JPS63153460A - Fault locating method for coating of inside surface of conduit - Google Patents
Fault locating method for coating of inside surface of conduitInfo
- Publication number
- JPS63153460A JPS63153460A JP31287286A JP31287286A JPS63153460A JP S63153460 A JPS63153460 A JP S63153460A JP 31287286 A JP31287286 A JP 31287286A JP 31287286 A JP31287286 A JP 31287286A JP S63153460 A JPS63153460 A JP S63153460A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- electrodes
- damage
- terminal
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 45
- 239000011248 coating agent Substances 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title description 32
- 230000006378 damage Effects 0.000 claims abstract description 61
- 239000007788 liquid Substances 0.000 claims abstract description 60
- 238000005259 measurement Methods 0.000 claims description 38
- 238000001514 detection method Methods 0.000 claims description 16
- 238000010998 test method Methods 0.000 claims 1
- 238000009413 insulation Methods 0.000 abstract description 5
- 229910052799 carbon Inorganic materials 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- 239000004020 conductor Substances 0.000 description 9
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- -1 !: composites Chemical class 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000004210 cathodic protection Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000010797 grey water Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、内面被覆の施された管路の内面被覆損傷の有
無及びその存在位置を、管路を解体することなく。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention detects whether or not there is damage to the inner surface coating of a pipe line that has been coated on the inner surface and its location without dismantling the pipe line.
管外或いは遠隔位置から検出することのできる管路内面
被覆の探傷方法に関する。The present invention relates to a method for detecting flaws on the inner surface of a pipe that can be detected from outside the pipe or from a remote location.
従来の管路内面被覆損傷の検出方法は、管路を解体して
調査する方法が一般的であり、この他の方法としては、
管内にカメラを装入して観察する方法が実用できる状態
にある。The conventional method for detecting damage to the inner surface coating of pipes is to dismantle and investigate the pipes; other methods include:
A method of inserting a camera into the tube and observing it is now ready for practical use.
しかし、かかる従来の方法はいずれも手数がかかり。 However, all of these conventional methods are time-consuming.
特に管の全長、全周を走査する必要があることから手数
が膨大であると共に、常時の監視には適さない。また、
カメラを使用した方法ではカメラを装入するための入口
が必要であり、また管径にも制約があるという問題点が
ある。In particular, since it is necessary to scan the entire length and circumference of the pipe, it is extremely time-consuming and is not suitable for constant monitoring. Also,
The method using a camera requires an entrance for inserting the camera, and there are also restrictions on the tube diameter.
管路を解体することなく、内面被覆の損傷を検出する方
法として、管内液体に接触する一つの電極を設け。As a way to detect damage to the inner coating without dismantling the pipe, a single electrode is provided that comes into contact with the liquid inside the pipe.
この電極と管体との通電の有無を検出する方法が、実開
昭58−165649号公報に開示されている。しかし
ながら、電極と管体との通電性は、内面被覆損傷の位置
及び大きさの影響を受けており、上記公報に開示のよう
に単に一つの電極と管体との通電性を測定するのみでは
、損傷の位置の同定ができないという致命的な問題点が
あった。A method of detecting the presence or absence of electricity between the electrode and the tube body is disclosed in Japanese Utility Model Application Publication No. 58-165649. However, the electrical conductivity between the electrode and the tube body is affected by the position and size of the inner coating damage, and it is not possible to simply measure the electrical conductivity between one electrode and the tube body as disclosed in the above publication. However, there was a fatal problem in that the location of the damage could not be identified.
内面被覆の損傷は管壁の腐食穿孔につながる重大な問題
であることから、損傷が生じてからなるべく短期日のう
ちに発見し2部位を正確に同定して早急に補修すること
が望ましい。そのためには、損傷検査を頻繁に行う必要
があり、簡便に管路の全貌を探傷できる方法が切望され
ていた。Since damage to the inner surface coating is a serious problem that leads to corrosion and perforation of the pipe wall, it is desirable to discover the damage as soon as possible after it occurs, accurately identify the two parts, and repair it as soon as possible. For this purpose, it is necessary to conduct damage inspections frequently, and there is a strong need for a method that can easily inspect the entire pipeline.
本発明者らはかかる状況に鑑み種々検討を行った結果、
管路内の液体の管路長手方向の電気抵抗が、管路長さに
比例する原理を利用して、被覆損傷の有無及びその位置
を同定することが可能なことを見出し2本発明を完成す
るに至ったものである。The present inventors conducted various studies in view of the above situation, and as a result,
Discovered that it is possible to identify the presence or absence of damage to the coating and its location by utilizing the principle that the electrical resistance of the liquid in the pipe in the longitudinal direction of the pipe is proportional to the length of the pipe 2) Completed the present invention This is what I came to do.
本願第一の発明の要旨は、第1図に示すように、内面に
絶縁性被覆1を施した導電性管体2からなる管路3の長
手方向に間隔をあけた2点A、Bに、それぞれ管路内液
体に接触するが導電性管体2とは絶縁を保つように電極
4,5を配置し、且つ導電性管体2の適当な位置Cにも
端子6をとり、前記2点の電極4,5及び管体2に接続
された端子6の間の電気的特性を測定し、得られた電気
的特性から管路内面被覆損(jJの有無及び存在位置を
検出することを特徴とする管路内面被覆の探傷方法にあ
る。The gist of the first invention of the present application is, as shown in FIG. , the electrodes 4 and 5 are arranged so as to contact the liquid in the pipe line but maintain insulation from the conductive pipe body 2, and the terminal 6 is also placed at an appropriate position C of the conductive pipe body 2. The electrical characteristics between the point electrodes 4, 5 and the terminal 6 connected to the tube body 2 are measured, and the presence or absence and location of pipe inner surface coating loss (jJ) is detected from the obtained electrical characteristics. The main feature lies in the flaw detection method for inner surface coating of pipes.
更に2本願第二の発明の要旨は、」二記第−の発明の方
法において、更に、前記2電極の外側にそれぞれ管路内
液体に接触するガード電極を配置するとともに各ガート
電極をそれに近い側の測定用の電極の電位に一致させ、
この状態で前記2点の電極及び管体に接続された端子の
間の電気的特性を測定し、管路内面被覆損傷の有無及び
存在位置を検出ずろことを!l¥像とする管路内面被覆
の探傷方法にある。Furthermore, the gist of the second invention of the present application is, ``In the method of the second invention, furthermore, guard electrodes that are in contact with the liquid in the pipe are arranged on the outside of the two electrodes, and each guard electrode is arranged close to the guard electrode. Match the potential of the side measurement electrode,
In this state, measure the electrical characteristics between the two electrodes and the terminal connected to the tube body to detect the presence or absence and location of damage to the inner surface coating of the tube! There is a flaw detection method for inner surface coating of pipes using l\ image.
一般に液体は多少の導電性を有しており、このため。 Because liquids generally have some conductivity.
管路上の2点A、B間は液体を通して電気的に導通する
。A、 B間の管内液抵抗をR6とすると、この抵抗
R,は管内液の比抵抗に関連し且つA 8間距離7!o
に比例した有限の値であり、また、電極4.5間に所定
量の電流を流すと両者間には抵抗R8に応じた電位差(
E oとする)が生しる。一方、管路内面被覆1に損傷
がなければ、管内液上導電性管体2とは電気的に導通せ
ず、このため、電極4,5と導電性管体2に接続した端
子6との間の抵抗は無限大となり、また電極4゜5間に
電流を流した場合にも端子6には電位が生じない。しか
し2図面に示すように、管内面の位置りに損傷7がある
と電極4と端子6はAD間の液体及びDC間の管体を経
て導通ずることになる。今、AD間の管 −内液抵抗を
R1とすると、この抵抗R1ばAD間距# ff +
に比例した値となり、電極4と端子6間の抵抗はこの液
抵抗R3を含んだものとなる。同様にBD間の液抵抗を
R2とすると、この抵抗R2はBD間距mf p 2
に比例した値となり、端子6と電極5間の抵抗はこの液
抵抗R2を含んだ値となる。電極4或いば5と端子6の
間で測定される抵抗には、上記R1,R2の他に損傷7
の大きさと関連した接液抵抗R8が。Two points A and B on the pipe are electrically connected through the liquid. If the resistance of the liquid in the tube between A and B is R6, this resistance R is related to the specific resistance of the liquid in the tube, and the distance between A and B is 7! o
Furthermore, when a predetermined amount of current is passed between the electrodes 4.5, there is a potential difference (
E o ) occurs. On the other hand, if the inner surface coating 1 of the pipe is not damaged, it will not be electrically connected to the conductive pipe 2 above the liquid in the pipe, and therefore the electrodes 4 and 5 and the terminal 6 connected to the conductive pipe 2 will not be electrically connected. The resistance between the electrodes becomes infinite, and no potential is generated at the terminal 6 even when a current is passed between the electrodes 4 and 5. However, as shown in Figure 2, if there is damage 7 at a position on the inner surface of the tube, the electrode 4 and the terminal 6 will be electrically connected through the liquid between AD and the tube between DC. Now, if the tube-internal fluid resistance between AD is R1, then this resistance R1 is the distance between AD #ff +
The resistance between the electrode 4 and the terminal 6 includes this liquid resistance R3. Similarly, if the liquid resistance between BD is R2, this resistance R2 is the distance between BD mf p 2
The resistance between the terminal 6 and the electrode 5 has a value that includes this liquid resistance R2. The resistance measured between the electrode 4 or 5 and the terminal 6 includes damage 7 in addition to the above R1 and R2.
