JPS63140941A - Infrared gas analyzer - Google Patents
Infrared gas analyzerInfo
- Publication number
- JPS63140941A JPS63140941A JP61286640A JP28664086A JPS63140941A JP S63140941 A JPS63140941 A JP S63140941A JP 61286640 A JP61286640 A JP 61286640A JP 28664086 A JP28664086 A JP 28664086A JP S63140941 A JPS63140941 A JP S63140941A
- Authority
- JP
- Japan
- Prior art keywords
- absorption cell
- transmitted light
- detector
- light
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010521 absorption reaction Methods 0.000 claims abstract description 54
- 238000004458 analytical method Methods 0.000 abstract description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 12
- 239000007789 gas Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 239000001569 carbon dioxide Substances 0.000 description 6
- 239000001307 helium Substances 0.000 description 5
- 229910052734 helium Inorganic materials 0.000 description 5
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/031—Multipass arrangements
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は各種プロセスのガス濃度の監視や制御のための
ガスの濃度を測定する分析計であって、特に、測定成分
の濃度を広範囲にわたって精度よく定量することに好適
な赤外線ガス分析計に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention is an analyzer for measuring the concentration of gas for monitoring and controlling the gas concentration in various processes, and in particular, for measuring the concentration of a component to be measured over a wide range. The present invention relates to an infrared gas analyzer suitable for accurate quantitative determination.
一般に1分子は赤外線の照射をうけると、その固有の振
動数及び回転のスペクトルに相当する波長の光によって
励起され、その光に対応した吸収を示す、赤外線分析法
は、この現象を利用したものである。この赤外線吸収は
吸収波長に対して、式(1)のランパートベールの法則
を満足する。In general, when a molecule is irradiated with infrared rays, it is excited by light with a wavelength corresponding to its own frequency and rotation spectrum, and exhibits absorption corresponding to that light.Infrared analysis uses this phenomenon. It is. This infrared absorption satisfies the Lampert-Beer law of equation (1) for the absorption wavelength.
1=Ioexp(−uQC) ・= (
1)ここに、Io :赤外線の入射光の強さI:透過光
の強さ
U:分子による係数
C:目的成分の濃度
Q:試料の厚さく吸収セルの厚さ)
I/Io:T(透過率)
uogl/Io:吸光度
吸光度は目的成分の濃度と試料の厚さの積に比例する。1=Ioexp(-uQC) ・= (
1) Here, Io: Intensity of incident infrared light I: Intensity of transmitted light U: Coefficient due to molecules C: Concentration of target component Q: Thickness of sample (thickness of absorption cell) I/Io: T( Transmittance) uogl/Io: Absorbance Absorbance is proportional to the product of the concentration of the target component and the thickness of the sample.
このときの誤差は式(2)で表わされる。The error at this time is expressed by equation (2).
CT(QogT)
ΔC:目的成分の濃度誤差
ΔT:透過率測定上の誤差
一定濃度における誤差は透過率要0.2〜0.7 の範
囲で最も小さいことが判る(日本化学会編:機器による
化量分析、昭和56年、丸善)。CT (QogT) ΔC: Error in concentration of target component ΔT: Error in transmittance measurement It can be seen that the error at a constant concentration is the smallest in the range of transmittance of 0.2 to 0.7 (edited by the Chemical Society of Japan: Depends on the equipment) Quantitative Analysis, 1981, Maruzen).
即ち、入射光IOと透過光■との差が大いき場合には、
誤差も大きくなる。従って、精度のよい分析をするため
には、低濃度の試料を分析する場合には吸収セルを長く
、高濃度の場合には吸収セルを短くする必要がある。吸
収セルを長くできない場合には、透過光を吸収セルの中
を何回も通過させることによって、吸収セルを長くした
のと同じ効果が期待できる(水島三一部、島田武彦:赤
外線吸収とラマン効果、共立出版、昭和53年)。That is, when the difference between the incident light IO and the transmitted light ■ is large,
The error will also become larger. Therefore, in order to perform accurate analysis, it is necessary to make the absorption cell long when analyzing a sample with a low concentration, and shorten the absorption cell when analyzing a sample with a high concentration. If it is not possible to lengthen the absorption cell, the same effect as lengthening the absorption cell can be expected by passing the transmitted light through the absorption cell many times (Mizushima Sanbu, Shimada Takehiko: Infrared absorption and Raman Effect, Kyoritsu Shuppan, 1978).
