operation extremely complicated, and the use of multiple materials in combination resulted in deterioration of each other's functions. Considering what I was doing,
The adhesive film-forming material of the present invention is an extremely useful composition as a dental treatment and restorative material. When the adhesive film-forming material of the present invention is used as a dental treatment and restorative material, the polymer having a carboxyl group, which is one of the components of the present invention, must also have a hydrophobic group. It is preferred in order to further improve its function as a therapeutic and restorative material. This is effective in imparting water resistance since the oral cavity is under harsh conditions of 100% humidity. Furthermore, when the adhesive film-forming material of the present invention is used as an adhesive between the tooth substance and the composite restoration resin, the carboxyl group has an affinity for the tooth substance, while the hydrophobic group has an affinity for the composite restoration resin. Because it has an affinity for repair resins, it has significantly improved adhesive strength compared to conventional adhesives. EXAMPLES In order to explain the present invention more specifically, the present invention will be described below with reference to Examples, but the present invention is not limited to these Examples. Production example 1 Put 200 ml of cyclohexane into a 500 ml separable glass flask, and add 5.2 ml of styrene to it.
g, 4.9 g of maleic anhydride, and 0.05 g of benzoyl peroxide (hereinafter abbreviated as BPO) were added and thoroughly stirred. Next, after reducing the pressure in the container and purging it with nitrogen, heating polymerization was carried out at 80°C for 4 hours with stirring, and after cooling to room temperature, the formed precipitate was filtered off. The obtained solid was further thoroughly washed with 300 ml of benzene and then dried to obtain 8.7 g of a white polymer. As a result of determining the composition of the produced copolymer from elemental analysis of this material, it was found that styrene
48.4 mol%, maleic anhydride 51.6 mol. Next, dissolve this product in 80 ml of dioxane, add it to a 500 ml flask, and while stirring thoroughly, add 5% by weight aqueous potassium hydroxide solution.
100 ml was added and allowed to react at room temperature for 10 hours. Next, concentrated hydrochloric acid was added to neutralize the mixture, and then an excess of hydrochloric acid was added to obtain a white solid precipitate. This solid was filtered off, washed with water repeatedly until it became neutral, and further dried to obtain 8.0 g of a copolymer. As a result of measuring the infrared absorption spectrum of this product, we found that the characteristic absorption (1850
cm -1 , 1775 cm -1 ) completely disappeared, and a new characteristic absorption derived from the carbonyl group of maleic acid appeared at 1720 cm -1
It was confirmed that the hydrolysis reaction was progressing almost quantitatively. That is, the white solid obtained above contains 48.4 mol% styrene and maleic
It was confirmed that the copolymer contained 51.6 mol%. Production examples 2 to 3 As a styrene-maleic anhydride copolymer
Using two types of commercially available products (manufactured by Arco Chemical) with different compositions shown in Table 1, hydrolysis was carried out in the same manner as in Production Example 1. From the measurement results of absorption spectra, styrene-maleic acid copolymers having the compositions shown in Table 1 were also obtained.