The wetted resistance R8 is related to the magnitude of .
T?、、R,と直列した形で含まれる。また、電極4゜
、5間に電流を流した場合には、AD間には液抵抗R3
に応じた電位差(E、とずろ)が、DB間には液抵抗R
2Lこ応じた電位差(82とする)が生じ、D位置の液
の電位は端子6に現れることとなる。そこで、電極4.
5及び端子6の間の電気的特性を測定して、上記R,,
P、、R2の少なくとも二つの値或いはそれらの比を求
めることにより、管路内面被覆の18.1gの有無や存
在位置を検出することができる。また、抵抗の代わりに
上記電位差E。、E、、R2の少なくとも二つの値或い
はそれらの比を求めることによっても、I滑傷の有無や
存在位置を検出することができる。なお2上記接液抵抗
R3を求めることにより、損傷の大きざを知ることも可
能である。T? , , R, are included in series. Furthermore, when a current is passed between electrodes 4° and 5, there is a liquid resistance R3 between AD.
There is a potential difference (E, point) depending on the liquid resistance R between DB and
A potential difference (assumed to be 82) corresponding to 2L is generated, and the potential of the liquid at the D position appears at the terminal 6. Therefore, electrode 4.
5 and the terminal 6, and the above R, ,
By determining at least two values of P and R2 or their ratio, it is possible to detect the presence or absence and location of 18.1g on the inner surface of the pipe. Also, the potential difference E is used instead of the resistance. , E, and R2 or their ratio can also detect the presence or absence and location of an I-slip. Note that it is also possible to know the extent of damage by determining the above-mentioned liquid contact resistance R3.
ところで7上記の電極4,5及び端子6間の電気的特性
を測定する際、管路内の液体が測定箇所の延長上にある
バルブやポンプ等を介して導電性管体に導通している場
合があり、その場合には、電極4.5から管内流体を通
ってバルブやポンプに向かう電流が生じ測定に乱れを生
じることがあるっそこで1本願第二の発明では第6a図
5第61)図、第6c図の実施例に示すように、電極4
,5の外側にガード電極21.21’を配置し、その電
位を電極4.5と同しに保っており。By the way, when measuring the electrical characteristics between the electrodes 4, 5 and the terminal 6 mentioned above, the liquid in the pipe is conducted to the conductive pipe via a valve, pump, etc. located on the extension of the measurement point. In that case, a current flows from the electrode 4.5 through the fluid in the pipe to the valve or pump, which may cause disturbances in measurement. ), as shown in the embodiment of FIG. 6c, the electrode 4
, 5 are arranged outside the guard electrodes 21.21', and keep the potential thereof the same as that of the electrodes 4.5.
これによって、測定の乱れを防止することができる。This makes it possible to prevent disturbances in measurement.
本発明の探傷方法を適用可能な管路は、金属製の管体に
絶縁体による内面被覆を施し、これをフランジ或いはビ
ク(・リック型接続具で接続し、或いは溶接接続した上
で溶接部の内面被覆補修を行った管路、或いは金属管体
による管路を敷設した後内面に連続被覆を施した管路な
ど、金属管体が管内液体に導通しないように設計された
ものである。更に、導電性繊維や線材によって強化或い
はシールドを行った絶縁性の非金属管からなる管路の穿
孔の検知も本発明の探傷方法の対象となりうるちのであ
り、この場合には非金属管が内面の絶縁性被覆に相当し
2強化或いはシールド用の導電性繊維や線材か導電性の
管体に相当する。The pipe line to which the flaw detection method of the present invention can be applied is a metal pipe body coated with an insulating material on the inner surface, which is connected with a flange or a rick-type connector, or by welding, and then the welded part is connected. These pipes are designed so that the metal pipe does not conduct to the liquid inside the pipe, such as a pipe whose inner surface has been repaired, or a pipe whose inner surface is continuously coated after laying a metal pipe. Furthermore, detection of perforations in conduits made of insulating non-metallic pipes reinforced or shielded with conductive fibers or wires can also be applied to the flaw detection method of the present invention. It corresponds to an insulating coating on the inner surface, and corresponds to conductive fibers, wires, or conductive tubes for reinforcing or shielding.
管路に配置する電極4,5の間隔は、管径や管内液体の
導電率にもよるが、大略IOジヨイント(約65m)前
後の間隔で十分測定可能である。この場合、電極間に位
置する管体は、ジヨイント部をはさんで相互に導通して
いることが望ましい。金属管体同志は通常の配管方法に
よれば、自ずと相互に導通ずることとなるが、万一絶縁
箇所が混在する場合は、絶縁箇所を一時的に短絡して測
定を行えばよい。また、この代わりるこ、絶縁箇所の両
側の金属管体を対象としで、それぞれ別個に測定を行っ
てもよい。Although the distance between the electrodes 4 and 5 arranged in the pipe depends on the pipe diameter and the conductivity of the liquid in the pipe, it is sufficient to measure the distance approximately before and after the IO joint (approximately 65 m). In this case, it is desirable that the tubes located between the electrodes be electrically connected to each other across the joint portion. According to a normal piping method, the metal tubes will naturally conduct to each other, but in the unlikely event that there are insulated locations, it is sufficient to temporarily short-circuit the insulated locations and perform the measurement. Moreover, instead of this, the metal tubes on both sides of the insulating location may be targeted and the measurements may be performed separately.
導電性管体2に取付ける端子6は、上記したように内面
被覆の損傷部の管内法電位や電極までの液抵抗を測定す
るための端子である。一般に管路に使用する導電性管体
は金属管体であり、管内液体に比へて導電率がはるかに
大であるため、」二記端子6は管路上の任意箇所の管体
からとってよいか、雑音を極小化する趣旨からすれば、
前記2電極間の金属管体からとるのが最良である。The terminal 6 attached to the conductive tube 2 is a terminal for measuring the internal potential of the damaged portion of the inner surface coating and the liquid resistance up to the electrode, as described above. Generally, conductive pipes used for pipes are metal pipes, and their conductivity is much higher than that of the liquid inside the pipe. Well, from the point of view of minimizing noise,
It is best to take it from the metal tube between the two electrodes.
本発明の探傷方法を適用可能な液体は、管路に沿った方
向に電気的導通を与えろもの”ζあItば任意であり。The flaw detection method of the present invention can be applied to any liquid that provides electrical continuity in the direction along the pipe.
海水、淡水、水道水、純水、中水、下水、薬剤水溶液。Seawater, freshwater, tap water, pure water, gray water, sewage, aqueous drug solutions.
土砂スラリー、極性有機液体などを例示することができ
る。管内の液体は流送状態、静止満水状態、管壁のみに
連続液膜のある状態のいずれであってもよい。Examples include earth and sand slurry and polar organic liquids. The liquid in the pipe may be in a flowing state, in a static state full of water, or in a state in which there is a continuous liquid film only on the pipe wall.
以下2本発明を図面の実施例を参照して更に詳細に説明
する。The present invention will now be described in more detail with reference to embodiments of the drawings.
