Nothing Special   »   [go: up one dir, main page]

JPS63153115A - Polyethylene terephthalate oriented body - Google Patents

Polyethylene terephthalate oriented body

Info

Publication number
JPS63153115A
JPS63153115A JP29892686A JP29892686A JPS63153115A JP S63153115 A JPS63153115 A JP S63153115A JP 29892686 A JP29892686 A JP 29892686A JP 29892686 A JP29892686 A JP 29892686A JP S63153115 A JPS63153115 A JP S63153115A
Authority
JP
Japan
Prior art keywords
crystalline
crystallinity
oriented body
elastic modulus
dimensional stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29892686A
Other languages
Japanese (ja)
Inventor
Kuniyoshi Itoyama
糸山 国義
Takamichi Yamakawa
山川 隆道
Naotake Kashiwakura
柏倉 尚武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP29892686A priority Critical patent/JPS63153115A/en
Publication of JPS63153115A publication Critical patent/JPS63153115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Magnetic Record Carriers (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To obtain an oriented body having high elastic modulus and excellent dimensional stability, by setting the degree of crystallinity, the crystalline size and the orientation factor of crystalline to specified values respectively. CONSTITUTION:The degree of crystallinity, the crystalline sizes in the direction of crystalline faces 105 and 100 and the orientation factor of crystalline of a polyethylene terephthalate oriented body are set to be 70-92%, 80-100Angstrom and 40-60Angstrom , and 0.96-1.0, respectively. If the degree of crystallinity becomes larger than 92%, the oriented body comes to have more rigid property and the impact resistance is lowered. On the other hand, if it becomes smaller than 70%, shrinkage and abnormal deformation occur when exposed to a high temp. above Tg and the dimensional stability becomes worse. If the crystalline sizes in the direction of crystalline faces 105 and 110 become outside of the above described ranges, the elastic modulus decreases and both the dimensional stability and the impact resistance decrease, too.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高弾性率のポリエチレンテレフタレート配向
体に関する。ざらに詳しくは、磁気記録媒体の基材およ
びフレキシブル回路基板として用いる場合に、弾性率、
寸法安定性が極めて高いという特性を示すポリエチレン
テレフタレート配向体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an oriented polyethylene terephthalate body having a high elastic modulus. In more detail, when used as a base material of a magnetic recording medium and a flexible circuit board, the elastic modulus,
The present invention relates to an oriented polyethylene terephthalate body exhibiting extremely high dimensional stability.

[従来技術] 従来の高分子のフィルムあるいは成形加工工業において
は、ポリマーの結晶弾性率に対して著しく低い弾性率の
配向体しか製造できていなかった。
[Prior Art] In the conventional polymer film or molding industry, only oriented bodies having an elastic modulus significantly lower than the crystalline elastic modulus of the polymer have been produced.

例えば、市販されている一軸に高倍率に延伸したポリエ
チレンテレフタレート(以下PETと略記)フィルムの
主配向方向の引張弾性率は8GPaであり、これは結晶
弾性率108GPaの7゜4%にしか相当しない。この
原因は主として分子が高度に伸長していず、分子のもつ
固有の特性がバルクの性質に反映されていないためであ
る。すなわち、分子鎖が折り畳まれたり、曲りくねって
いると、力を伝達する機能はほとんど果さなくなるため
である。このことから、分子鎖を高度に伸長させる試み
がいくつか検討された。例えば、J、Appl、Pol
ymer Sci、、26.213 (1981) 。
For example, the tensile modulus in the main orientation direction of a commercially available polyethylene terephthalate (hereinafter abbreviated as PET) film uniaxially stretched at a high magnification is 8 GPa, which corresponds to only 7°4% of the crystal elastic modulus of 108 GPa. . This is mainly because the molecules are not highly elongated and the inherent properties of the molecules are not reflected in the bulk properties. In other words, if the molecular chain is folded or twisted, it will hardly perform the function of transmitting force. For this reason, several attempts have been made to extend the molecular chain to a high degree. For example, J, Appl, Pol
ymer Sci, 26.213 (1981).

J、Macromol、Sci、−phys、 、 2
6.213 (1981) 、 J:Palym、Sc
i、Polym、Phys、Edn、 、 21.11
33.1147 (1983)、Palymer、27
゜1559 (1986)などに述べられている。
J, Macromol, Sci, -phys, 2
6.213 (1981), J: Palym, Sc.
i, Polym, Phys, Edn, , 21.11
33.1147 (1983), Palmer, 27
゜1559 (1986), etc.