【表】 製造例 4 内容300mlの耐圧ガラス容器中に、無水マレイ
ン酸35gと90mgのアゾビスイソプチロニトリル
(以下AIBNと略記する)を含むベンゼン50mlを
加え、ドライアイス−メタノール浴で冷却しなが
ら内容を減圧下で窒素置換を行ない、次いで精製
プロピレン12gを液化計量器を通して蒸留により
加えた。次に、60℃で36時間撹拌を続け共重合を
行なつた。重合終了後、内容物を大量の無水エー
テル中に投入して生成共重合体を沈澱させ、傾斜
法でよく洗浄し、すみやかに減圧乾燥器中で乾燥
した。収率は60%であつた。元素分析により無水
マレイン酸55.6mol%プロピレン44.4mol%であ
つた。 次にこの生成物を、製造例1と同様な方法で加
水分解してプロピレン−マレイン酸共重合体24.2
gを得た。この共重合体の赤外吸収スペクトルを
測定した結果、原料中の無水マレイン酸基はほぼ
定量的にマレイン酸に変換していることが確認さ
れた。 製造例 5 内容300mlの耐圧ガラス容器中に35.7gの無水
マレイン酸と90mgのAIBNを含むベンゼン50mlを
加える。これに12.5gのイソブテンを液化計量器
を通して蒸留により仕込み、次いで60℃で15分間
共重合を行なう。重合終了後内容物を大量の無水
エーテル中に注いで生成共重合体を沈澱させ、傾
斜法により上澄み部を捨て無水エーテルで充分洗
浄した後減圧乾燥する。収率は43.3%であつた。
このものは元素分析よりイソブテンを47.1mol
%、無水マレイン酸52.9mol%含む共重合体であ
つた。 次に、この生成物を製造例1と同様な方法で加
水分解してイソブテン−マレイン酸共重合体20.5
gを得た。この共重合体の赤外吸収スペクトルを
測定した結果、原料中の無水マレイン酸基は、ほ
ぼ定量的にマレイン酸に変換していることが確認
された。 製造例 6 100mlのエルレンマイヤーフラスコに0.5gのポ
リメタクリル酸メチルと30mlの濃硫酸を加え、室
温に放置した。 2日間でポリマーは完全に溶解し、黄色の溶液
が得られた。これを大量の氷水中に注ぐとポリメ
タクリル酸が沈澱として析出した。これを濾過
後、十分水洗をくり返し最後に乾燥して0.45gの
固体が得られた。得られたポリマーの元素分析よ
り32%のエステル基が加水分解によつてカルボキ
シル基に変つた事が分つた。 製造例 7 イタコン酸30g、スチレン20gをジオキサン
200gに溶かし、BPOをモノマーに対して0.1%加
え、10℃で5時間重合を行なつた。得られたポリ
マーをヘキサン1に入れて沈澱分離しろ過乾燥
後、さらに蒸留水で洗浄する事によつて未反応の
イタコン酸を除去した。収率は4.2%であつた。
元素分析の結果より、イタコン酸49.0モル%、ス
チレン51.0モル%である事が分つた。 製造例 8 塩化ビニルとイタコン酸ジメチルエステルを
AIBNを開始剤として用いて50℃、6時間重合を
行なつた。 重合物はベンゼンに溶かし、メタノール中に注
加して沈澱させ、これをろ過減圧乾燥した。 共重合体の組成は、元素分析により塩化ビニル
41モル%、イタコン酸メチルが59モル%であつ
た。このポリマーを製造例6と同様な方法で加水
分解を行ない元素分析の結果より28%のエステル
基がカルボキシル基に変つた事が分つた。 製造例 9 スチレンとフマル酸ジエチルエステルをAIBN
を開始剤として用い60℃、20時間重合させてポリ
マーを得た。共重合物の組成は、元素分析よりス
チレン56.5モル%フマル酸ジエチルステル43.5モ
ル%であつた。このポリマーを製造例6と同様な
方法で加水分解を行ない元素分析の結果より35%
のエステルがカルボキシル基に変つた事が分つ
た。 実施例 1 表2に示す、カルボキシル基を有する高分子体
の溶液(A)と有機チタネートならびに安息香酸誘導
体を含んだ溶液(B)を混合した際の保存安定性につ
いて調べた。テスト方法は下記方法によつた。即
ち(A)ならびに(B)を表2に示す様な組成で調製して
おき、ガラス製の容器中で混合した後、速やかに
栓をして20℃の恒温室に保存した。そして保存安
定性は溶液がゲル化するか又は透明度を失なつた
時を終点として比較検討した。 その結果、いずれも12ケ月以上沈澱を生じるこ
ともなく、また透明性を失なわず、ゲル化も生じ
なかつた。
[Table] Production example 4 50 ml of benzene containing 35 g of maleic anhydride and 90 mg of azobisisobutyronitrile (hereinafter abbreviated as AIBN) was added to a 300 ml pressure-resistant glass container, and the mixture was cooled in a dry ice-methanol bath. The contents were purged with nitrogen under reduced pressure, and then 12 g of purified propylene was added by distillation through a liquefaction meter. Next, stirring was continued for 36 hours at 60°C to carry out copolymerization. After the polymerization was completed, the contents were poured into a large amount of anhydrous ether to precipitate the resulting copolymer, thoroughly washed by a decanting method, and immediately dried in a vacuum dryer. The yield was 60%. Elemental analysis revealed that maleic anhydride was 55.6 mol% and propylene was 44.4 mol%. Next, this product was hydrolyzed in the same manner as in Production Example 1 to obtain a propylene-maleic acid copolymer 24.2
I got g. As a result of measuring the infrared absorption spectrum of this copolymer, it was confirmed that the maleic anhydride groups in the raw material were almost quantitatively converted to maleic acid. Production Example 5 Add 50 ml of benzene containing 35.7 g of maleic anhydride and 90 mg of AIBN to a 300 ml pressure-resistant glass container. To this, 12.5 g of isobutene was charged by distillation through a liquefaction meter, and then copolymerization was carried out at 60° C. for 15 minutes. After the polymerization is completed, the contents are poured into a large amount of anhydrous ether to precipitate the resulting copolymer, and the supernatant is discarded by a decanting method, thoroughly washed with anhydrous ether, and then dried under reduced pressure. The yield was 43.3%.