第2図は本発明の第一実施例を示すものであり、10は
抵抗計である。第一実施例は、電極4と端子6との間の
抵抗、電極5と端子6との間の抵抗、電極4゜5間の抵
抗をそれぞれ、抵抗計10で直接測定するものである。FIG. 2 shows a first embodiment of the present invention, and 10 is a resistance meter. In the first embodiment, the resistance between the electrode 4 and the terminal 6, the resistance between the electrode 5 and the terminal 6, and the resistance between the electrodes 4.5 are each directly measured using a resistance meter 10.
ここで、電極4.5間の抵抗測定値をr。。Here, the measured resistance between electrodes 4.5 is r. .
電極4と端子6との間の抵抗測定値をrl+電極5と端
子6との間の抵抗測定値をr2とすれば、損傷位置から
端子6までの管体2の抵抗は液抵抗に比べて極めて微小
であるので、これらの抵抗測定値は、管内の液tj(抗
及び接)夜抵抗に対して次の関係にある。即ち。If the resistance measurement value between electrode 4 and terminal 6 is rl + the resistance measurement value between electrode 5 and terminal 6 is r2, then the resistance of tube body 2 from the damage position to terminal 6 is compared to the liquid resistance. Because they are so small, these resistance measurements have the following relationship to the liquid resistance in the tube (both anti- and tangential): That is.
T o = Ro = R+ +R2r、 =R,
+R。T o = Ro = R+ +R2r, =R,
+R.
r2 =R2→R3 従って、この接液抵抗R,,は。r2 = R2 → R3 Therefore, this liquid contact resistance R,, is.
また、液抵抗R6,R,、R2は、距離ρ。、l、。Moreover, the liquid resistance R6, R,, R2 is the distance ρ. ,l,.
12に比例するので。Because it is proportional to 12.
z、 jl!、 β2 となる。これを抵抗測定値を使って表すと。z、 jl! , β2 becomes. This can be expressed using resistance measurements.
A、 i’、 7!2である。A, i', 7!2.
従って、上記したように、各電極4,5及び端子6間の
抵抗を測定し、上記(1)式より接液抵抗R3を求め2
次いで(3)式より被覆)員傷までの距離C1゜12を
求めることができる。Therefore, as mentioned above, measure the resistance between each electrode 4, 5 and terminal 6, and calculate the wetted resistance R3 from the above formula (1).
Next, the distance C1°12 to the covered injury can be determined from equation (3).
ここで、接液抵抗R5は、被覆損傷の開口寸法と凹み深
さく即ち被覆厚さ)に関連した値であるので、この接液
抵抗から損傷の大きさを検知することも可能である。Here, since the liquid contact resistance R5 is a value related to the opening size and the depth of the dent (ie, the coating thickness) of the coating damage, it is also possible to detect the magnitude of the damage from this liquid contact resistance.
なお、」1記(3)式において、接液抵抗が抵抗測定値
に比へて小さい場合には。In addition, in equation (3) of item 1, if the wetted resistance is small compared to the measured resistance value.
(l o f I If 2が近似的
に成立する。この場合には、抵抗測定値rQ+rl+
r2の全てを測定する必要はなく、その内の二つの値
を測定することにより、10を基準として7!、。(l o f I If 2 approximately holds true. In this case, the measured resistance value rQ+rl+
It is not necessary to measure all of r2, but by measuring two of them, 7! with 10 as the standard! ,.
12を求めることができる。12 can be found.
ところで、この方法は、液抵抗と接液抵抗を含んだ抵抗
値を測定し、その抵抗値から損傷の位置を求める方法で
あるが、被覆損傷の開口寸法が小さくなるにつれて、接
液抵抗R5は急激に増大し、その誤差範囲内に液抵抗が
入ってしまうこととなる。従って、損傷が′小さい場合
には2位置検出の誤差が増すこととなりこの方式は損傷
位置の同定に最適であるとは言い難い。By the way, in this method, the resistance value including the liquid resistance and the wetted resistance is measured, and the position of the damage is determined from the resistance value. However, as the opening size of the coating damage becomes smaller, the wetted resistance R5 becomes smaller. The resistance increases rapidly, and the liquid resistance falls within the error range. Therefore, when the damage is small, the error in detecting two positions increases, and this method cannot be said to be optimal for identifying the damage position.
一方、上記方法は被覆損傷部7の通電性の大小が測定結
果に含まれているので2損傷の有無や大小を検知するに
は極めて有用なものとなる。即ち、この計測において端
子6と電極4又は5間の抵抗が無限大(特定値以上)で
あることを以て無tJQ (gが証明される。On the other hand, the above method is extremely useful for detecting the presence or absence and magnitude of damage, since the measurement results include the magnitude of the electrical conductivity of the damaged coating portion 7. That is, in this measurement, if the resistance between the terminal 6 and the electrode 4 or 5 is infinite (more than a specific value), no tJQ (g is proven).
第3図は本発明の第二実施例を示すもので、電極4と端
子6の間に、電源11.抵抗12.電位差計13を図示
のように接続し、電極4と端子6との間の抵抗を、絶縁
計測手法によって測定するものである。同様にして、端
子6と電極5間の抵抗及び電極4,5間の抵抗を測定す
ることも可能である。この実施例の場合にも、第2回の
実施例の場合と同様に各端子間の抵抗を測定することに
より、被覆損傷の有無、大きさ及びその位置を検出する
ことが可能である。なお、この場合にも、接液抵抗が管
内液抵抗に比べて著しく大きい場合には、管内液抵抗が
誤差の範囲内に入ってしまうので、第一実施例と同様に
、このような抵抗測定方式が損傷位置の同定に最適であ
るとは言い難い。FIG. 3 shows a second embodiment of the present invention, in which a power supply 11. Resistance 12. A potentiometer 13 is connected as shown, and the resistance between the electrode 4 and the terminal 6 is measured by an insulation measurement method. Similarly, it is also possible to measure the resistance between the terminal 6 and the electrode 5 and the resistance between the electrodes 4 and 5. In the case of this embodiment as well, by measuring the resistance between each terminal as in the case of the second embodiment, it is possible to detect the presence or absence, size, and position of damage to the coating. In this case as well, if the wetted resistance is significantly larger than the liquid resistance in the tube, the liquid resistance in the tube will fall within the error range, so similar to the first embodiment, such resistance measurement It is difficult to say that this method is optimal for identifying damage locations.
第4図は本発明の第三の実施例を示すもので、端子6と
各電極4,5との間の抵抗の比率を同時にブリッジ方式
により測定する方法であるう同図δこおいて、14は電
源、15はものさし付可変抵抗器であり、抵抗体15a
、その抵抗体上を摺動する分割端子15b及び分割端子
15bの位置を示すものさし15Cとからなる。、16
は検流計である。本実施例では電源14により電極4,
5間に適当な電位を与え、可変抵抗器15の分割端子1
5bを抵抗体15a上を摺動させて分側端子25bと端
子6との間の電流が極小になるように調整し、その時の
分割端子15bの位置からその左右の抵抗を読み取る。FIG. 4 shows a third embodiment of the present invention, in which the ratio of resistance between the terminal 6 and each electrode 4, 5 is simultaneously measured by a bridge method. 14 is a power supply, 15 is a variable resistor with a ruler, and a resistor 15a
, a divided terminal 15b that slides on the resistor, and a ruler 15C that indicates the position of the divided terminal 15b. , 16
is a galvanometer. In this embodiment, the electrodes 4,
Apply an appropriate potential between terminals 1 and 5 of divided terminal 1 of variable resistor 15.
5b on the resistor 15a to adjust the current between the divided terminal 25b and the terminal 6 to be minimum, and read the resistance on the left and right from the position of the divided terminal 15b at that time.
ここで、抵抗体15aの全体の抵抗をr。′7分割端子
15bより電極4側の抵抗成分をr1′21対1の抵抗
成分をr2′ とすると。Here, the overall resistance of the resistor 15a is r. The resistance component on the electrode 4 side from the 7-divided terminal 15b is r1, and the resistance component of 21 to 1 is r2'.
R7 であるので。R7 Because it is.
1!oA、 412
が近似的に成り立つ。これによって、被覆損傷の有無及
び存在位置を検出することができる。この方式にあって
は、接液抵抗R,,による誤差は生じにくい。1! oA, 412 approximately holds true. This makes it possible to detect the presence or absence of coating damage and its location. In this method, errors due to the liquid contact resistance R, . are unlikely to occur.