[発明が解決しようとする間−角点] しかし、上述の方法で分子の配向度を高めたフィルム、
または成形体は、ある程度高弾性率を示すものの、配向
体をPETのガラス転移点(Tg>以上の温度にさらす
と寸法が著しく変化して、使用上かなり制限されること
がめった。このことから、本発明は弾性率が高く、かつ
寸法安定性の優れたPET配向体を提供せんとするもの
である。
[While the invention is trying to solve the problem] However, a film in which the degree of molecular orientation is increased by the method described above,
Alternatively, although the molded body exhibits a high modulus of elasticity to some extent, when the oriented body is exposed to a temperature higher than the glass transition point (Tg) of PET, the dimensions change significantly, which often limits its use. The present invention aims to provide a PET oriented body having a high elastic modulus and excellent dimensional stability.

[問題点を解決するための手段] 本発明は、結晶化度70〜92%、結晶面(105>お
よび(100)方向の結晶サイズがそれぞれ80〜10
0Å、40〜60人であり、結晶配向係数が0.96〜
1.0であることを特徴とするPET配向体をその骨子
とする。
[Means for Solving the Problems] The present invention has a crystallinity of 70 to 92% and a crystal size of 80 to 10% in the crystal planes (105> and (100) directions, respectively).
0 Å, 40 to 60 people, and crystal orientation coefficient of 0.96 to
The main feature of this invention is a PET oriented body characterized by a 1.0.

本発明PET配向体の結晶化度は70〜92%。The crystallinity of the PET oriented body of the present invention is 70 to 92%.

好ましくは80〜88%の範囲内にあることが必要であ
る。この結晶化度は、配向体内部にPETの結晶がどの
程度存在するかの程度を示すパラメータである。この値
が上記範囲より大ぎくなると、配向体はより剛直な性質
をもち、耐衝撃が低下して非常にもろいものになる。逆
に、上記範囲より小さくなると、Tg以上の高温にざら
したとき収縮や異常な変形を起し、寸法安定性が悪化す
る。
It is preferably within the range of 80 to 88%. This crystallinity is a parameter indicating the degree to which PET crystals exist inside the oriented body. When this value is larger than the above range, the oriented body becomes more rigid, has lower impact resistance, and becomes extremely brittle. On the other hand, if it is smaller than the above range, shrinkage or abnormal deformation occurs when exposed to high temperatures above Tg, resulting in poor dimensional stability.

次に、本発明PET配向体の結晶面(105)および(
100)方向の結晶サイズは、それぞれ80〜100Å
、40〜60Å、好ましくは80〜100Å、45〜5
5大の範囲内にあることが必要である。(105)方向
のサイズは分子がどの程度よく配向しているかに関係す
る。よく伸長したPET分子鎖を結晶化させると(10
5)方向のサイズは増大する。本発明配向体の特徴の一
つは、(105)方向のサイズがかなり大きい割に、(
100)方向のサイズが40〜60人と比較的に小さい
ことにある。(105)方向のサイズが100人より大
きいと、配向体は配向方向に裂は易くなり、耐衝撃性不
良となる。逆に80人より小さいと弾性率が通常の成形
品並に低下し、本発明の目標の一つの高弾性率を満足し
えない。
Next, the crystal plane (105) and (
The crystal size in the 100) direction is 80 to 100 Å, respectively.
, 40-60 Å, preferably 80-100 Å, 45-5
It is necessary to be within the range of the five major factors. The size in the (105) direction is related to how well the molecules are oriented. When a well-elongated PET molecular chain is crystallized (10
5) The size of the direction increases. One of the characteristics of the oriented body of the present invention is that although the size in the (105) direction is quite large, the (
100) is relatively small, with 40 to 60 people. If the size in the (105) direction is larger than 100, the oriented body will easily tear in the orientation direction, resulting in poor impact resistance. On the other hand, if it is less than 80, the elastic modulus will be as low as that of a normal molded product, and the high elastic modulus, which is one of the goals of the present invention, cannot be achieved.

一方、(100)方向のサイズが上記範囲より小さいと
、配向体は寸法安定性が不良となり、また上記範囲より
(100)方向のサイズが大きいと、もろくなり耐衝撃
性が低下する。
On the other hand, if the size in the (100) direction is smaller than the above range, the oriented body will have poor dimensional stability, and if the size in the (100) direction is larger than the above range, it will become brittle and have reduced impact resistance.