This substance contains 47.1mol of isobutene according to elemental analysis.
The copolymer contained 52.9 mol% of maleic anhydride. Next, this product was hydrolyzed in the same manner as in Production Example 1 to obtain 20.5% of isobutene-maleic acid copolymer.
I got g. As a result of measuring the infrared absorption spectrum of this copolymer, it was confirmed that the maleic anhydride groups in the raw material were almost quantitatively converted to maleic acid. Production Example 6 0.5 g of polymethyl methacrylate and 30 ml of concentrated sulfuric acid were added to a 100 ml Erlenmeyer flask and allowed to stand at room temperature. The polymer was completely dissolved in 2 days and a yellow solution was obtained. When this was poured into a large amount of ice water, polymethacrylic acid precipitated out. This was filtered, thoroughly washed with water, and finally dried to obtain 0.45 g of solid. Elemental analysis of the obtained polymer revealed that 32% of the ester groups were converted to carboxyl groups by hydrolysis. Production example 7 30g of itaconic acid and 20g of styrene were mixed with dioxane.
The mixture was dissolved in 200 g, BPO was added in an amount of 0.1% based on the monomer, and polymerization was carried out at 10° C. for 5 hours. The obtained polymer was poured into hexane 1, precipitated, filtered and dried, and unreacted itaconic acid was removed by washing with distilled water. The yield was 4.2%.
From the results of elemental analysis, it was found that itaconic acid was 49.0 mol% and styrene was 51.0 mol%. Production example 8 Vinyl chloride and itaconic acid dimethyl ester
Polymerization was carried out at 50° C. for 6 hours using AIBN as an initiator. The polymer was dissolved in benzene and poured into methanol to precipitate it, which was filtered and dried under reduced pressure. The composition of the copolymer was determined by elemental analysis to be vinyl chloride.
41 mol%, and methyl itaconate was 59 mol%. This polymer was hydrolyzed in the same manner as in Production Example 6, and elemental analysis revealed that 28% of the ester groups were converted to carboxyl groups. Production example 9 Styrene and fumaric acid diethyl ester are made into AIBN
was used as an initiator and polymerized at 60°C for 20 hours to obtain a polymer. The composition of the copolymer was determined by elemental analysis to be 56.5 mol% styrene and 43.5 mol% diethyl fumarate. This polymer was hydrolyzed in the same manner as in Production Example 6, and the elemental analysis showed that 35%
It was found that the ester of was changed to a carboxyl group. Example 1 The storage stability of a mixture of a solution (A) of a polymer having a carboxyl group and a solution (B) containing an organic titanate and a benzoic acid derivative shown in Table 2 was investigated. The test method was as follows. That is, (A) and (B) were prepared with the compositions shown in Table 2, mixed in a glass container, immediately capped, and stored in a constant temperature room at 20°C. Storage stability was then compared and studied with the end point being when the solution gelled or lost its transparency. As a result, no precipitation occurred for more than 12 months, no loss of transparency occurred, and no gelation occurred.