なお、この方式では2例えば電極4.5間に複数の損傷
がある場合、最外側の2個の損傷の間が金属管体で短絡
されてあたかも1点の損傷の如く計測され、一方の電極
からその電極側の最外側の損傷迄の距離l、′と、他方
の電極からその電極側の最外側の損傷までの距離I22
′の関係が。In addition, in this method, if there are multiple damages between the two electrodes, for example, the two outermost damages are short-circuited with a metal tube, and the damage is measured as if it were a single point. the distance l,' from the other electrode to the outermost damage on that electrode side, and the distance I22 from the other electrode to the outermost damage on that electrode side.
′ relationship.
1、’ n、’ 12 ’
(ただし、ρ。l、[、l +β2′)の如く求めら
れるに過ぎない。即ち、ここでは10′が未知数であり
、これを基準として真の/、’、A2’を求めることは
できない。よって+’O′を同定するために、上記状況
下での2電極間の管内液抵抗を求める操作を付は加える
必要が生じる。1, ' n, ' 12 ' (however, ρ.l, [, l + β2'). That is, here, 10' is an unknown quantity, and the true /,',A2' cannot be determined based on this. Therefore, in order to identify +'O', it is necessary to add an operation to determine the intra-tube liquid resistance between the two electrodes under the above situation.
しかし、上記方式は、第一実施例、第二実施例と同様、
簡易な計器で目的を達成しうるという利点がある。However, the above method, like the first embodiment and the second embodiment,
It has the advantage that the purpose can be achieved with a simple instrument.
第5図は本発明の第四実施例を示すもので、17は電源
、18は電位差計である。本実施例では、電極4゜5に
電#17を接続して一定の電流i。を通じ、電位差計1
8にて端子6と電極・1間、或いは端7−6と電極5間
、電極4,5間等の電位差を測定する。ここで7電極4
.5間で測定された電位差をE。2・端子6と電極4と
の間で測定された電位差をEl、端子6と電極5との間
で測定された電位差をE2とすると、これらの間には。FIG. 5 shows a fourth embodiment of the present invention, in which 17 is a power source and 18 is a potentiometer. In this embodiment, a voltage #17 is connected to the electrode 4°5 and a constant current i is applied. Through the potentiometer 1
At step 8, the potential difference between terminal 6 and electrode 1, between end 7-6 and electrode 5, between electrodes 4 and 5, etc. is measured. Here 7 electrodes 4
.. The potential difference measured between 5 and E. 2. If the potential difference measured between the terminal 6 and the electrode 4 is El, and the potential difference measured between the terminal 6 and the electrode 5 is E2, then between these.
Eo E+ E2
7!+1 1!、 β2の近似的関係が
成立する。従って、上記電位差E。。Eo E+ E2 7! +1 1! , β2 holds true. Therefore, the above potential difference E. .
E+ 、E2のうち5少なくとも二つを測定することに
より、損傷部の位置を検出することができる。By measuring at least two of E+ and E2, the position of the damaged part can be detected.
ここで用いる電位差計に高入力インピーダンスのものを
用いれば、損傷部の接液抵抗の影響は回避できる。If the potentiometer used here has a high input impedance, the influence of the wetted resistance of the damaged part can be avoided.
計器に必要な入力インピーダンスは管径や管内液の導電
率などによって異なるが、109〜10■Ωの計器なら
ば殆どの対象に適合する。電位測定に正確さを期するた
めには、まず装入電極4,5と金属管体2の材質差に基
づく自然電位差を補正することが望ましい。The input impedance required for a meter varies depending on the pipe diameter, the conductivity of the liquid in the pipe, etc., but a meter of 109 to 10 Ω is suitable for most applications. In order to ensure accuracy in potential measurement, it is desirable to first correct the natural potential difference based on the material difference between the inserted electrodes 4 and 5 and the metal tube body 2.
補正すべき自然電位差ΔEは9例えば2電極間の極性が
逆の測定によって得られたE、及びE2′を用いてと求
めることができる。次に、2電極面における電解分極の
影響も補正すれば万全であるが1分極電圧と管内液電位
降下の比率を通電電流の選定によって極小化し、補正を
省略することもできる。また、電流i。の通電を電極4
,5から行わず、電極485を挾む形で設置した別の電
極対から行えば、電極4.5に於ける分極は皆無となる
。The natural potential difference ΔE to be corrected can be determined using, for example, E obtained by measuring two electrodes with opposite polarity, and E2'. Next, although it would be sufficient to correct the influence of electrolytic polarization on the two electrode surfaces, it is also possible to omit the correction by minimizing the ratio of one polarization voltage to the potential drop in the tube liquid by selecting the applied current. Also, the current i. Electrode 4
, 5, but instead from another pair of electrodes placed between the electrodes 485, there will be no polarization at the electrodes 4.5.
この実施例によれば、複数個のID傷があっても、最外
側損傷から2電極に到る距離の合計ρ I、=、2.′
+p2′か。According to this embodiment, even if there are multiple ID scratches, the total distance from the outermost damage to the two electrodes, ρ I,=,2. ′
+p2'?
po′ ρ0
として簡単聞こ把握されるため、複数個損傷の存在区間
が正確に同定できる。Since it can be easily identified as po' ρ0, the area where a plurality of damages exist can be accurately identified.
以上に2本発明方法の実施B様として、2点の電極4.
5及び端子6の間の電気的特性測定の異なる方式を示し
たが2本発明はこれらの方式に限定されるものでなく、
これらの方式を適宜咀み合わせても良く、更にこの他に
も電位差規制−電流測定など種々の方式が適用可能であ
ることは言う才でもない。また、実施例は全て直流電源
を用いた方式を示したが、交流方式とすることも差し支
えない。なお1本発明に用いる計器及び電源乙こ必要な
精度 安定性等を具備させることは当然である。As described above, two electrodes 4.
Although different methods of measuring the electrical characteristics between terminal 5 and terminal 6 have been shown, the present invention is not limited to these methods.
These methods may be combined as appropriate, and it is needless to say that various other methods such as potential difference regulation and current measurement are also applicable. Furthermore, although all of the embodiments have shown systems using a DC power source, an AC system may also be used. Note that it is a matter of course that the instruments and power supply used in the present invention have the necessary accuracy, stability, etc.
管路の途中のバルブやポンプなどにおいて、内面被覆さ
れていない箇所があり、これが管路の金属管体に導通し
ている時、或いは管路の両端の延長上で管路内の液体が
接地する結果、これが金属管体に導通する場合などには
、測定に乱れが生じる場合がある。第6a図、第6b図
、第6cpJはこのような場合に測定の乱れを防止する
ための手段を備えた実施例を示すものである。図中、第
5図までの実施例と同一部品には同一符号を付けて示し
ている。20.20’ はバイパス接地される管路、2
1.21’ は接地箇所と測定電極4又は、5の間に取
付けられるガード電極、22は電源。If there is a part of a valve or pump in the middle of a pipe that is not coated on the inside and it is connected to the metal pipe body of the pipe, or if the liquid in the pipe is connected to the ground at both ends of the pipe. As a result, if this is electrically connected to a metal tube, measurement may be disturbed. FIGS. 6a, 6b, and 6cpJ show an embodiment equipped with means for preventing measurement disturbances in such cases. In the drawings, parts that are the same as those in the embodiments up to FIG. 5 are designated by the same reference numerals. 20. 20' is a pipeline to be bypass grounded, 2
1.21' is a guard electrode installed between the ground point and the measurement electrode 4 or 5, and 22 is a power supply.
23は可変抵抗器、24.24’ は電位差計である。23 is a variable resistor, and 24.24' is a potentiometer.
ガード電極21.21’ の取付位置は特に限定されず
。The mounting position of the guard electrodes 21, 21' is not particularly limited.
測定用の電極4.5の外側であればよいが1外乱を効率
良く防止するためには、電極4,5に近い方がよい。It may be located outside the measurement electrodes 4.5, but it is better to be closer to the electrodes 4 and 5 in order to efficiently prevent disturbances.
第6a図は第3図の実施例と同様に2電極4.5間の抵
抗r0=R0を測定する方法を示したものである。FIG. 6a shows a method of measuring the resistance r0=R0 between two electrodes 4.5, similar to the embodiment shown in FIG.