次に、本発明配向体の結晶配向係数は0.96〜1.O
1好ましくは0.98〜0.99の範囲におることが必
要である。結晶配向係数が上記範囲より小さいと配向体
の弾性率は通常成形品又はフィルム並に低下する。また
、上記範囲より大きい場合には、結晶配向係数の定義よ
り、実在しえないので対象外とする。
Next, the crystal orientation coefficient of the oriented body of the present invention is 0.96 to 1. O
1 preferably within the range of 0.98 to 0.99. When the crystal orientation coefficient is smaller than the above range, the elastic modulus of the oriented body is usually as low as that of a molded article or film. Furthermore, if it is larger than the above range, it cannot exist according to the definition of the crystal orientation coefficient, so it is excluded from the scope.

なお、本発明配向体を構成するPETは、極限粘度(2
5°Cのオルソ−クロロフェノール中で測定)が0.5
8〜1.50の範囲内のものが好ましい。この範囲を外
れると、配向加工が困難でおったり、力学的強度などが
やや劣ってくる傾向が見られる。
Note that the PET constituting the oriented body of the present invention has an intrinsic viscosity (2
(measured in ortho-chlorophenol at 5°C) is 0.5
It is preferably within the range of 8 to 1.50. Outside this range, orientation processing tends to be difficult and mechanical strength tends to be somewhat inferior.

本発明配向体の製造方法は特に限定されるものではなく
、いかなる方法を用いてもよい。参考としてその1例を
挙げると下記の通りである。
The method for producing the oriented body of the present invention is not particularly limited, and any method may be used. For reference, one example is as follows.

まず、本発明フィルムを製造するのに好適なPET原利
は、重縮合反応時に、系に不溶な微粒子を添加し、ざら
に重縮合反応時に、アルカリ金属またはアルカリ土類金
属の一種以上を構成成分の一部とする粒子(いわゆる析
出粒子)を析出させることによって製造される。ざらに
具体的に述べれば、テレフタル酸もしくはそのエステル
成形性誘導体とエチレングリコールとのエステル交換も
しくはエステル化反応を行い、引続き重縮合反応を行っ
てポリエステルを製造するに際し、重縮合反応開始前の
任意の時点で、系に不溶な微粒子状物質(比表面積5m
2/Cl以上のものが好ましい)を添加し、ざらに重縮
合反応時にアルカリ金属またはアルカリ土類金属の一種
以上を構成成分の一部とする粒子を析出させる製造方法
である。
First, the PET material suitable for producing the film of the present invention is prepared by adding insoluble fine particles to the system during the polycondensation reaction, and then forming one or more types of alkali metals or alkaline earth metals during the polycondensation reaction. It is manufactured by precipitating particles (so-called precipitated particles) that are part of the components. To be more specific, when producing polyester by transesterifying or esterifying terephthalic acid or its ester-forming derivative with ethylene glycol, and subsequently carrying out a polycondensation reaction, optional At this point, fine particulate matter insoluble in the system (specific surface area 5 m
2/Cl or more is preferable), and particles containing one or more alkali metals or alkaline earth metals as part of the constituent components are precipitated during the polycondensation reaction.

このようにして作られたPET原料を、常法どうり十分
に真空乾燥し、押出機に供給して溶融押出し、溶融ポリ
マをシ濾過し、口金でシート状又は棒状に成形し、急冷
して固化することにより、未配向体を作る。この未配向
体の結晶化度は4%以下であることが好ましい。それよ
り高い結晶化度である場合には、高倍率の分子配向が難
しい場合がおる。この未配向のシート又は棒の両端部を
クリップで把持して、オーブン付きの延伸機を用いて、
延伸温度20〜100°C1より好ましくは20〜60
℃で一軸に4.0以上、より好ましくは4.2〜5.0
倍に延伸する。倍率を4倍以上とすることにより高弾性
率の発現が容易となる。一方、5倍以下とすると延伸中
に破断しにくいという長所がある。この延伸物を放冷後
オーブンから取り出し、室温で1〜1.5倍、より好ま
しくは1.25〜1.5倍再延伸する。延伸後、試料に
張力がかかつている状態で、試料を例えばスチール製の
固定枠に、収縮しないように金属治具を使って固定する
。再延伸倍率が1.0未満の場合は延伸試料をゆるめて
固定枠に取付けたことに相当して、この状態では、高弾
性率の材料を得るには好ましくない。また1、5倍を越
えると再延伸中試料が破断しやすくなり好ましくない。
The PET raw material made in this way is sufficiently vacuum-dried in a conventional manner, then fed to an extruder for melt extrusion, the molten polymer is filtered, formed into a sheet or rod shape with a die, and then rapidly cooled. By solidifying, an unoriented body is created. The degree of crystallinity of this unoriented body is preferably 4% or less. If the degree of crystallinity is higher than that, it may be difficult to achieve high-magnification molecular orientation. Both ends of this unoriented sheet or rod are held with clips, and a stretching machine with an oven is used to
Stretching temperature 20-100°C1, preferably 20-60°C
4.0 or more, more preferably 4.2 to 5.0 in one axis at °C
Stretch it twice. By setting the magnification to 4 times or more, it becomes easy to develop a high elastic modulus. On the other hand, when it is 5 times or less, it has the advantage that it is difficult to break during stretching. After the stretched product is left to cool, it is taken out of the oven and re-stretched at room temperature by 1 to 1.5 times, more preferably 1.25 to 1.5 times. After stretching, the sample is fixed under tension to a fixing frame made of steel, for example, using a metal jig to prevent shrinkage. If the re-stretching ratio is less than 1.0, this corresponds to the stretched sample being loosened and attached to the fixed frame, and this state is not preferable for obtaining a material with a high elastic modulus. Moreover, if it exceeds 1.5 times, the sample tends to break during re-stretching, which is not preferable.