【表】【table】

【表】 実施例 2 製造例1で得られたスチレン−無水マレイン酸
共重合体加水分解物10重量とエタノール90重量部
との組成よりなるA液と表3に示す組成溶液(B)と
を混合し、保存安定性を調べた。その結果、いず
れも12ケ月以上に経過しても沈澱の生成は認めら
れず、透明性を保ちゲルも生じていなかつた。尚
表3中TBTはテトラ−n−ブチル−チタネート
の略記である。
[Table] Example 2 Solution A consisting of 10 parts by weight of the styrene-maleic anhydride copolymer hydrolyzate obtained in Production Example 1 and 90 parts by weight of ethanol was mixed with solution (B) having the composition shown in Table 3. They were mixed and examined for storage stability. As a result, no precipitate was observed in any of them even after 12 months or more, and they remained transparent and did not form a gel. In Table 3, TBT is an abbreviation for tetra-n-butyl titanate.

【表】【table】

【表】 比較例 1 実施例1に於いて使用した安息香酸誘導体に代
り、表4B溶液組成欄に示す安息香酸誘導体を用
いた以外は実施例1と同様に保存安定性を測定し
た。その結果は表4に併せて記載した。
[Table] Comparative Example 1 Storage stability was measured in the same manner as in Example 1, except that the benzoic acid derivative shown in the solution composition column of Table 4B was used instead of the benzoic acid derivative used in Example 1. The results are also listed in Table 4.

【表】【table】

【表】 用途例 実施例1ならびに2で示した接着性被膜形成材
を用いて次ぎのテストを行つた。 (1) 象牙質に対する接着性 (2) 窩洞に対する辺縁封鎖性 (3) リン酸水溶液に対する遮断性 上記に関するテストの評価は以下の方法で行な
つた。 まず以下の処方によりペースト()およびペ
ースト()を調製した。 ()ビスグリシジルジメタク リレート トリエチレングリコール ジメタクリレート ジメチルパラトルイジン ミラン処理石英粉末 (粒径80μm以下) 11.0重量部 10.5 〃 0.5 〃 78.0 〃 ()ビスグリシジルメタクリ レート トリエチレングリコール ジメタクリレート ベンゾイルパーオキサイ ド ミラン処理石英粉末 (粒径80μm以下) 11.0重量部 10.5 〃 1.0 〃 78.0 〃 (1) 象牙質に対する接着性 新鮮抜去牛歯の唇側表面をエメリーペーパー
(#320)で研磨し平滑な象牙質を露出させ、そ
の研磨面を30秒間水洗した後窒素ガスを吹きつ
けて表面を乾燥した。直径4mm孔の空いた厚さ
2mmの板状ワツクスを乾燥表面に両面テープに
て取り付けた。次に前記接着性被膜形成材の(A)
液および(B)液を1:1の割合で混合し、板状ワ
ツクスでかこまれた象牙質表面に塗布し、窒素
ガスを吹きつけエタノールと余剰の接着剤を飛
ばした。その上に前記ペースト()および
()を1:1の割合で混合し充填した。一時
間放置後板状ワツクスを取り除き、37℃の水中
に一昼夜浸漬した後引張り強度を測定した。測
定には東洋ボールドウイン社製テンシロンを用
い、引張り速度は10mm/分とした。得られた結
果を表5に示した。
[Table] Application examples The following tests were conducted using the adhesive film forming materials shown in Examples 1 and 2. (1) Adhesion to dentin (2) Marginal sealing to cavities (3) Blocking to phosphoric acid aqueous solution The above tests were evaluated in the following manner. First, paste () and paste () were prepared according to the following formulations. () Bisglycidyl dimethacrylate triethylene glycol dimethacrylate dimethyl para-toluidine Milan-treated quartz powder (particle size 80 μm or less) 11.0 parts by weight 10.5 〃 0.5 〃 78.0 〃 () Bisglycidyl methacrylate triethylene glycol dimethacrylate benzoyl peroxide Milan-treated quartz powder (Particle size 80μm or less) 11.0 parts by weight 10.5 〃 1.0 〃 78.0 〃 (1) Adhesion to dentin The labial surface of a freshly extracted bovine tooth was polished with emery paper (#320) to expose the smooth dentin. After washing the polished surface with water for 30 seconds, the surface was dried by blowing nitrogen gas. A 2 mm thick plate of wax with 4 mm diameter holes was attached to the dry surface using double-sided tape. Next, (A) of the adhesive film forming material
The solution and solution (B) were mixed at a ratio of 1:1 and applied to the dentin surface surrounded by the wax plate, and nitrogen gas was blown to remove the ethanol and excess adhesive. The above pastes () and (2) were mixed at a ratio of 1:1 and filled thereon. After being left for one hour, the wax plate was removed, and the sample was immersed in water at 37°C for a day and night, and then its tensile strength was measured. Tensilon manufactured by Toyo Baldwin was used for the measurement, and the tensile speed was 10 mm/min. The results obtained are shown in Table 5.

【表】 (2) 窩洞に対する辺縁封鎖性 ヒト抜去歯の唇面に直径3mm、深さ2mmの窩
洞を形成した。次に実施例1の表2、No.1〜
No.9で示した接着性被覆形成材ならびに従来
使われているものとしてコーパライトを各々窩
壁にうすく塗布した後、セメントあるいはアマ
ルガムを充填した。充填1時間後に37℃の水中
に保存し、1日後に4℃と60℃のフクシン水溶
液中に1分間づつ交互に60回、浸漬するパーコ
レーシヨンテストを行ない、辺縁封鎖性を試験
した。 その後抜去歯を中央で切断し、窩洞と充填物
の間に色素(フクシン)の侵入があるかどうか
を調べた。 尚上記テストはそれぞれ1種類の実験につい
て5個のサンプルを使用して再現性を確かめ
た。その結果上記組成物を用いずに直接アマル
ガムやセメントを充填した場合、あるいはコー
パライトを塗布し、その後アマルガムやセメン
トを充填したものについては、全部のサンプル
に色素の侵入が見られた。 一方、実施例1の表2、No.1〜No.9の接着
性被膜形成材については、いずれも色素の侵入
が認められず、良好な結果を得た。 (3) リン酸水溶液に対する遮断性 本発明の接着性被膜形成材がリン酸水溶液を
遮断する能力を有する事を確認するために次の
様な方法を用いてテストを行なつた。 まず、孔径3μのメンブランフイルターを蒸
留水に1時間浸漬したものを取り出し、表面を
窒素ガスを吹きつけて乾燥した。次に遮断材
(裏装材)として市販品のコーパライト、ダイ
カルならびに実施例1で用いた接着性被膜形成
材を裏面に塗布し、再度窒素ガスを吹きつけて
溶媒を除去した。リン酸水溶液としては37%オ
ルトリン酸水溶液を用い、遮断材の上に一滴落
して自然放置した。 上記遮断材を透過するリン酸を検知するた
め、PH試験紙を上記メンブランフイルターの下
に置き、色が変化した時点を通過時間とした。 その結果、遮断材を全く使用しないものはリ
ン酸水溶液の透過時間が15秒であり、コーパラ
イト(商品名)を使用したものが1分10秒で、
またダイカル(商品名)を使用したものは10分
以上であつた。これに対して実施例1及び実施
例2で示した本発明の接着性被膜形成材を該遮
断材として使用した結果、リン酸水溶液の透過
時間はいずれも10分以上であつた。
[Table] (2) Margin sealing properties for cavities A cavity with a diameter of 3 mm and a depth of 2 mm was formed on the labial surface of an extracted human tooth. Next, Table 2 of Example 1, No. 1~
After applying a thin layer of the adhesive coating material shown in No. 9 and conventionally used copalite to the cavity wall, cement or amalgam was filled. One hour after filling, it was stored in water at 37°C, and one day later, it was subjected to a percolation test in which it was immersed in fuchsin aqueous solutions at 4°C and 60°C 60 times for 1 minute alternately to test its margin sealing properties. The extracted tooth was then sectioned down the center to examine whether there was any pigment (fuchsin) intruding between the cavity and the filling. The reproducibility of the above tests was confirmed using five samples for each type of experiment. As a result, when the samples were directly filled with amalgam or cement without using the above-mentioned composition, or when the samples were coated with copalite and then filled with amalgam or cement, intrusion of pigment was observed in all samples. On the other hand, with respect to the adhesive film forming materials No. 1 to No. 9 in Table 2 of Example 1, no penetration of the dye was observed, and good results were obtained. (3) Blocking property against phosphoric acid aqueous solution In order to confirm that the adhesive film-forming material of the present invention has the ability to block phosphoric acid aqueous solution, a test was conducted using the following method. First, a membrane filter with a pore size of 3 μm was soaked in distilled water for 1 hour, then taken out, and the surface was dried by blowing nitrogen gas. Next, commercially available Copalite, Dical, and the adhesive film forming material used in Example 1 were applied to the back side as a blocking material (backing material), and nitrogen gas was again blown to remove the solvent. A 37% orthophosphoric acid aqueous solution was used as the phosphoric acid aqueous solution, and one drop was dropped onto the barrier material and left to stand. In order to detect phosphoric acid passing through the above-mentioned blocking material, a PH test paper was placed under the above-mentioned membrane filter, and the time when the color changed was determined as the passage time. As a result, the permeation time of the phosphoric acid aqueous solution was 15 seconds in the case where no barrier material was used, and 1 minute and 10 seconds in the case using Copalite (trade name).
In addition, the test time using Dycal (trade name) was 10 minutes or more. On the other hand, when the adhesive film-forming material of the present invention shown in Examples 1 and 2 was used as the barrier material, the permeation time of the phosphoric acid aqueous solution was 10 minutes or more in both cases.

Claims (1)

【特許請求の範囲】 1 (i) カルボキシル基を有する高分子体、 (ii) 有機チタネート、 及び (iii) 一般式 (但しnは0、1、2、3又は4で、Xはアル
キル基、アルコキシル基、カルボキシル基又は
アシルアルキル基で、Rはアルキル基、ハロア
ルキル基、アルコキシアルキル基、カルボキシ
アルキル基、フエノキシアルキル基、アリール
基、アルコキシアリール基、アシル基、ハロア
シル基、アシルオキシアシル基、アルコキシカ
ルボニル基、アリル基、又はペンジル基であ
る。)で示される安息香酸誘導体、を主成分と
する接着性被膜形成材。 2 カルボキシル基を有する高分子体が疎水性基
を有するものである特許請求の範囲1記載の接着
性被膜形成材。 3 カルボキシル基を有する高分子体が、2つの
カルボキシル基(−COOH)を隣接する炭素原
子に結合している高分子体である特許請求の範囲
1記載の接着性被膜形成材。 4 高分子体の分子量が1000〜100000である特許
請求の範囲1の接着性被膜形成材。 5 高分子体が、疎水性基を有する共重合可能な
ビニルモノマーとカルボキシル基を有するビニル
モノマーとの共重合体である特許請求の範囲1記
載の接着性被膜形成材。 6 有機チタネートがテトラアルキルチタネート
である特許請求の範囲1記載の接着性被膜形成
材。 7 安息香酸誘導体が、一般式 (但し、nは1〜4の整数で、Xはアルキル基、
アルコキシ基、カルボキシル基又はアシルアルキ
ル基で、R′はアルキル基である)で示される化
合物である特許請求の範囲1記載の接着性被膜形
成材。 8 安息香酸誘導体が、一般式 (但し、R″はアルキル基、ハロアルキル基、ア
ルコキシアルキル基、カルボキシアルキル基、フ
エノキシアルキル基、アリール基、アルコキシア
リール基、アシル基、ハロアシル基、アシルオキ
シアシル基、アルコキシカルボニル基、アリル
基、又はベンジル基である)で示される化合物で
ある特許請求の範囲1の接着性被膜形成材。
[Claims] 1 (i) a polymer having a carboxyl group, (ii) an organic titanate, and (iii) a general formula (However, n is 0, 1, 2, 3 or 4, X is an alkyl group, alkoxyl group, carboxyl group or acylalkyl group, and R is an alkyl group, haloalkyl group, alkoxyalkyl group, carboxyalkyl group, phenoxy Formation of an adhesive film based on a benzoic acid derivative represented by an alkyl group, an aryl group, an alkoxyaryl group, an acyl group, a haloacyl group, an acyloxyacyl group, an alkoxycarbonyl group, an allyl group, or a pendyl group. Material. 2. The adhesive film forming material according to claim 1, wherein the polymer having a carboxyl group has a hydrophobic group. 3. The adhesive film forming material according to claim 1, wherein the polymer having carboxyl groups is a polymer having two carboxyl groups (-COOH) bonded to adjacent carbon atoms. 4. The adhesive film forming material according to claim 1, wherein the polymer has a molecular weight of 1,000 to 100,000. 5. The adhesive film forming material according to claim 1, wherein the polymer is a copolymer of a copolymerizable vinyl monomer having a hydrophobic group and a vinyl monomer having a carboxyl group. 6. The adhesive film forming material according to claim 1, wherein the organic titanate is a tetraalkyl titanate. 7 The benzoic acid derivative has the general formula (However, n is an integer of 1 to 4, X is an alkyl group,
The adhesive film-forming material according to claim 1, which is a compound represented by an alkoxy group, a carboxyl group, or an acylalkyl group, and R' is an alkyl group. 8 The benzoic acid derivative has the general formula (However, R″ is an alkyl group, a haloalkyl group, an alkoxyalkyl group, a carboxyalkyl group, a phenoxyalkyl group, an aryl group, an alkoxyaryl group, an acyl group, a haloacyl group, an acyloxyacyl group, an alkoxycarbonyl group, an allyl group, or a benzyl group).
JP58121004A 1983-07-05 1983-07-05 Film-forming adhesive material Granted JPS6013866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58121004A JPS6013866A (en) 1983-07-05 1983-07-05 Film-forming adhesive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58121004A JPS6013866A (en) 1983-07-05 1983-07-05 Film-forming adhesive material