ここでは、電tX22及び可変抵抗器23の調整を行っ
て、ガート−電極21 21’ をff、lI定電極4
,5と同電位とすることにより、電極4.5の外側には
電流が出太しなくなり、測定の乱れを避けることができ
る。Here, by adjusting the voltage tX22 and the variable resistor 23, the guard electrodes 21 21' are set to ff,
, 5, the current will not flow outside the electrodes 4.5, and disturbances in measurement can be avoided.
第6b図は第5図の実施例に準じて、2電極4,5間(
4こ所定の電流を流し、その際の電極4,5及び端子6
間の電位差を測定して損(p位置を求めよう点するもの
である。測定の乱れを避りる段取りは第6a図の場合と
同しである。FIG. 6b shows the gap between the two electrodes 4 and 5 according to the embodiment shown in FIG.
4. A predetermined current is passed through the electrodes 4, 5 and the terminal 6.
The purpose is to measure the potential difference between them and find the loss (p position).The steps to avoid disturbances in measurement are the same as in the case of Fig. 6a.
第6C図は第3図の実施例におけるR+ 、R2。FIG. 6C shows R+ and R2 in the embodiment of FIG.
R3の測定に関するものである。この場合は第6a図。This relates to the measurement of R3. In this case, Fig. 6a.
第6b図のような構成によっては測定電極がガードされ
ないので、電極4.5を短絡し、又電極21゜21′を
短絡した構成としている。ここで電極対21゜21′の
電位を電極対4.5の電位に一致させれば電極4.5の
外側に電流が出入しなくなる。この構成によって測定さ
れる抵抗r、は
R1+R2
である。R,42Hj第6a図、第6b図の方法による
測定結果を基に。Since the measurement electrodes are not guarded by the arrangement shown in FIG. 6b, the electrodes 4.5 and 21.about.21' are short-circuited. If the potential of the electrode pair 21.degree. 21' is made to match the potential of the electrode pair 4.5, no current will flow in or out of the electrode 4.5. The resistance r measured by this configuration is R1+R2. R, 42Hj Based on the measurement results by the method shown in Figures 6a and 6b.
El E2 E、 E。El E2 E, E.
と求められ、これによりR3も同定される。しかし。This also identifies R3. but.
損傷が大きくなれば+ R3に対してR3が支配的と
なり+ R3” R3と見なせる場合が多い。従って
、抵抗値r3を測定するだ13で、損傷の有無及び概略
の大きさを簡便に判定することができる。If the damage becomes large, R3 becomes dominant over +R3 and can often be regarded as +R3''R3.Therefore, by measuring the resistance value r3, the presence or absence of damage and its approximate size can be easily determined. be able to.
なお、第6b図に方4いて、可変抵抗器の移動端子23
aをあらかじめガート′電極21′側へ寄せておき。In addition, in Fig. 6b, there is a movable terminal 23 of the variable resistor.
a to the guard' electrode 21' side in advance.
次いで電源22の電圧E0′を電源17の電圧E。に等
しく調整すると、被覆に損傷がない場合は、電位差計2
4.24’ が共にゼロに至り、同時に電位差計18の
指示値Eは。Next, the voltage E0' of the power source 22 is changed to the voltage E of the power source 17. If the coating is undamaged, the potentiometer 2
4.24' both reach zero, and at the same time the indicated value E of the potentiometer 18 becomes.
E ”” Eo −Eo ’
となる。しかし損傷がある場合は2電位差計24,24
′が共にゼロとはならず、又、電位差計18の指示値は
、 E −Eo ’ を下回る値となる。即ち、電位
差計測手法の範囲内のこのような操作によってます損(
gの有無を知った上で、損傷位置の同定を行うという段
取りも可能である。E""Eo -Eo'. However, if there is damage, two potentiometers 24, 24
' are not zero, and the value indicated by the potentiometer 18 is less than E - Eo '. That is, such operations within the scope of the potentiometric measurement technique result in increased losses (
It is also possible to identify the damage position after knowing the presence or absence of g.
第6a図、第6b図、第6C図に於けるガード電極21
或いは21’ の電位調整は1手動で行ってもよいが、
サーボ機構やフィードハック機構を利用した構成とする
ことにより、測定操作を容易にすることができる。Guard electrode 21 in FIGS. 6a, 6b, and 6c
Alternatively, the potential adjustment of 21' may be done manually,
The measurement operation can be facilitated by using a configuration using a servo mechanism or a feed hack mechanism.
なお、これまで、管路上に2電極ないしは4電極を設置
する基本形について詳述して来たが、管路−ヒに適宜間
隔で多数の電極を連設しておき、管路の状況に応じて2
電極法或いは4電極法による本発明方法を順次実施して
行くことも、勿論本発明方法の実用的な一態様である。Up to now, we have described in detail the basic form in which two or four electrodes are installed on the pipe, but it is possible to install a large number of electrodes in series at appropriate intervals on the pipe, depending on the situation of the pipe. te2
Of course, it is also a practical embodiment of the method of the present invention to sequentially carry out the method of the present invention using the electrode method or the four-electrode method.
この場合の電極設置間隔も基本形について前述した10
ジヨイント(約55rn)前後か適切である。上述のよ
うな形で管路の全長に亘って探イ8を行なおうとする時
、測定中の区間に隣接する区間に存在する損傷がデータ
を歪ませることがあるが、これは管路全体に亘るシリー
ズデータの解析によって補正すればよい。また、この代
りに測定区間の長さを変えることも有効である。例えば
、ある区間の測定に3Lっで、)負傷が有ると判断され
るようなデータが得られた場合。The electrode installation spacing in this case is also 10 as described above for the basic type.
Around the joint (approximately 55rn) is appropriate. When attempting to conduct a search8 over the entire length of a pipe in the manner described above, damage present in the section adjacent to the section being measured may distort the data; This can be corrected by analyzing series data over . Alternatively, it is also effective to change the length of the measurement section. For example, when measuring 3L in a certain section, data is obtained that indicates that there is an injury.
それが、その区間内の損傷によるものか、隣接区間内の
tel (gによる誤差であるかを判定するため、測定
区間を広げて再度測定するとか、或いは逆に、最初に広
い区間での測定を行い、その後狭い区間での測定を行う
方法等がある。To determine whether the error is due to damage in that section or an error due to tel (g) in an adjacent section, you can widen the measurement section and measure again, or conversely, first measure in a wide section. There are methods such as conducting measurements in a narrow area after that.
以上詳述した通り、従来の湿式ピンホール検出技術を単
に管路内面被覆に適用しただけでは、損傷の大きさ1位
置の検出は無給のこと、損傷の有無の検出にさえも、多
くの場合過誤を伴うことになる。従って、損傷の位置の
検出には5本発明の技術思想に基づき、管路上に設置し
た少なくとも2電極及び管体端子を基本要素とした測定
、解析を行うことが決定的な効果をもたらすものである
。また、管路の延長上で管路内の液体が接地されるよう
な状況においても、過誤なく損傷の有無2位置検出には
2本発明の技術思想に基づき。As detailed above, if the conventional wet pinhole detection technology is simply applied to the inner surface coating of pipes, it will not be possible to detect even one position of damage, and in many cases, it will not be possible to detect even the presence or absence of damage. This will involve errors. Therefore, in order to detect the position of damage, it is crucial to perform measurement and analysis using at least two electrodes installed on the pipe and the pipe terminal as basic elements based on the technical concept of the present invention. be. Furthermore, even in a situation where the liquid in the pipeline is grounded on the extension of the pipeline, two-position detection of the presence or absence of damage without error is possible based on the technical idea of the present invention.
管路上に配置した4電極(内側の2電極が測定電極。4 electrodes placed on the pipe (the inner two electrodes are the measurement electrodes.
外側の2電極がガード電極)及び管体端子を基本要素点
した測定、解析を行うこと乙こより、対象管路の電気的
諸元の誤認を避けることが必須の要件となるものである
。Measurement and analysis should be performed with the outer two electrodes as guard electrodes and the tube terminal as the basic elements.From this, it is essential to avoid misidentification of the electrical specifications of the target tube.