固定枠に取付けた試料はPETの融点近傍の温度230
〜290℃、より好ましくは240〜260°Cで2時
間以上熱処理するのが好ましい。熱処理温度が230℃
未満であると、本発明でいう構造パラータを調整するた
めに長時間の熱処理時間を要し、好ましくない。また、
熱処理温度が290’Cを越えると、下記に述べる前処
理をしても、結晶の一部の融解により、伸長した分子鎖
がゆるみ、配向が緩和するために、特性上好ましくなく
なる。
The sample attached to the fixed frame was kept at a temperature of 230°C, near the melting point of PET.
The heat treatment is preferably performed at ~290°C, more preferably at 240-260°C for 2 hours or more. Heat treatment temperature is 230℃
If it is less than this, a long heat treatment time is required to adjust the structural parameters referred to in the present invention, which is not preferable. Also,
If the heat treatment temperature exceeds 290'C, even if the pretreatment described below is carried out, some of the crystals will melt, the elongated molecular chains will be loosened, and the orientation will be relaxed, resulting in unfavorable properties.

熱処理はポリマーの熱劣化、加水分解を防止するために
、乾燥した窒素系気流中で行うのが好ましい。250°
C以上での熱処理では、試料中の結晶が融解して、分子
の配向が緩和してしまわないように、予め250’Cで
前熱処理するのが好ましい。この処理によって結晶融点
が270’C以上に高まると、270℃以下では本格的
熱処理を行う。
The heat treatment is preferably carried out in a dry nitrogen stream in order to prevent thermal deterioration and hydrolysis of the polymer. 250°
In the heat treatment at 250'C or higher, it is preferable to perform a preheat treatment at 250'C in advance to prevent the crystals in the sample from melting and the molecular orientation to be relaxed. When the crystal melting point increases to 270'C or higher by this treatment, a full-scale heat treatment is performed below 270'C.

もし、270’C以上での熱処理を行う場合は、250
’Cで前処理して融点を270℃以上に高めたものを、
再度260’Cで前処理して、結晶融点を290℃以上
に高め、本格的熱処理を270’C以上で行うのが良い
。このように、PET配面体の結晶融点を前処理で高め
ながら、熱処理温度を高温にしていく特徴をもつ高温熱
処理を行う。
If heat treatment is performed at 270'C or higher,
'C pretreated to raise the melting point to 270℃ or higher,
It is preferable to perform pretreatment again at 260'C to raise the crystal melting point to 290'C or higher, and then carry out full-scale heat treatment at 270'C or higher. In this way, high-temperature heat treatment is performed, which is characterized by raising the heat treatment temperature to a high temperature while increasing the crystal melting point of the PET array body in the pretreatment.

以上のようにして、本発明PET配向体を得ることがで
きる。
In the manner described above, the PET oriented body of the present invention can be obtained.

[発明の効果] 本発明は、結晶化度、結晶サイズ、および結晶配向係数
をそれぞれ特定値とすることによって高弾性率で寸法安
定性のすぐれた配向体を得ることを知見したものである
。非品性成形体を高倍率に延伸して、分子鎖が十分伸長
し、並び揃った配向構造を作り出し、次に、分子鎖を出
来るだけ収縮しないようにして高温で結晶化させたもの
である。
[Effects of the Invention] The present invention is based on the discovery that an oriented body with a high elastic modulus and excellent dimensional stability can be obtained by setting the crystallinity, crystal size, and crystal orientation coefficient to specific values. A non-quality molded product is stretched at a high magnification to create an oriented structure in which the molecular chains are sufficiently elongated and aligned, and then the molecular chains are crystallized at high temperatures while minimizing shrinkage. .