上記従来技術は、吸収セルの長さを調節することが考慮
されておらず、最適濃度範囲からはずれる場合には、目
的成分を希釈したり濃縮する必要があり5分析操作が煩
雑になる。又、低濃度試料を分析する場合に吸収セルを
長くすると、吸収セルの8敏が多くなり、試料の量も多
くなるという問題がある。The above-mentioned conventional technology does not take into account adjustment of the length of the absorption cell, and when the concentration deviates from the optimum concentration range, it is necessary to dilute or concentrate the target component, making the analysis operation complicated. Furthermore, when analyzing a low concentration sample, if the length of the absorption cell is increased, there is a problem that the length of the absorption cell increases and the amount of sample increases.
本発明の目的は、吸収セルの長さを自動的に調節したの
と同じ効果が得られるように、吸収セルへの透過光の通
過回数を任意に調節することにある。An object of the present invention is to arbitrarily adjust the number of times the transmitted light passes through the absorption cell so as to obtain the same effect as automatically adjusting the length of the absorption cell.
[問題点を解決するための手段]
上記目的は、単一光源からの赤外線を吸収セルに照射し
たときに吸収セルを通過する透過光を反射鏡によって、
吸収セルの中を複数回往復させるが、目的成分の濃度に
応じて吸収セルへの透過光の往復回数を調節することに
より、達成される。[Means for solving the problem] The above purpose is to reflect the transmitted light that passes through the absorption cell when the absorption cell is irradiated with infrared rays from a single light source, using a reflecting mirror.
This is accomplished by adjusting the number of times the transmitted light travels back and forth to the absorption cell depending on the concentration of the target component.
目的成分の濃度に応じて、透過光を吸収セルに導くため
の任意の反射鏡は、透過光を受けないように動作する。Depending on the concentration of the target component, any mirrors for directing the transmitted light to the absorption cell operate so as not to receive the transmitted light.
それによって、透過光は吸収セルへの反射鏡の後方に位
置する反射鏡によって検出器に導かれるので、透過光の
往復回数により、吸収セルの光路長を変化させたのと同
じ効果が得られる。Thereby, the transmitted light is guided to the detector by the reflector located behind the reflector to the absorption cell, so the same effect as changing the optical path length of the absorption cell can be obtained by changing the number of round trips of the transmitted light. .
以下、本発明の一実施例を第1図により説明する。第1
図において、1は赤外線を放射する光源、2は光源から
の光を一定の波長域にする分光器、3は試料を入れる吸
収セル、4は透過光の強さを測定する検出器、5は透過
光を吸収セルに導く吸収セル用反射鏡、6は透過光を検
出器に導く検出用反射鏡である。光源1から放射された
赤外線は分光器2によって一定の波長域に分光されて吸
収セル3に導かれる。吸収セル3を通過した透過光は吸
収セル用反射鏡5−1によって反射されて、再び吸収セ
ル3を通過して吸収セル用反射鏡5−2によって吸収セ
ル3を通過する。同様に透過光は、反射鏡5−3〜5−
8によって反射されて検出器4に到達する。検出器4で
は分析成分が存在しないときの透過光の強さIoと分析
成分が存在するときの透過光の強さIを測定し、両者の
比(T=I/Io)から試料中の濃度を求める。An embodiment of the present invention will be described below with reference to FIG. 1st
In the figure, 1 is a light source that emits infrared rays, 2 is a spectroscope that converts the light from the light source into a certain wavelength range, 3 is an absorption cell in which the sample is placed, 4 is a detector that measures the intensity of transmitted light, and 5 is a detector that measures the intensity of transmitted light. An absorption cell reflecting mirror 6 guides the transmitted light to the absorption cell, and a detection reflecting mirror 6 guides the transmitted light to the detector. Infrared rays emitted from a light source 1 are separated into a certain wavelength range by a spectroscope 2 and guided to an absorption cell 3. The transmitted light that has passed through the absorption cell 3 is reflected by the absorption cell reflection mirror 5-1, passes through the absorption cell 3 again, and passes through the absorption cell 3 by the absorption cell reflection mirror 5-2. Similarly, the transmitted light is transmitted through the reflecting mirrors 5-3 to 5-
8 and reaches the detector 4. The detector 4 measures the intensity of transmitted light Io when no analytical component is present and the intensity I of transmitted light when the analytical component is present, and calculates the concentration in the sample from the ratio of the two (T=I/Io). seek.
検出器4での透過率が最適範囲(0,2〜0.7)より
大きい場合には、吸収セル用反射鏡5−7をバイパスさ
せて、その後方に位置する検出用反射鏡6−4によって
透過光は検出器に導かれる。さらに、′a度が刊い場合
には、吸収セル用反射鏡5−3あるいは5−2をバイパ
スさせて、検出用反射鏡によって透過光を検出器に導く
。なお、吸収セル3に対して光源1の反対方向に位置す
る吸収セル用反射鏡5−1.5−3.5−5.5−7は
検出器4の信号によって、自動的に駆動し、透過光があ
たらないようにしである。When the transmittance at the detector 4 is larger than the optimum range (0.2 to 0.7), the absorption cell reflector 5-7 is bypassed and the detection reflector 6-4 located behind it is used. The transmitted light is guided to a detector. Furthermore, when the degree of 'a' is high, the absorption cell reflection mirror 5-3 or 5-2 is bypassed and the transmitted light is guided to the detector by the detection reflection mirror. Note that the absorption cell reflecting mirror 5-1.5-3.5-5.5-7 located in the opposite direction of the light source 1 with respect to the absorption cell 3 is automatically driven by the signal from the detector 4. This is to prevent transmitted light from hitting it.
本実施例によれば、透過光が吸収圧ル3を通過する回数
に対応して吸収セルの長さを変化させたのと同じ効果が
期待でき、目的成分が広い感度範囲にわたって分析精度
を向上させることができる。According to this example, the same effect as changing the length of the absorption cell according to the number of times the transmitted light passes through the absorption pressure cell 3 can be expected, and the analysis accuracy of the target component is improved over a wide sensitivity range. can be done.
実施例2は、水中有機炭素の濃度測定装置に応用したも
のである。第2図は第1図の実施例の赤外線ガス分析計
を塔載した水中有機炭素分析計の構成図である。試料水
7及び反応液8を混合器10で混合したものを脱水器1
1に送る。脱水器11ではヘリウム9−1をバブリング
して試料水に含まれている炭酸ガスを除去する。次に、
この脱気水を高温高圧に保たれている反応器12に送り
、試料水7中の有機物を酸化して炭酸ガスに変換する。Example 2 is an application to an apparatus for measuring the concentration of organic carbon in water. FIG. 2 is a block diagram of an underwater organic carbon analyzer equipped with the infrared gas analyzer of the embodiment shown in FIG. The sample water 7 and the reaction liquid 8 are mixed in a mixer 10, and the mixture is transferred to a dehydrator 1.
Send to 1. The dehydrator 11 removes carbon dioxide contained in the sample water by bubbling helium 9-1. next,
This degassed water is sent to a reactor 12 maintained at high temperature and high pressure, and the organic matter in the sample water 7 is oxidized and converted into carbon dioxide gas.
生成した炭酸ガスを含む熱水とヘリウム9−2とを抽出
器13で混合しながら炭酸ガスを抽出して、ヘリウムと
ともに赤外線ガス分析計14に送り、ヘリウム中の炭酸
ガスの濃度を測定することにより、水中の有機炭素濃度
を測定することができる。本発明の赤外線ガス分析計を
塔載した水中有機炭素分析装置は、水中有機炭素の濃度
が広い範囲で変化する試料でも吸収セルの光路長を変え
たのと同じ効果があり、分析精度をそこなわずに分析で
きる。又、有機炭素を高感度で分析するには、生成した
炭酸ガスをできるだけ少量のヘリウム等の不活性ガスで
抽出する必要があるが、あまり少量にすると吸収セルに
試料を一杯に入れるのに時間がかかるので、分析時間も
長くなるが、本発明では吸収セルの容量を最少にするこ
とができるので、分析時間を最少に保つことができる。While mixing the produced hot water containing carbon dioxide gas and helium 9-2 in an extractor 13, carbon dioxide gas is extracted and sent together with helium to an infrared gas analyzer 14 to measure the concentration of carbon dioxide gas in helium. It is possible to measure the organic carbon concentration in water. The underwater organic carbon analyzer equipped with the infrared gas analyzer of the present invention has the same effect as changing the optical path length of the absorption cell even for samples in which the concentration of organic carbon in water changes over a wide range, and the analysis accuracy can be improved accordingly. Can be analyzed without needing to speak. In addition, in order to analyze organic carbon with high sensitivity, it is necessary to extract the generated carbon dioxide gas with as small a volume as possible of an inert gas such as helium, but if the volume is too small, it will take a long time to fill the absorption cell with the sample. However, since the capacity of the absorption cell can be minimized in the present invention, the analysis time can be kept to a minimum.
本発明によれば、吸収セルからの透過光を緑返して吸収
セルの中を通過させ、通過回数を調節できるので、吸収
セルの光路長を変化したのと同じ効果がある。According to the present invention, the transmitted light from the absorption cell is returned to green and passes through the absorption cell, and the number of times the light passes through the absorption cell can be adjusted, so that the same effect as changing the optical path length of the absorption cell can be obtained.
第1図は本発明の一実施例の系統図、第2図は本発明の
赤外線ガス分析計を塔載した水中有機炭素分析計の説明
図である。
1・・・光源、2・・・分光器、3・・・吸収セル、4
・・・検出器、5・・・吸収セル用検出器。FIG. 1 is a system diagram of an embodiment of the present invention, and FIG. 2 is an explanatory diagram of an underwater organic carbon analyzer equipped with an infrared gas analyzer of the present invention. 1... Light source, 2... Spectrometer, 3... Absorption cell, 4
...Detector, 5...Detector for absorption cell.
Claims (1)
入したときの透過光を反射鏡によつて前記吸収セルに複
数回導入することができ、入射光または前記透過光を一
定の波長域にする分光器を備え、前記入射光と前記透過
光の強さを測定する検出器を備えた赤外線ガス分析計に
おいて、 前記透過光が吸収セルを通過する回数を調節する手段を
設けたことを特徴とする赤外線ガス分析計。[Claims] 1. When infrared rays are introduced from a single light source into an absorption cell containing a sample, the transmitted light can be introduced into the absorption cell multiple times by a reflecting mirror, and the incident light or the transmitted light can be In an infrared gas analyzer equipped with a spectrometer that converts light into a certain wavelength range and a detector that measures the intensity of the incident light and the transmitted light, the number of times the transmitted light passes through an absorption cell is adjusted. An infrared gas analyzer characterized by being provided with means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61286640A JPS63140941A (en) | 1986-12-03 | 1986-12-03 | Infrared gas analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61286640A JPS63140941A (en) | 1986-12-03 | 1986-12-03 | Infrared gas analyzer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63140941A true JPS63140941A (en) | 1988-06-13 |
Family
ID=17707035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61286640A Pending JPS63140941A (en) | 1986-12-03 | 1986-12-03 | Infrared gas analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63140941A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05157694A (en) * | 1991-12-10 | 1993-06-25 | Kajima Corp | Transparency monitor |
EP1541990A1 (en) * | 2003-12-12 | 2005-06-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method and apparatus for gas or gas mixture analysis by means of laser diode spectroscopy |
JP2008070293A (en) * | 2006-09-15 | 2008-03-27 | Yokogawa Electric Corp | Water quality measuring apparatus |
JPWO2015136956A1 (en) * | 2014-03-12 | 2017-04-06 | ソニー株式会社 | Measuring apparatus and measuring method |
-
1986
- 1986-12-03 JP JP61286640A patent/JPS63140941A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05157694A (en) * | 1991-12-10 | 1993-06-25 | Kajima Corp | Transparency monitor |
EP1541990A1 (en) * | 2003-12-12 | 2005-06-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method and apparatus for gas or gas mixture analysis by means of laser diode spectroscopy |
JP2008070293A (en) * | 2006-09-15 | 2008-03-27 | Yokogawa Electric Corp | Water quality measuring apparatus |
JPWO2015136956A1 (en) * | 2014-03-12 | 2017-04-06 | ソニー株式会社 | Measuring apparatus and measuring method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zahniser et al. | Measurement of trace gas fluxes using tunable diode laser spectroscopy | |
US2847899A (en) | Method of and apparatus for spectrochemical analysis | |
US8213012B2 (en) | Stability for optical computing system | |
US4825076A (en) | Infra-red spectrophotometric apparatus | |
US4781456A (en) | Absorption photometer | |
US5519219A (en) | Portable filter infrared spectrometer | |
US6762410B1 (en) | Analysis apparatus | |
US20100055802A1 (en) | Analysis using separation combined with chemical conversion followed by optical spectroscopy | |
JPH08280812A (en) | Automatic identification device for gas sample | |
EP0307082B1 (en) | Method of measuring multicomponent constituency of gas emission flow | |
Ribessi et al. | iHEART: a miniaturized near-infrared in-line gas sensor using heart-shaped substrate-integrated hollow waveguides | |
US3794425A (en) | Scanning infrared spectroscopic analyzer using rotating variable filter | |
EP0771417B1 (en) | Determination of light absorption pathlength in a vertical-beam photometer | |
JPS6250641A (en) | Analyzing instrument having absorption spectrophotometer | |
US5672874A (en) | Infrared oil-concentration meter | |
US5039224A (en) | Self-referencing remote optical probe | |
JPH1030982A (en) | Method for analysing multicomponent aqueous solution | |
JPS63140941A (en) | Infrared gas analyzer | |
JPH04364442A (en) | Carbon-isotope analyzing apparatus | |
US3218914A (en) | Single beam frequency modulated dispersive analyzer | |
JPH07198600A (en) | Fourier transform multi-component continuous absorption analyzer | |
JPH05296922A (en) | Carbon isotope analyzing instrument | |
US2620444A (en) | Process and apparatus for absorption spectrometry | |
Marquardt et al. | Demonstration of a high-precision optical probe for effective sampling of solids by Raman spectroscopy | |
Xu et al. | Multi-wavelength thermal lens spectrophotometer |