本発明において管路内液体に接触するように配置する電
極としては、形状1寸法、取付位置等、特に限定される
ものでなく、管体に対して絶縁を保ちながら管路内液体
に導iff!するものであれば任意であり2種々の構成
で管路に組み込むことが可能である。以下、その例を説
明する。第7図、第8図は電極をフランジ接続部に装着
するガスケットに組み込んだ例を示すものであり、30
はガスケット、31はその中に封入された金属線、金属
板等の導電体、32は導電体31の先端に接続された外
部接続端子である。導電体3Iの一部31Aはガスケッ
ト内周面の複数箇所から突出して接液露頭を形成してい
る。このガスケツl” 30を通常のガスケツl〜と同
様に配管時にフランジ間に装着することにより、導電体
31はフランジに対しガスケットによって絶縁され且つ
その接液露頭31△が管内液に導通ずることとなる。従
って2、二のλq電体31を電極として作用させること
ができる。第9図は管体33の一端のフランジ34の端
面の絶縁性被覆35上に金属線。In the present invention, the electrodes arranged so as to be in contact with the liquid in the pipe are not particularly limited in terms of shape, dimensions, mounting position, etc. ! It is possible to incorporate it into the conduit in two different configurations. An example will be explained below. Figures 7 and 8 show an example in which the electrode is incorporated into a gasket attached to the flange connection part, and the electrode is attached to the flange connection part.
3 is a gasket, 31 is a conductor such as a metal wire or a metal plate sealed therein, and 32 is an external connection terminal connected to the tip of the conductor 31. A portion 31A of the conductor 3I protrudes from a plurality of locations on the inner peripheral surface of the gasket to form a wetted outcrop. By installing this gasket 30 between flanges during piping in the same way as ordinary gaskets 1~, the conductor 31 is insulated from the flange by the gasket, and its wetted outcrop 31△ is conducted to the liquid in the pipe. Therefore, two or two λq electric bodies 31 can act as electrodes. In FIG.
金属板等の導電体36をその一部が接液露頭36Aを形
成するように配置し、シール材37及びガスケット38
ではさみ固定したものである。また、第10図は管体3
3のフランジ34端面に、管内面の絶縁性被覆と同様な
絶縁性被覆39を形成し、その被覆内39に金属線、金
属板等の導電体4Iをその一部が内方に露出して接液露
頭41Aを形成するように設けたものである。これらの
構造では導電体36.41が電極として作用するもので
あり、また、これらがフランジ34に固定されているの
で、取付けが極めて容易である。A conductor 36 such as a metal plate is arranged so that a part thereof forms a wetted outcrop 36A, and a sealing material 37 and a gasket 38 are placed.
It is fixed with scissors. In addition, Fig. 10 shows the pipe body 3.
An insulating coating 39 similar to the insulating coating on the inner surface of the tube is formed on the end face of the flange 34 of No. It is provided so as to form a liquid contact outcrop 41A. In these structures, the conductors 36, 41 act as electrodes, and since they are fixed to the flange 34, installation is extremely easy.
第1I図は管体4.2.42を相互に接続するビクトリ
ック型接続具43のハウジング44の内1Mlこ配置さ
れるシールリング45の管軸方向の中央に絶縁性部材4
6を付設し、その中に金属線、金属板等の導電体47を
、その内方端が管内に露出して接液露顕47Aを形成す
るように配置したものである。この場合にも導電体47
が電極として作用する。以上はいずれも管体の接続部に
電極を配置した場合を示したが、管体途中の任意の位置
に電極を配置しても良いことば言うまでもない。第12
1fflはその場合の例を示すものであり。FIG. 1I shows an insulating member 4 at the center in the axial direction of a seal ring 45 disposed within the housing 44 of the Victorique type connector 43 that interconnects the tubes 4, 2, 42.
6 is attached thereto, and a conductor 47 such as a metal wire or a metal plate is arranged therein so that its inner end is exposed inside the tube to form a liquid exposure tube 47A. In this case as well, the conductor 47
acts as an electrode. In all of the above cases, the electrodes are disposed at the connecting portion of the tube, but it goes without saying that the electrodes may be disposed at any arbitrary position in the middle of the tube. 12th
1ffl shows an example of that case.
管体50の適当な位置にソケット51を設け、シール材
52を介して電極となる導電体53をその下端が管内に
露出するように取付け、キャップ54でソケット51の
開口を閉止したものである。なお、55は絶縁性被覆で
ある。もちろん、/IA度や流速、圧力などを計測する
等のために設置されているソケットや枝管。A socket 51 is provided at an appropriate position in a tube body 50, a conductor 53 serving as an electrode is attached via a sealing material 52 so that its lower end is exposed inside the tube, and the opening of the socket 51 is closed with a cap 54. . Note that 55 is an insulating coating. Of course, sockets and branch pipes are installed to measure /IA degree, flow rate, pressure, etc.
ティー管などに電極を配置することもできる。Electrodes can also be placed in a tee tube or the like.
これらの電極乙こおいて、電極の接液は管周方向の少な
くとも一点で行われればよいが1接液点を円周方向に連
続的或いは等友釣に配置した方が更に好ましい。Regarding these electrodes, it is sufficient that the electrodes are brought into contact with liquid at at least one point in the circumferential direction of the tube, but it is more preferable that one point of contact with liquid is arranged continuously or equidistantly in the circumferential direction.
接液露頭の表面積は、流送そのものに支障のない限りは
、大きい方が電解分極及び接液抵抗を軽減でき有利であ
る。電極の材質は2少なくとも接液露頭に対して。As long as the surface area of the liquid contacting outcrop does not impede the flow itself, it is advantageous that the surface area of the liquid contacting outcrop is larger because it can reduce electrolytic polarization and liquid contact resistance. The material of the electrode should be 2 at least for the wetted outcrop.
管内液体に侵されにくいものを使用する。銅−二・ノケ
ル合金、ステンレス鋼などは海水池、多くの液体に適す
る。また、特別な用途に対しては白金、白金メッキ材等
を用いることもできる。導電性の樹脂(それ自体が導電
性のtjj脂及び導電性のフィラー等を添加して導電性
を付与した樹脂)やセラミック(それ自体が導電性のカ
ーボン、ホウ化チタン、炭化珪素、炭化チタンなどの成
形体や繊維及び金属、!:複合したり′−ノットなど)
を利用してもよい。Use a material that is not easily attacked by the liquid inside the pipe. Copper-2-Nokel alloys, stainless steel, etc. are suitable for saltwater ponds and many liquids. Furthermore, platinum, platinum plating material, etc. can also be used for special purposes. Conductive resins (resins that are made conductive by adding conductive resin and conductive fillers) and ceramics (carbon, titanium boride, silicon carbide, titanium carbide that are themselves conductive) Molded objects, fibers and metals such as !: composites, knots, etc.)
You may also use
本発明方法を地上の管路に適用する時は、電極群をあら
かじめ設置しておくだけでもよいが、埋設配管。When applying the method of the present invention to above-ground pipes, it is sufficient to simply install the electrode group in advance;
暗きょ内配管などの場合には管路がら地上まであらがじ
め配線を行っておくのがよい。また、この配線をマンオ
ール、ハンドボール等に集約しておけば、随時の探傷が
容易となる。更には、配線を1箇所に集約し。In the case of underground piping, it is best to run the wiring from the pipe to the ground level in advance. Furthermore, if this wiring is consolidated into manalls, handballs, etc., flaw detection can be easily performed at any time. Furthermore, the wiring can be consolidated in one place.
常設の機器に、或いは測定を指示しデータを処理するコ
ンピューターに接続しておけば刻々の探傷情報を得るこ
とも容易となる。このように遠隔配線集約を行う場合に
あっては、状況に応して管路の近傍にインピーダンス変
換器、予備増幅器、切換器などを設置した方が良いこと
がある。If it is connected to permanently installed equipment or to a computer that instructs measurements and processes data, it becomes easy to obtain instant flaw detection information. When performing remote wiring aggregation in this way, it may be better to install impedance converters, standby amplifiers, switching devices, etc. near the conduits depending on the situation.
本発明方法によって管内面被覆に損傷を認めた時は。When damage is observed to the tube inner coating by the method of the present invention.
即時補修を行うのが理想であるが5操業上或いは経済上
の理由でこれが困難な場合もある。このような事情を考
慮し、探傷を目的として設けた装入電極群及び配線群を
外部電源式電気防食用に随時切り換えうるように処置す
ることもできる。この場合は通電が長時間となるので2
電極材質は更に耐食的であった方が良い。Ideally, immediate repairs should be carried out, but this may be difficult due to operational or economic reasons. In consideration of such circumstances, it is also possible to take measures such that the inserted electrode group and wiring group provided for the purpose of flaw detection can be switched to externally powered cathodic protection at any time. In this case, the current will be turned on for a long time, so 2.