このような状態では結晶は分子鎖に沿って大きく成長し
て、弾性率の向上に有利となる。また結晶化に伴って非
晶領域の分子鎖はゆるむことはあっても、結晶化を一層
進めることによって、結晶生長による非晶部の巻き取り
効果が処理し、非晶部はある程度伸び切った状態での局
所的な熱力学的平衡状態に達する。このような状態では
伸長した非晶部の収縮力に小さく、ざらに結晶化度が高
いこともあって、非常に寸法安定性のすぐれた構造を実
質的に形成しているものと思われる。また結晶化度が高
く、結晶が分子鎖方向に大きく成長し、配向方向によく
並び揃っていることが弾性率を従来のフィルム、シート
、棒状加工品に比べ著しく高くしたものと考えられる。
In such a state, the crystals grow large along the molecular chains, which is advantageous for improving the elastic modulus. Furthermore, although the molecular chains in the amorphous region may loosen with crystallization, by further promoting crystallization, the winding effect of the amorphous region due to crystal growth is taken care of, and the amorphous region is stretched to a certain extent. A state of local thermodynamic equilibrium is reached at the state. In such a state, the contractile force of the elongated amorphous portion is small and the crystallinity is relatively high, so that a structure with very good dimensional stability is considered to be substantially formed. It is also believed that the high degree of crystallinity, the crystals growing largely in the direction of the molecular chains, and the fact that they are well aligned in the orientation direction, make the elastic modulus significantly higher than that of conventional films, sheets, and rod-shaped processed products.

本発朋のポリエチレンテレフタレート配向体は、弾性率
が高く、熱収縮性が低く、しかも寸法安定性にすぐれて
いる。従って、この配向体は、例えば、磁気記録媒体(
′fi1気テーステープッピーディスク、ビデオディス
クなど)の基材およびフレキシブルプリント回路基板の
作製に有用でおる。また、この配向体を短かくステーブ
ル状に切断して各種プラスチック材料、無機材料の中に
分散せしめて、補強用フィラーとして使用することか可
能でおる。
The oriented polyethylene terephthalate body of the present invention has a high elastic modulus, low heat shrinkage, and excellent dimensional stability. Therefore, this oriented body can be used, for example, in a magnetic recording medium (
It is useful for the production of substrates for tape discs, video discs, etc.) and flexible printed circuit boards. Further, this oriented body can be cut into short stable pieces and dispersed in various plastic materials and inorganic materials to be used as a reinforcing filler.

[構造・特性の測定方法] (1)結晶化度 ASTM  D1505により密度を測定し、結晶化度
を計算する。結晶化度の計算に当って、PETの結晶部
および非晶部の密度をそれぞれ1゜455 CJ10+
f、1.335Q/cy+tとおいた。
[Method for Measuring Structure/Properties] (1) Crystallinity Measure the density according to ASTM D1505 and calculate the crystallinity. When calculating the degree of crystallinity, the density of the crystalline part and the amorphous part of PET are each 1°455 CJ10+
f, 1.335Q/cy+t.

(2)結晶サイズ X線回折装置を用いて、配向体の延伸(配向)方向に垂
直な方向とX線の入射角を変えながら透過法で回折ピー
クを観測したとき、約13°の回折ピークからPET 
(100)面方向の結晶サイズD(人)を下記に従って
算出する。
(2) Crystal size When diffraction peaks are observed using a transmission method using an X-ray diffractometer while changing the direction perpendicular to the stretching (orientation) direction of the oriented body and the incident angle of X-rays, the diffraction peak is approximately 13°. from PET
The crystal size D (person) in the (100) plane direction is calculated as follows.

D=λ/ (B−b)CO3θ   (1)ただし、B
:回折ピークの半価幅、b=0.12、λ:Cuのにα
線波長(1,541,8人)、θ:ピークの回折角。
D=λ/ (B-b)CO3θ (1) However, B
: half width of diffraction peak, b=0.12, λ: α for Cu
Line wavelength (1,541,8 people), θ: peak diffraction angle.

また、(105)面方向のサイズは、配向体の延伸(配
向)方向とX線の入射角を変えながら透過法で回折ピー
クを約21.5°に観測され、このピークから(1)式
を算出する。
In addition, the size in the (105) plane direction is determined by the diffraction peak observed at approximately 21.5° using the transmission method while changing the stretching (orientation) direction of the oriented body and the incident angle of X-rays, and from this peak, equation (1) Calculate.

(3)結晶配向係数 結晶配向係数fcはX線回折法で評価した。fCは次式
で与えられる。
(3) Crystal orientation coefficient The crystal orientation coefficient fc was evaluated by X-ray diffraction method. fC is given by the following equation.

fc= (3<C082φ。z >−1) / 2ここ
で<CO32φ。、7〉は結晶のC−軸と配向軸との角
度C1zの余弦の二乗平均値で、これはWilckin
sky方法(J、 ADI)1.Phys、、  30
巻、7つ2(1959)に記載)に従って次式で与えら
れる。
fc=(3<C082φ.z>-1)/2where<CO32φ. , 7〉 is the root mean square value of the cosine of the angle C1z between the C-axis and the orientation axis of the crystal, which is the Wilckin
sky method (J, ADI)1. Phys,, 30
Vol. 7, No. 2 (1959)), it is given by the following equation.

<C082φ。、z )=1−0.3481 <CO3
2φ   >−0,773 100、Z 3<CO32φTIO,z 〉− 〇、8786<CO32φ 010、Z > ここで<CO32φ   >、<CO32φT10゜i
oo、z 7>、<CO32φ   〉はそれぞれ、(10010
、Z O)、(110)、(010)面の方位角方向の回折強
度分布から決められる平均値である。
<C082φ. ,z)=1-0.3481<CO3
2φ >-0,773 100, Z 3<CO32φTIO,z 〉- 〇, 8786<CO32φ 010, Z > where <CO32φ >, <CO32φT10゜i
oo, z7>, <CO32φ> are (10010
, Z O), (110), and (010) planes in the azimuth direction.

(4)弾性率 動的粘弾性測定装置((株)東洋ボールドウィン製“レ
オパイブロン″)を用いて、周波数110 Hz、温度
25℃で弾性率を測定した。
(4) Elastic modulus The elastic modulus was measured at a frequency of 110 Hz and a temperature of 25° C. using a dynamic viscoelasticity measuring device (“Rheopybron” manufactured by Toyo Baldwin Co., Ltd.).

(5)寸法安定性(熱収縮率) 配向軸を長手方向に幅1Qmm、長さ250mmの長さ
にシートを切断して、また棒状物では長さ25Qmmに
切断して、それらの試料に約200mm間隔で2本の標
線を入れを、その間隔を正確に測定した(これをAmm
とする)。この試料の先端に3゜OC+の荷重をかけた
状態で180℃の熱風オーブン中に10分間放置したの
ち、試料を室温まで冷却し標線間隔を測定した(これを
3mmとする)。
(5) Dimensional stability (thermal shrinkage rate) A sheet is cut into a length of 1Qmm in width and 250mm in length in the longitudinal direction of the orientation axis, and a rod-shaped object is cut into a length of 25Qmm. Two gauge lines were placed at 200 mm intervals, and the distance was accurately measured (this was measured in Amm).
). The sample was left in a hot air oven at 180° C. for 10 minutes with a load of 3° OC+ applied to the tip of the sample, and then the sample was cooled to room temperature and the distance between the gauge lines was measured (this is defined as 3 mm).

(A−B/A)X 106を求め、これを熱収縮率とし
た。
(A-B/A)X 106 was determined, and this was taken as the heat shrinkage rate.

熱収縮率が1%以下を寸法安定性良好として、1%以上
を不良とした。
A thermal shrinkage rate of 1% or less was considered good dimensional stability, and a thermal shrinkage rate of 1% or more was considered poor.

(6)耐衝撃性 ASTM−D−256に基定された方法に従って、東洋
装機製作所のシャルピーインパクトテスタを用いて、配
向体のシャルビ衝撃強度(単位:に1・Cm/mm2 
)を測定した。なお、値はシート又は棒を配向方向を2
支点間に水平にセットした場合について求めた。シャル
ビ衝撃強度が20以上の場合は耐衝撃性良好、20未満
の場合は耐衝撃性不良と判定した。
(6) Impact resistance Charby impact strength (unit: 1 cm/mm
) was measured. In addition, the value is 2 for the orientation direction of the sheet or rod.
It was calculated for the case where it was set horizontally between the fulcrums. When the Charvi impact strength was 20 or more, it was determined that the impact resistance was good, and when it was less than 20, it was determined that the impact resistance was poor.

[実施例] 本発明を以下の実施例・比較例を用いて説明するが、本
発明はこれらの実施例に限定されるものではない。
[Examples] The present invention will be explained using the following Examples and Comparative Examples, but the present invention is not limited to these Examples.

実施例1 テレフタル酸ジメチル100重1部、エチレングリコー
ル69重量部、ジエチレングリコール0゜8重量部に、
触媒として酢酸カルシウム0.09重量部を用いて、常
法によりエステル交換反応を行い、その生成物に、三酸
化アンチモン0.03重量部、酢酸リチウム0.3重量
部、リン酸トリメチル0.2重量部および二酸化ケイ素
微粉末(比表面積180TI+2/Cl>を添加し、常
法によって重合して、極限粘度0.62のポリマペレッ
トを得た。このペレットを180’C110時間真空乾
燥した後、押出機に供給して、282°Cで溶融押出し
、ギアポンプ、フィルターを経由してT型口金からシー
ト状に吐き出せしめ、この溶融シートを表面温度40’
Cの冷却ドラムに巻きつけて冷却固化せしめて、未延伸
]シートを作った。
Example 1 1 part by weight of dimethyl terephthalate, 69 parts by weight of ethylene glycol, 0.8 parts by weight of diethylene glycol,
Using 0.09 parts by weight of calcium acetate as a catalyst, the transesterification reaction was carried out by a conventional method, and the resulting product contained 0.03 parts by weight of antimony trioxide, 0.3 parts by weight of lithium acetate, and 0.2 parts by weight of trimethyl phosphate. parts by weight and silicon dioxide fine powder (specific surface area: 180 TI+2/Cl) were added and polymerized by a conventional method to obtain a polymer pellet with an intrinsic viscosity of 0.62. After vacuum drying this pellet at 180'C for 110 hours, it was extruded. The molten sheet is then melted and extruded at 282°C, passed through a gear pump and a filter, and then discharged in the form of a sheet from a T-type nozzle.The molten sheet is heated to a surface temperature of 40'
It was wound around a cooling drum of C and cooled and solidified to produce an unstretched sheet.

この冷却の際、溶融シートとドラム表面との密着性を改
良するため、溶融シート側にワイア電極を置き、これに
8KVの直流電圧を印加して、溶融シートがドラムに良
く密着されるようにした。
During this cooling, in order to improve the adhesion between the molten sheet and the drum surface, a wire electrode is placed on the molten sheet side, and a DC voltage of 8KV is applied to it to ensure that the molten sheet is well adhered to the drum. did.

この未延伸シート(厚み300μ)を幅2Qmm。This unstretched sheet (thickness: 300 μm) was made into a width of 2 Q mm.

長さ1oommの短期状に切断して、引張試験機((株
)東洋ボールドウィン製”Ten5ilOn” )を用
いて室温(約20°C)、引張り速度10mmm1n−
1で冷延伸しk。延伸はネッキングを伴うため、試料全
体が均一に延伸するまで延伸倍率を高めた。
It was cut into short pieces with a length of 1 oomm and tested at room temperature (approximately 20°C) at a tensile speed of 10 mm 1 n- using a tensile testing machine (“Ten5ilOn” manufactured by Toyo Baldwin Co., Ltd.).
Cold stretch at 1k. Since stretching involves necking, the stretching ratio was increased until the entire sample was stretched uniformly.

延伸後試料を引張り試験機のチャックから切り離すと、
試料長はスプリングバックして幾分小さくなる。スプリ
ングバック後の試料長から延伸倍率を見積ると約4.2
倍であった。この延伸試料を引張り試験機で再度1.2
5倍に延伸して、スチール製の金枠に試料の両端を治具
で固定した。これを250℃で24時間窒素ガス循環熱
風オーブン中で熱処理して、その後260℃の温度で3
60時間熱処理した。
After stretching, when the sample is separated from the chuck of the tensile tester,
The sample length will spring back and become somewhat smaller. Estimating the stretching ratio from the sample length after springback, it is approximately 4.2.
It was double that. This stretched sample was tested again with a tensile tester of 1.2
The sample was stretched 5 times and both ends of the sample were fixed to a steel frame using a jig. This was heat-treated at 250°C for 24 hours in a nitrogen gas circulating hot air oven, and then at 260°C for 3 hours.
Heat treatment was performed for 60 hours.

このようにして得た一軸延伸フィルムの特性はフィルム
の極限粘度0.63dff/Q、結晶化度90%、(1
05)面および(100)面方向の結晶サイズはそれぞ
れ96Å、56Å、結晶配向係数0.99.弾性率35
.4GPaであツタ。
The properties of the uniaxially stretched film obtained in this way are that the intrinsic viscosity of the film is 0.63 dff/Q, the crystallinity is 90%, and (1
The crystal sizes in the 05) plane and (100) plane directions are 96 Å and 56 Å, respectively, and the crystal orientation coefficient is 0.99. Elastic modulus 35
.. Ivy at 4GPa.