Publications (2)

Publication Number Publication Date
JPS6013866A JPS6013866A (en) 1985-01-24
JPS6316432B2 true JPS6316432B2 (en) 1988-04-08

Family

ID=14800397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58121004A Granted JPS6013866A (en) 1983-07-05 1983-07-05 Film-forming adhesive material

Country Status (1)

Country Link
JP (1) JPS6013866A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122515A (en) * 1988-10-31 1990-05-10 Hitachi Condenser Co Ltd Solid electrolytic capacitor with built-in fuse

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123573A (en) * 1983-12-08 1985-07-02 Tokuyama Soda Co Ltd Adhesive coating film-forming material
JPS61289006A (en) * 1985-06-17 1986-12-19 Sunstar Inc Dental adhesive coating base composition
JPH0753645B2 (en) * 1990-02-15 1995-06-07 日本油脂株式会社 Dental cement hardening liquid
JP4653210B2 (en) 2008-11-12 2011-03-16 本田技研工業株式会社 Body front structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122515A (en) * 1988-10-31 1990-05-10 Hitachi Condenser Co Ltd Solid electrolytic capacitor with built-in fuse

Also Published As

Publication number Publication date
JPS6013866A (en) 1985-01-24

Similar Documents

Publication Publication Date Title
EP0712622B1 (en) Dental composition and kit
JPH0463842B2 (en)
US4535102A (en) Adhesive coating material
US4533701A (en) Adhesive coating material
US5700875A (en) Adhesive composition for dental treatment
JP5898218B2 (en) Dental composition
JP3487389B2 (en) Dental composition
EP0103420B1 (en) Adhesive coating material
JPS6316432B2 (en)
JP2000204010A (en) Dental adhesion kit
JPS6316431B2 (en)
JPH0529666B2 (en)
JPS6316433B2 (en)
JP6541185B2 (en) Adhesive composition for polyaryl ether ketone resin composite material
JPS6088084A (en) Bondable film forming material
JPS6316434B2 (en)
JPS6339032B2 (en)
JP3518162B2 (en) Dental adhesive kit
JPH0518358B2 (en)
JPH09175921A (en) Primer composition
JPH0414030B2 (en)
JP2578212B2 (en) Maleic acid monoester compounds and adhesives containing them
JP4083640B2 (en) Dental bonding kit
JP2021187771A (en) Dental adhesive composition and package of dental adhesive composition
JPS63111862A (en) Curable composition