It is better for the electrode material to be more corrosion resistant.
通常は管路内の電気防食は有効距乱が短いため、多用さ
れないが1本発明方法の対象とする管路にあっては内面
被覆による絶縁が奏効し、殊に導電率の大な腐食性液体
にあっては、比較的長区間毎の電極でも必要な防食効果
が得られることとなる。Normally, cathodic protection inside pipes is not frequently used because the effective distance is short, but insulation with inner coating is effective for pipes targeted by the method of the present invention, especially for corrosive corrosion with high conductivity. In the case of liquids, the necessary anticorrosion effect can be obtained even with relatively long electrodes.
以下に、実際の測定データによって本発明を更に具体約
6こ説明する。The present invention will be explained in more detail below using actual measurement data.
内面に厚さ1〜1.5fiのポリエチレンを被覆した呼
び径15(1m、単管長5.5 rnのフランジ付鋼管
をボルト、ナツトで接続した管路において110本の単
管を挾む二つの接続部に、0.5+u径の銅−30%ニ
ッケル合金線をネオプレンゴム中に封入した第7図に示
すガスケットを装入した。また2上流側から3番目の単
管は内面被覆がfa)無損傷のもの、(b)下流側の直
近に0.31m径の貫通損傷のあるもの、(C)損傷が
l am径のもの。Two flanged steel pipes with a nominal diameter of 15 (1 m, single pipe length 5.5 rn) whose inner surfaces are coated with polyethylene with a thickness of 1 to 1.5 fi are connected with bolts and nuts, and 110 single pipes are sandwiched between them. A gasket shown in Fig. 7, which is a 0.5+U diameter copper-30% nickel alloy wire encapsulated in neoprene rubber, was inserted into the connection part.In addition, the third single pipe from the 2 upstream side has an inner surface coated with fa). (b) There is penetrating damage with a diameter of 0.31 m immediately on the downstream side. (C) There is damage with a diameter of 1 m.
fdl損傷が311径のもの、の4種類に交換できるよ
うにした。FDL damage can now be replaced with 4 types of 311 diameter ones.
次にこの管路に、管路内の水が人、出側に於いても接地
しない形で、水道水を流しながら以下の測定及び演算を
行った。Next, the following measurements and calculations were performed while running tap water through this pipe in such a way that the water inside the pipe did not touch people or the ground on the outlet side.
■上流側電極と下流側電極の間の電気抵抗r。を絶縁計
測手法(第3図参昭)によって測定。■Electrical resistance r between the upstream electrode and the downstream electrode. was measured using the insulation measurement method (see Figure 3).
■鋼管管体と上流側電極の間の電気抵抗r1を測定。■Measure the electrical resistance r1 between the steel pipe body and the upstream electrode.
■第5図において2両電極間に0.1 m Aの通電を
行いながら、入力インピーダンス109Ωの電位差計に
よって電極間電位差E。を測定。■ In Figure 5, while applying a current of 0.1 mA between the two electrodes, the potential difference E between the electrodes was measured using a potentiometer with an input impedance of 109Ω. Measure.
■電極間の通電を続けながら鋼管管体と上流側電極の間
の電位差E1を測定。(電極−管体間自然電位差の補正
を含む)
■ El
x、=55X□ を算出。■Measure the potential difference E1 between the steel pipe body and the upstream electrode while continuing to apply electricity between the electrodes. (Including correction of natural potential difference between electrode and tube body) ■ Calculate El x, = 55X□.
E。E.
■ El
L −r 6 X 、 R5−r 1 Rl
E。■ El L -r 6 X, R5-r 1 Rl
E.
により、損傷部の接液抵抗R5を概算。Estimate the wetted resistance R5 of the damaged part.
上記実験結果を第1表に示す。The above experimental results are shown in Table 1.
第 1 表
実際の損傷は上流側電極より16.5 mの位置にあっ
たので、第1表より明らかなように、1m以内の誤差で
微小な損傷を検出でき、接液抵抗Rsにより損傷の大き
さも判定できたこととなる。Table 1 The actual damage was located 16.5 m from the upstream electrode, so as is clear from Table 1, minute damage can be detected with an error of less than 1 m, and the damage can be determined by the wetted resistance Rs. This means that the size can also be determined.
以上述べた通り1本発明は管路の長手方向に離れた2点
に管内液体に接触するようにしかし管体には絶縁するよ
うに電極を配置し、且つ管体には端子を接続し。As described above, one aspect of the present invention is to arrange electrodes at two points separated in the longitudinal direction of a pipe so as to contact the liquid in the pipe but to be insulated from the pipe body, and to connect a terminal to the pipe body.
これらの電極及び端子間の抵抗2電位差等の電気的特性
を測定することによって、管路内面被覆の損傷を。Damage to the inner surface coating of the conduit can be detected by measuring electrical characteristics such as the resistance 2 potential difference between these electrodes and terminals.
有無及び存在位置にわたって正しく検出することができ
、従来のように管路の分解或いは管内への機器挿入等を
必要とせず、簡単な操作で早期るこ被覆損傷を発見でき
る。この結果、各種管路の腐食穿孔事故を未然に防ぐこ
とが可能となり、また、システム化によって無損傷の確
認が無用な保守の省略につながるなど、産業界に多大な
貢献をもたらすものである。It is possible to accurately detect the presence and location of the pipe, and there is no need to disassemble the pipe or insert equipment into the pipe, as is the case with conventional methods, and early damage to the sheathing can be discovered with a simple operation. As a result, it will be possible to prevent corrosion and perforation accidents in various pipelines, and systemization will make it possible to confirm that there is no damage and eliminate unnecessary maintenance, making a significant contribution to industry.
第1図は本発明の詳細な説明するための管路及びそれに
取付けた電極、端子を示す断面図、第2図〜第5図はそ
れぞれ本発明の実施例を概略的に示す管路断面及び配線
図、第6a図、第6b図、第6C図はそれぞれ、更に他
の実施例を概略的に示す管路側面及び配線図、第7図は
本発明の実施に使用する電極を備えたガスケットの側面
図5第8図はその断面図、第9図、第10図はそれぞれ
9本発明の実施に使用する電極を備えた管路端部を示す
断面図、第11図は本発明の実施に使用する電極を備え
たビクトリック型接続具を示す断面図、第12図は本発
明の実施に使用する電極を管路途中に装着する状態を示
す断面図である。
1−絶縁性被覆 2−導電性管体 3−管路4.5
−電極 6一端子 7−損傷部1o−==抵抗計
11−電源 I2−抵抗13−電位差計 14
電源 15−可変抵抗器16−検流計 17−電源
18−電位差計21.21’−ガード電極
代理人 弁理士 乗 松 恭 三
1B
D
+sb (1緊」5
]5c5 、。
第5図
牙6a図
牙7図 48図
f 97 牙10図
牙]]図
牙12図FIG. 1 is a sectional view showing a conduit, electrodes and terminals attached thereto for explaining the present invention in detail, and FIGS. 2 to 5 are a cross-sectional view of the conduit and schematically showing an embodiment of the present invention, respectively Wiring diagrams, Figures 6a, 6b, and 6c respectively schematically show a side view of a conduit and a wiring diagram of further embodiments, and Figure 7 shows a gasket with electrodes used in carrying out the present invention. 5 is a side view of 5. FIG. 8 is a sectional view thereof, FIGS. 9 and 10 are sectional views each showing the end of a conduit equipped with electrodes used in carrying out the present invention, and FIG. FIG. 12 is a cross-sectional view showing a state in which the electrode used in carrying out the present invention is installed in the middle of a conduit. 1- Insulating coating 2- Conductive tube 3- Conduit 4.5
- Electrode 6 - Terminal 7 - Damaged part 1 o - = = Resistance meter 11 - Power supply I2 - Resistor 13 - Potentiometer 14
Power supply 15-variable resistor 16-galvanometer 17-power supply 18-potentiometer 21. 21'-guard electrode agent Patent attorney Kyo Matsu 31B D +sb (1st) 5]5c5,. Figure 5 Fang 6a Fig. 7 Fig. 48 Fig. f 97 Fig. 10 Fig. Fang]] Fig. 12 Fig.