またフィルムの耐衝撃性1寸法安定性を評価したところ
、いずれも良好であった。
Furthermore, when the impact resistance and one-dimensional stability of the film were evaluated, all were found to be good.

実施例1の諸条件の中で、熱処理温度、熱処理時間、再
延伸倍率を種々変更することにより、結晶化度、結晶サ
イズ、結晶配向係数の値が異なるサンプルを作った。こ
れらのフィルムの弾性率、寸法安定性、耐衝撃性を評価
した効果を表1に示す。これらの結果から、本発明範囲
内の特性値を有すフィルムが、高弾性率であり、かつ寸
法安定性、耐衝撃性にすぐれていることがわかる。
By variously changing the heat treatment temperature, heat treatment time, and re-stretching ratio under the conditions of Example 1, samples with different values of crystallinity, crystal size, and crystal orientation coefficient were prepared. Table 1 shows the results of evaluating the elastic modulus, dimensional stability, and impact resistance of these films. These results show that a film having characteristic values within the range of the present invention has a high elastic modulus and is excellent in dimensional stability and impact resistance.

なお、再延伸倍率とは冷延伸したフィルムを再延伸して
金枠に固定するときの延伸倍率をいう。
Note that the re-stretching ratio refers to the stretching ratio at which a cold-stretched film is re-stretched and fixed to a metal frame.

Claims (1)

【特許請求の範囲】[Claims] 結晶化度70〜92%、結晶面(@1@05)および(
100)方向の結晶サイズがそれぞれ80〜100Å、
40〜60Åであり、結晶配向係数が0.96〜1.0
であることを特徴とするポリエチレンテレフタレート配
向体。
Crystallinity 70-92%, crystal planes (@1@05) and (
The crystal size in the 100) direction is 80 to 100 Å, respectively.
40-60 Å, crystal orientation coefficient 0.96-1.0
An oriented polyethylene terephthalate body characterized by:
JP29892686A 1986-12-17 1986-12-17 Polyethylene terephthalate oriented body Pending JPS63153115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29892686A JPS63153115A (en) 1986-12-17 1986-12-17 Polyethylene terephthalate oriented body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29892686A JPS63153115A (en) 1986-12-17 1986-12-17 Polyethylene terephthalate oriented body

Publications (1)

Publication Number Publication Date
JPS63153115A true JPS63153115A (en) 1988-06-25

Family

ID=17865972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29892686A Pending JPS63153115A (en) 1986-12-17 1986-12-17 Polyethylene terephthalate oriented body

Country Status (1)

Country Link
JP (1) JPS63153115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11445880B2 (en) 2015-06-25 2022-09-20 Irobot Corporation Evacuation station

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11445880B2 (en) 2015-06-25 2022-09-20 Irobot Corporation Evacuation station

Similar Documents

Publication Publication Date Title
Yamada et al. Relationship between orientation of amorphous chains and modulus in highly oriented polypropylene
WO2012043281A1 (en) Biaxially oriented polyester film and linear magnetic recording medium
US3683060A (en) Method of preparing biaxially oriented polyethylene 2,6-naphthalate film
JPH03205432A (en) Polyimide film and its production
KR100248877B1 (en) Oriented semi-crystalline polyester films, method for their manufacture and their use as support for magnetic coatings
Rhee et al. Crystal structure, morphology, orientation, and mechanical properties of biaxially oriented polyamide 6 films
US3165499A (en) Film and process for making same
JPH03216B2 (en)
JPS63153115A (en) Polyethylene terephthalate oriented body
JPS6178862A (en) Biaxially oriented polyester film
Wang et al. Crystallization, orientation morphology, and mechanical properties of biaxially oriented starch/polyvinyl alcohol films
JPS63104822A (en) Biaxially oriented polyethylene terephthalate film
JP4041885B2 (en) High strength and high transparency polypropylene sheet and method for producing the same
JP2516100B2 (en) Biaxially oriented polyester film
JPS6312772B2 (en)
JPH03215B2 (en)
JPS6134466B2 (en)
JPS62154226A (en) Biaxially stretched polyester film for magnetic recording medium
JPS63170018A (en) Biaxially oriented polyethylene terephthalate film of favorable slit property
JPH0367496B2 (en)
JPH0314055B2 (en)
JPS61139420A (en) Polyethylene terephthalate molded body and manufacturing method thereof
KR0157090B1 (en) Biaxial oriented polyester film
JP3020723B2 (en) Method for producing biaxially stretched polyester film
JP2611413B2 (en) Method for producing high-strength polyester film