Claims (6)
路の長手方向に間隔をあけた2点に、それぞれ管路内液
体に接触するが導電性管体とは絶縁を保つように電極を
配置し、且つ導電性管体にも端子をとり、2点の電極及
び管体に接続された端子の間の電気的特性を測定し、管
路内面被覆損傷の有無及び存在位置を検出することを特
徴とする管路内面被覆の探傷方法。(1) Two points spaced apart in the longitudinal direction of a conduit consisting of a conductive tube with an insulating coating on its inner surface, each in contact with the liquid in the conduit but maintained insulated from the conductive tube. By placing electrodes on the conductive pipe and also connecting terminals to the conductive pipe, measure the electrical characteristics between the two electrodes and the terminal connected to the pipe to determine whether or not there is damage to the inner surface coating of the pipe and where it exists. A flaw detection method for inner surface coating of pipes, characterized by detecting flaws.
測定し、その抵抗値から管路内面被覆損傷の存在位置を
求めることを特徴とする特許請求の範囲第1項記載の管
路内面被覆の探傷方法。(2) The inner surface of the pipe according to claim 1, characterized in that the electrical resistance between each of the two electrodes and the terminal is measured, and the location of damage to the inner surface coating of the pipe is determined from the resistance value. Method of testing coatings.
ジ回路を構成し、前記2電極に電源を接続するとともに
、可変抵抗器の可動分割端子と管体に接続された端子と
を検流計を介して接続し、この検流計を通る電流が極小
となるように可変抵抗器を調整し、その時の可変抵抗器
の分割端子による分割抵抗の比から管路内面被覆損傷の
存在位置を検出することを特徴とする特許請求の範囲第
1項記載の管路内面被覆の探傷方法。(3) Connect a variable resistor in parallel with the two electrodes to form a bridge circuit, connect a power source to the two electrodes, and detect the movable split terminal of the variable resistor and the terminal connected to the tube body. A variable resistor is connected through a current meter, and the variable resistor is adjusted so that the current passing through this galvanometer is minimal. At that time, the location of damage to the inner surface coating of the pipe is determined from the ratio of the divided resistances by the dividing terminal of the variable resistor. 2. A flaw detection method for a pipe inner surface coating according to claim 1, which comprises detecting.
その時の前記2電極及び管体に接続した端子の間の電位
差を測定し、その電位差から管路内面被覆損傷の存在位
置を検出することを特徴とする特許請求の範囲第1項記
載の管路内面被覆の探傷方法。(4) Connect a power source between the two electrodes to flow a constant current,
The pipe line according to claim 1, characterized in that a potential difference between the two electrodes and a terminal connected to the pipe body at that time is measured, and the location of damage to the pipe inner surface coating is detected from the potential difference. Inner coating flaw detection method.
路の長手方向に間隔をあけた2点に、それぞれ管路内液
体に接触するが導電性管体とは絶縁を保つように測定用
の電極を配置し、且つ導電性管体にも端子をとり、更に
、前記2電極の外側にそれぞれ管路内液体に接触するガ
ード電極を配置するとともに各ガード電極をそれに近い
側の測定用の電極の電位に一致させ、この状態で前記2
点の電極及び管体に接続された端子の間の電気的特性を
測定し、管路内面被覆損傷の有無及び存在位置を検出す
ることを特徴とする管路内面被覆の探傷方法。(5) Two points spaced apart in the longitudinal direction of the conduit consisting of a conductive tube with an insulating coating on its inner surface, each in contact with the liquid in the conduit but maintained insulated from the conductive tube. A measurement electrode is placed on the conductive pipe, and a terminal is also provided on the conductive pipe body. Furthermore, guard electrodes that contact the liquid in the pipe are placed on the outside of the two electrodes, and each guard electrode is placed on the side near it. Match the potential of the measurement electrode, and in this state perform the step 2 above.
1. A flaw detection method for inner surface coating of a pipe, comprising: measuring electrical characteristics between a point electrode and a terminal connected to a pipe body, and detecting the presence or absence and location of damage to the inner surface coating of the pipe.
ガード電極同志を短絡した上で、該測定用電極対と管体
に接続した端子との間の抵抗を測定して管路内面被覆損
傷を検出することを特徴とする特許請求の範囲第5項記
載の管路内面被覆の探傷方法。(6) Among the electrodes, two measurement electrodes and two guard electrodes are short-circuited together, and the resistance between the measurement electrode pair and the terminal connected to the tube is measured and the resistance is measured on the inner surface of the tube. 6. A flaw detection method for a pipe inner surface coating according to claim 5, wherein damage to the coating is detected.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61-185163 | 1986-08-08 | ||
JP18516386 | 1986-08-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63153460A true JPS63153460A (en) | 1988-06-25 |
JP2532038B2 JP2532038B2 (en) | 1996-09-11 |
Family
ID=16165931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61312872A Expired - Fee Related JP2532038B2 (en) | 1986-08-08 | 1986-12-29 | Method for flaw detection on inner surface of pipeline |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2532038B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008292203A (en) * | 2007-05-22 | 2008-12-04 | Nippon Telegr & Teleph Corp <Ntt> | Reinforcement diagnosing apparatus and method using the same |
EP2894466A4 (en) * | 2012-09-10 | 2016-04-27 | Mitsubishi Electric Corp | Anticorrosive performance deterioration detection sensor, and hot-water supply and heating system provided with same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5566747A (en) * | 1978-11-15 | 1980-05-20 | Nippon Kokan Kk <Nkk> | Lining defect detection |
-
1986
- 1986-12-29 JP JP61312872A patent/JP2532038B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5566747A (en) * | 1978-11-15 | 1980-05-20 | Nippon Kokan Kk <Nkk> | Lining defect detection |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008292203A (en) * | 2007-05-22 | 2008-12-04 | Nippon Telegr & Teleph Corp <Ntt> | Reinforcement diagnosing apparatus and method using the same |
EP2894466A4 (en) * | 2012-09-10 | 2016-04-27 | Mitsubishi Electric Corp | Anticorrosive performance deterioration detection sensor, and hot-water supply and heating system provided with same |
Also Published As
Publication number | Publication date |
---|---|
JP2532038B2 (en) | 1996-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2917717B1 (en) | Field measurement of corrosion and erosion | |
CN204439144U (en) | Lining/the electrode module of the stream pipe assembly of fluxmeter and the stream pipe for fluxmeter | |
CN107643321B (en) | Multi-frequency alternating current field fingerprint method metal pipeline corrosion detection technology based on phase identification | |
US5865971A (en) | Sealing ring with electrochemical sensing electrode | |
CN107449730B (en) | Electrochemical testing device for corrosion of 90-degree elbow metal in flowing corrosive medium | |
US8030946B2 (en) | In-pipe coating integrity monitor for very long pipes | |
US4912418A (en) | Method and device for detecting the location of a fault within a dielectric layer of an electrically conducting pipe | |
US4426618A (en) | Probe for the continuous in-situ measurement of the corrosion rate of pipes at high temperature or having high-resistivity liquids flowing therethrough | |
US5529668A (en) | Detection of potential for corrosion of steel reinforced composite pipe | |
US3405356A (en) | System including two pairs of voltage electrodes for detecting discontinuities in insulation coatings on conductive conduit | |
US2987672A (en) | Impedance test apparatus | |
JPS63153460A (en) | Fault locating method for coating of inside surface of conduit | |
WO1986002728A1 (en) | Electrode system for the measurement of corrosion rate | |
CA2497503A1 (en) | Corrosion monitor | |
KR100508877B1 (en) | method for detecting the coating defect and corrosion points of the pipelines in soil using the electrochemical impedance spectroscopy | |
JP2848850B2 (en) | Corrosion protection system for steel pipes for gas transport | |
CN109488889A (en) | The online test method of in-service metallic conduit insulated liner layer status | |
KR200270471Y1 (en) | Device for detecting current through anti-corroded object in an electric anti-corrosion system | |
JPS6342458A (en) | Electrode member for feeding electricity to liquid in duct | |
CN111220536A (en) | Method, device and system for detecting corrosion probability of pipeline | |
RU207152U1 (en) | DEVICE FOR MONITORING THE DIRECTION OF STAYING CURRENTS AND CORROSION OF UNDERGROUND PIPELINES | |
RU2244297C1 (en) | Method of detection of corrosion on underground pipe lines | |
JPH10213559A (en) | Method and device for judging sticking of scale | |
KR200301166Y1 (en) | Meter of electric current to examine fault of pipe | |
JPS62288558A (en) | Method for detecting coating flaw part of metal pipe having coating layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |