JPS63111599A - Automatic spindle deformation monitor for hydraulic machine - Google Patents
Automatic spindle deformation monitor for hydraulic machineInfo
- Publication number
- JPS63111599A JPS63111599A JP61255806A JP25580686A JPS63111599A JP S63111599 A JPS63111599 A JP S63111599A JP 61255806 A JP61255806 A JP 61255806A JP 25580686 A JP25580686 A JP 25580686A JP S63111599 A JPS63111599 A JP S63111599A
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- main shaft
- output
- shaft
- hydraulic machine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005856 abnormality Effects 0.000 claims description 43
- 238000001514 detection method Methods 0.000 claims description 37
- 230000002159 abnormal effect Effects 0.000 claims description 22
- 229910000897 Babbitt (metal) Inorganic materials 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 238000012544 monitoring process Methods 0.000 claims description 9
- 238000012806 monitoring device Methods 0.000 claims description 8
- 230000001360 synchronised effect Effects 0.000 claims description 8
- 239000012530 fluid Substances 0.000 claims 2
- 238000005461 lubrication Methods 0.000 claims 2
- 239000002184 metal Substances 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Emergency Alarm Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は、水車またはポンプ水車等の水力機械において
主軸に変形等の異常が発生した場合、これを大事故に至
る前に検出し得る水力機械の主軸変形自動監視装置に関
する。[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention is aimed at preventing abnormalities such as deformation of the main shaft of hydraulic machines such as water turbines or pump water turbines before they cause a major accident. This invention relates to an automatic monitoring device for main shaft deformation of hydraulic machinery that can detect the deformation of a hydraulic machine.
(従来の技術)
水車またはポンプ水車等の水力機械、特に高落差で大容
量の水力は械においては、構成機器は高速、高圧力およ
び高応力に耐え、しかも軸振れヤ据動にも十分耐え得る
ことが要求される。(Prior Art) In hydraulic machines such as water turbines or pump-turbines, especially those with high head and large capacity, the components are capable of withstanding high speeds, high pressures, and high stresses, and are also sufficiently resistant to shaft vibration and stationary motion. required to obtain.
ところで、水力機械に於いて回転の中心となる主軸につ
いては、異常が生じた場合に軸系の振動および軸受等の
損傷をまねき、大事故を引起す可能性があるので、その
信頼性が最優先して要求されるにもかかわらず、その監
視は今までに行っていなかった。By the way, the reliability of the main shaft, which is the center of rotation in hydraulic machinery, is paramount because if an abnormality occurs, it may cause vibrations in the shaft system and damage to bearings, etc., and cause a major accident. Despite being requested as a priority, monitoring has not been carried out to date.
(発明が解決しようとする問題点)
この主軸事故が発生した場合、その復旧には長時間を要
しその間当該水力薇械は停止状態におかれるため、その
稼動率が低下して生産性向上の隘路となっている。特に
、大容量捜である水力機械の主軸の損傷は、非常に莫大
な損失となる。従って、かかる主軸が異常状態若しくは
初期損傷が発生したときには、それが大きな主軸事故に
発展する前に検出して、必要な措置を講することが非常
に重要である。(Problem to be solved by the invention) When this spindle accident occurs, it takes a long time to recover, and during that time the hydraulic power machine is stopped, which reduces its operating rate and improves productivity. It has become a bottleneck. In particular, damage to the main shaft of a large-capacity hydraulic machine will result in a huge loss. Therefore, when an abnormal state or initial damage occurs to such a main shaft, it is very important to detect it and take necessary measures before it develops into a major main shaft accident.
本発明の目的は運転中の主軸の状態を軸振れ、軸受温度
および軸受油膜厚さによって検出し、機械を停止し精密
な測定をすることなく、常時監視できるようにした水力
1jI域の主軸変形自動監視装置を提供することである
。The purpose of the present invention is to detect the state of the main shaft during operation based on shaft runout, bearing temperature, and bearing oil film thickness, and to constantly monitor the main shaft deformation in the hydraulic 1jI range without stopping the machine and making precise measurements. The purpose of the present invention is to provide an automatic monitoring device.
(発明の構成)
(問題点を解決するための手段)
上述の目的を達成するため、本発明の水力機械の主軸変
形自動監視装置は、主軸スカートと軸受メタルおよびそ
れらを収納した軸受油槽からなる水力機械に於いて、前
記軸受メタルに軸受温度と軸受油膜厚さを検出するセン
サーを取付け、前記軸受油槽の近くに回転軸の軸振れを
検出するセンサーを取付け、これらの各センサーの出力
信号を予め設定された設定値と比較し、前記出力信号の
いずれかが前記設定値を越えた場合に作動する警報回路
を設ける。(Structure of the Invention) (Means for Solving the Problems) In order to achieve the above-mentioned object, the main shaft deformation automatic monitoring device for hydraulic machinery of the present invention comprises a main shaft skirt, a bearing metal, and a bearing oil tank housing them. In hydraulic machinery, a sensor is attached to the bearing metal to detect the bearing temperature and the bearing oil film thickness, a sensor is attached near the bearing oil tank to detect the shaft runout of the rotating shaft, and the output signals of these sensors are An alarm circuit is provided which is compared with a preset set value and activated if any of the output signals exceeds the set value.
(作 用)
軸受温度と軸受油膜と軸振れのいずれかが設定値をこえ
た場合に警報回路を作動させ、ここでの論理演算の結果
により主軸変形自動監視する。(Function) If any of the bearing temperature, bearing oil film, and shaft runout exceeds a set value, an alarm circuit is activated, and the spindle deformation is automatically monitored based on the results of logical operations here.
(実施例) 以下、図面を参照して本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.
第2図は本発明を適用した水力機械の要部の縦断面図で
、上池(図示せず)からの流水は水車またはポンプ水車
等のケーシング(図示せず)からスピードリング(図示
せず)を通り、上カバー1と下カバー2とから成る圧力
室へ流入する。圧力室の入口にはガイドベーン(図示せ
ず)が配列されており、このガイドベーンによって流量
を調整された流水はランナ3に作用し、ランナ3および
これに主軸4を介して結合された発電機または発電々動
機(図示せず)を回転させる。ランナ3を通過した流水
はドラフトチューブ5を通って下池(図示せず〉へ放水
される。Figure 2 is a vertical cross-sectional view of the main parts of a hydraulic machine to which the present invention is applied. Water flowing from an upper pond (not shown) is transported from a casing (not shown) of a water wheel or pump turbine to a speed ring (not shown). ), and flows into a pressure chamber consisting of an upper cover 1 and a lower cover 2. Guide vanes (not shown) are arranged at the entrance of the pressure chamber, and the flowing water whose flow rate is adjusted by the guide vanes acts on the runner 3, and the power generation unit connected to the runner 3 and the main shaft 4 via the main shaft 4 is generated. rotating a generator or generator (not shown). The water that has passed through the runner 3 passes through a draft tube 5 and is discharged to a lower pond (not shown).
一方、ポンプ水車による換水運転時には、上記とは逆に
、発電々動機により駆動されるランナ3によって下池の
水はドラフトチューブ5を通して汲み上げられ、圧力室
からステイリング、ケーシング、水圧鉄管(図示せず)
を経て上池へ換水される。On the other hand, during water exchange operation using the pump turbine, water from the lower pond is pumped up through the draft tube 5 by the runner 3 driven by the generator motor, contrary to the above, and from the pressure chamber to the stay ring, casing, and penstock (not shown). )
After that, the water is exchanged to the upper pond.
主軸4に設けられた主軸スカート6と軸受メタル7とそ
れらを収納する軸受油槽8が設置されている。A main shaft skirt 6 and a bearing metal 7 provided on the main shaft 4, and a bearing oil tank 8 for housing them are installed.
第2図の実施例において、軸受メタル7には軸受油膜厚
さ検出センサーS1と軸受温度検出センサーS2が設置
され、主軸スカート6と軸受メタル7の間の油膜厚さお
よび軸受メタル7の温度をそれぞれ検出する。また、軸
受油槽8の上部には軸振れ検出センサーS3が設置され
、主軸4の軸振れを検出する。In the embodiment shown in FIG. 2, a bearing oil film thickness detection sensor S1 and a bearing temperature detection sensor S2 are installed on the bearing metal 7 to detect the oil film thickness between the spindle skirt 6 and the bearing metal 7 and the temperature of the bearing metal 7. Detect each. Further, a shaft runout detection sensor S3 is installed above the bearing oil tank 8 to detect shaft runout of the main shaft 4.
上記各センサー81〜S3としては1個または複数個ず
つが適当位置に設置されるが、以下の説明においては、
便宜上各センサーが1個ずつの場合につき述べることと
する。One or more of the above-mentioned sensors 81 to S3 are installed at appropriate positions, but in the following description,
For convenience, the case where each sensor is one will be described.
第1図は上述の各センサー81〜S3によって検出され
た信号の処理・表示回路の一実施例を示すもので、軸受
油膜厚さ検出センサーS1によって検出された油膜厚さ
信号20は軸受油膜厚さ用比較器30へ入力されて設定
値と比較され設定値よりも小さい場合には軸受油膜厚さ
異常信号23を出力する。FIG. 1 shows an embodiment of the processing/display circuit for the signals detected by the above-mentioned sensors 81 to S3. The oil film thickness signal 20 detected by the bearing oil film thickness detection sensor S1 is The bearing oil film thickness abnormality signal 23 is input to the comparator 30 and compared with a set value, and if it is smaller than the set value, a bearing oil film thickness abnormality signal 23 is output.
軸受温度検出センサーS2によって検出された軸受温度
信号21は軸受温度用比較器31へ入力されて設定値と
比較され設定値よりも大きい場合には軸受温度異常信号
24を出力する。The bearing temperature signal 21 detected by the bearing temperature detection sensor S2 is input to the bearing temperature comparator 31 and compared with a set value, and if it is larger than the set value, a bearing temperature abnormality signal 24 is output.
軸振れ検出センサーS3によって検出された軸振れ信号
22は主軸軸振れ用比較器32へ入力されて設定値と比
較され設定値よりも大きい場合には主軸軸振れ異常信号
25を出力する。The shaft runout signal 22 detected by the shaft runout detection sensor S3 is input to the spindle runout comparator 32 and compared with a set value, and if larger than the set value, a spindle runout abnormal signal 25 is output.
これらの異常信号23.24.25は警報回路40へ入
力され、警報回路40は入力を論理演算し、水力機械の
主軸が異常でおるという論理演算結果が出れば、水力殿
械の主軸異常警報信号50が警報器60へ向けて出力さ
れると同時に異常表示器70へ向けて出力される。異常
表示器70には比較器30.31.32からの異常信号
23.24.25も入力され、異常状態および異常箇所
を表示する。These abnormality signals 23, 24, and 25 are input to the alarm circuit 40, and the alarm circuit 40 performs a logical operation on the input, and if a logical operation result that indicates that the main shaft of the hydraulic machine is abnormal is issued, an alarm for the main shaft abnormality of the hydraulic machine is issued. The signal 50 is output toward the alarm device 60 and simultaneously output toward the abnormality indicator 70. The abnormality signal 23.24.25 from the comparator 30.31.32 is also input to the abnormality indicator 70, and the abnormal state and abnormal location are displayed.
上述の警報回路40は第3図に示すようにNOT回路4
0aとAND回路40bから構成されている。The above-mentioned alarm circuit 40 includes a NOT circuit 4 as shown in FIG.
0a and an AND circuit 40b.
NOT回路40aは軸受油膜厚さ異常信号23が入力さ
れていると正常信号26を出力しない。また、AND回
路40bは異常信号23.24および前記NOT回路4
0aの正常信号26がすべて入力されると、水力機械の
主軸異常警報信@50を出力する。The NOT circuit 40a does not output the normal signal 26 if the bearing oil film thickness abnormal signal 23 is input. Further, the AND circuit 40b outputs the abnormal signal 23.24 and the NOT circuit 4.
When all the normal signals 26 of 0a are input, a hydraulic machine main shaft abnormality alarm signal @50 is output.
第4図は第1図に示す回路に周波数分析装置80と記録
装置90を付加した実施例を示す。FIG. 4 shows an embodiment in which a frequency analyzer 80 and a recording device 90 are added to the circuit shown in FIG.
この例では、主軸軸振れ検出センサーS3からの軸振れ
信号22は周波数分析装置80に入力されて、周波数分
析され、水力機械の回転速度に同期した軸振れ回転同期
周波数信号27となって比較器32に入力される。この
場合、前記比較器32の設定値は回転同期周波数におけ
る信号用の値に変更されている。In this example, the shaft runout signal 22 from the main shaft shaft runout detection sensor S3 is input to the frequency analyzer 80, where it is frequency analyzed and becomes a shaft runout rotation synchronous frequency signal 27 synchronized with the rotation speed of the hydraulic machine. 32. In this case, the set value of the comparator 32 is changed to a value for a signal at the rotation synchronous frequency.
また、記録装@90には、軸受油膜厚さ検出センサーS
1、軸受温度検出センサーS2、軸振れ検出センサーS
3からの油膜厚さ信号20.軸受温度信号21、軸振れ
信号22、周波数分析装置80からの軸]辰れ回転同期
周波数信号27および比較器30〜32からの異常信号
23〜25が常時入力され記録される。In addition, the recording device @90 includes a bearing oil film thickness detection sensor S.
1. Bearing temperature detection sensor S2, shaft runout detection sensor S
Oil film thickness signal from 3.20. The bearing temperature signal 21, the shaft runout signal 22, the shaft tilt rotation synchronization frequency signal 27 from the frequency analyzer 80, and the abnormal signals 23 to 25 from the comparators 30 to 32 are constantly input and recorded.
第4図中、その他の回路構成と作動は第2図におけると
同様である。The other circuit configuration and operation in FIG. 4 are the same as in FIG. 2.
次に、上述のように構成した本発明装置の作用を説明す
る。Next, the operation of the apparatus of the present invention configured as described above will be explained.
主軸の変形、建屋のずれ、アライメント不良、センター
リング不良、軸受ピボットのへたり、カップリングボル
トのゆるみ、等の原因によって水力機械の軸系に異常を
生じた場合には水力機械の軸振れ異常および軸受温度異
常となって現われる為、水力機械の軸振れおよび軸受メ
タルの温度を監視する事により、上記水力機械の主系異
常を検出することが可能である。しかしながら水力機械
の主軸の変形異常の場合も軸芯ずれ異常の場合も、また
主軸受装置異常の場合も共に水力機械の軸振れ異常およ
び軸受温度異常を生じる為、水力機械の軸振れおよび軸
受メタルの温度を監視するだけでは、水力機械の主軸の
変形異常か軸芯ずれ異常または主軸受装置異常か判別す
ることができない。If an abnormality occurs in the shaft system of the hydraulic machine due to causes such as deformation of the main shaft, misalignment of the building, poor alignment, poor centering, wear of the bearing pivot, or loosening of the coupling bolt, the shaft runout of the hydraulic machine will occur. This appears as an abnormality in bearing temperature. Therefore, by monitoring the shaft runout of the hydraulic machine and the temperature of the bearing metal, it is possible to detect an abnormality in the main system of the hydraulic machine. However, abnormal deformation of the main shaft of a hydraulic machine, abnormal axis misalignment, and abnormality of the main bearing device both cause abnormal shaft runout and abnormal bearing temperature of the hydraulic machine. It is not possible to determine whether there is an abnormality in deformation, misalignment, or main bearing device of the hydraulic machine's main shaft by simply monitoring the temperature of the hydraulic machine.
ところが、主軸受装置が正常でおりかつ軸芯ずれも無く
、水力機械の主軸変形のみを生じた場合は、水力機械の
軸振れおよび主軸受温度には異常を生じるが軸受を支点
として撮れまわる為、主軸受の軸受油膜厚さには異常を
生じない。However, if the main bearing device is normal and there is no axis misalignment, and only the main shaft deformation of the hydraulic machine occurs, the shaft runout of the hydraulic machine and the main bearing temperature will be abnormal, but it will be possible to take pictures using the bearing as the fulcrum. , there is no abnormality in the thickness of the bearing oil film on the main bearing.
従って、水力機械の軸振れ、主軸受メタルの温度および
軸受油膜厚さを監視することによって水力機械の主軸の
変形異常を重大事故に至る前に検出することが可能であ
る。Therefore, by monitoring the shaft runout of the hydraulic machine, the temperature of the main bearing metal, and the thickness of the bearing oil film, it is possible to detect abnormal deformation of the main shaft of the hydraulic machine before it leads to a serious accident.
そこで本発明においては第1図に示したように軸受油膜
厚さ検出センサー$1からの油膜厚ざ信号20、軸受温
度検出センサーS2から軸受温度信号21、軸振れ検出
センサーS3からの軸振れ信号22を各々比較器30.
31.32へ入力し、設定値以上の入力があった場合に
軸受油膜厚さ異常信@23、軸受温度異常信号24、主
軸軸振れ異常信号25を出力するようにしている。Therefore, in the present invention, as shown in FIG. 1, the oil film thickness signal 20 from the bearing oil film thickness detection sensor $1, the bearing temperature signal 21 from the bearing temperature detection sensor S2, and the shaft runout signal from the shaft runout detection sensor S3 are used. 22 and a comparator 30.
31 and 32, and when the input is greater than the set value, a bearing oil film thickness abnormality signal @23, a bearing temperature abnormality signal 24, and a spindle shaft runout abnormality signal 25 are output.
警報回路40は、軸受温度異常信号24、主軸軸振れ異
常信号25が同時に入力され、軸受油膜厚さ異常信@2
3が入力されていない状態であれば、水力機械の主軸に
変形を生じたことになる為、水力機械の主軸異常警報信
号50を警報器60へ出力し、重大事故へ波及する前に
必要な対策をとることができる。The alarm circuit 40 receives a bearing temperature abnormality signal 24 and a spindle shaft runout abnormality signal 25 simultaneously, and a bearing oil film thickness abnormality signal @2.
If 3 is not input, it means that the main shaft of the hydraulic machine has been deformed, so the main shaft abnormality alarm signal 50 of the hydraulic machine is output to the alarm 60, and necessary necessary warning signals are sent to the alarm 60 before it spreads to a serious accident. Measures can be taken.
以上のように、油膜厚さ信号20.軸受温度信号21、
軸振れ信号22を監視することによって水力機械の主軸
変形を検出できるが、第4図の構成によれば、さらに精
度良く異常を検出することができる。As described above, the oil film thickness signal 20. bearing temperature signal 21,
Deformation of the main shaft of a hydraulic machine can be detected by monitoring the shaft runout signal 22, but with the configuration shown in FIG. 4, abnormality can be detected with even greater accuracy.
すなわち、水力機械の主軸に変形異常があれば水力機械
の主軸の1回転毎にアンバランス力による軸振れを生じ
るので、この回転に周期した周波数成分に軸振れ信号2
2が顕著に現われる。In other words, if there is an abnormality in deformation of the main shaft of a hydraulic machine, shaft runout will occur due to unbalanced force every rotation of the main shaft of the hydraulic machine, so the shaft runout signal 2 will be generated in the frequency component periodic to this rotation.
2 appears prominently.
従って、周波数分析装置80によって、軸振れ検出セン
サーS3からの軸振れ信号22を分析し、軸振れ回転同
期周波数倍@27を出力させ、この信号を比較器32で
設定値と比較すれば、ノイズが減少し、異常の進行過程
での検出および監視を精度良〈実施できる。また、記録
装@90で各種信号20〜25、27のデータ記録を行
うことにより、水力機械の主軸の変形による損傷の波及
過程を確認することが可能となる上、各比較器30〜3
2の設定値を最適にし、ごく微小な異常を検出できるよ
うにしたり、簡単な構成の監視に改善する為のデータを
採取することもできる。Therefore, if the frequency analyzer 80 analyzes the shaft runout signal 22 from the shaft runout detection sensor S3, outputs the shaft runout rotation synchronization frequency multiplied by @27, and compares this signal with the set value in the comparator 32, noise can be detected. It is possible to detect and monitor the progress of abnormalities with high accuracy. In addition, by recording data of various signals 20 to 25 and 27 using the recording device @90, it becomes possible to check the propagation process of damage caused by deformation of the main shaft of the hydraulic machine, and each comparator 30 to 3
It is also possible to optimize the setting value of 2 to enable the detection of very small abnormalities, and to collect data to improve monitoring of simple configurations.
上述の実施例では水力は械の主軸軸振れ、軸受温度およ
び油膜厚さを監視することにより、水力機械の主軸の変
形異常の有無を水力機械を停止し、分解することなく常
時監視できる。また、軸系れの回転同期周波数成分を監
視するようにすれば、より精度の高い監視ができる。ざ
らに、記録装置により異常の進行過程を確認することに
より初期段階における異常検出も可能となる。In the above-described embodiment, by monitoring the main shaft runout, bearing temperature, and oil film thickness of the hydraulic machine, the presence or absence of abnormal deformation of the main shaft of the hydraulic machine can be constantly monitored without stopping or disassembling the machine. Furthermore, if the rotational synchronization frequency component of the shaft system is monitored, more accurate monitoring can be achieved. In general, by checking the progress of an abnormality using a recording device, it is possible to detect an abnormality at an early stage.
本発明は上記の実施例に限らず、第5図および第6図に
示す回路によっても実現できる。The present invention is not limited to the embodiments described above, but can also be realized by the circuits shown in FIGS. 5 and 6.
第5図において、T1〜Tnは第2図につき説明したI
NIJiれ検出センサーS3、U1〜Unは第1図につ
き説明した軸受油膜厚さ検出センサーS1および軸受温
度検出センサー82と同様の振動センサー、変位センサ
ーおよび温度センサーであり、これらは水力機械のガイ
ド軸受装置の所定箇所に複数個ずつ配置固定されている
。In FIG. 5, T1 to Tn are I explained with reference to FIG.
NIJi wear detection sensors S3, U1 to Un are vibration sensors, displacement sensors, and temperature sensors similar to the bearing oil film thickness detection sensor S1 and the bearing temperature detection sensor 82 explained with reference to FIG. A plurality of them are arranged and fixed at predetermined locations on the device.
これらの(辰動センサーT1〜Tnの出力はFFT分析
装置等から成る周波数分析装置80に入力され、水力機
械の主軸の回転同期周波数成分、即ち、毎分N回転の場
合にはN/60ヘルツ成分に周波数分析される。The outputs of these (dynamic sensors T1 to Tn) are input to a frequency analyzer 80 consisting of an FFT analyzer, etc., and are used to calculate the rotation synchronous frequency component of the main shaft of the hydraulic machine, that is, N/60 Hz in the case of N rotations per minute. The frequency is analyzed into components.
変位センサーと温度センサーからの信号および前記周波
数分析装置によって周波数分析された信号は判断回路1
00に入力されると共に記録装置90へ送られる。判断
回路100には異常と判定すべき軸受油膜厚ざ、軸受温
度および軸振れの回転同期周波数成分が夫々設定されて
おり、各センサーU1〜Llnおよび周波数分析装置8
0からの検出値との比較判別を行う。The signals from the displacement sensor and the temperature sensor and the signal frequency-analyzed by the frequency analyzer are sent to a judgment circuit 1.
00 and is also sent to the recording device 90. The determination circuit 100 is set with the bearing oil film thickness, bearing temperature, and rotational synchronization frequency component of shaft runout that should be determined to be abnormal, and each sensor U1 to Lln and the frequency analyzer 8
A comparison is made with the detected value starting from 0.
この検出値が設定値を越えた場合には検出値信号は組合
せパターン作成回路110へ送られると共に、異常判別
された信号の検出部に対応する検出部異常表示器1゛2
0に伝達され、「軸受最小油膜厚ざ」、「水力機械軸振
れ過大」、「軸受装置温度過大」等の表示が出される。If this detected value exceeds the set value, the detected value signal is sent to the combination pattern creation circuit 110, and the detection unit abnormality indicator 1-2 corresponding to the detection unit of the signal determined to be abnormal.
0, and displays such as "minimum bearing oil film thickness,""excessive hydraulic machine shaft runout," and "excessive bearing device temperature."
第6図は組合せパターン作成回路110の構成例を示す
もので、図中X1は軸振れ検出センサーS3からの信号
が異常か正常かを判別する判別回路100との取合い接
点を示し、×2は軸受温度検出センサーS2からの信号
が異常か正常かを判別する判別回路100との取合い接
点を示し、また×3は軸受油膜厚さ検出センサー$1か
らの信号が異常か正常かを判別する判別回路100との
取合い接点を示す。FIG. 6 shows an example of the configuration of the combination pattern creation circuit 110. In the figure, X1 indicates the connection point with the discrimination circuit 100 that discriminates whether the signal from the shaft runout detection sensor S3 is abnormal or normal, and x2 indicates the connection point. The connection point with the discrimination circuit 100 which discriminates whether the signal from the bearing temperature detection sensor S2 is abnormal or normal, and x3 indicates the discrimination which discriminates whether the signal from the bearing oil film thickness detection sensor $1 is abnormal or normal. The mating contacts with the circuit 100 are shown.
前記取合い接点×3の信号はNOT回路40Cへ入力さ
れ、また、取合い接点X1.X2の信号およびNOT回
路40Gの出力信号はAND回路40dへ入力され、A
ND回路40dの出力信号は出力接点Yより出力される
。The signals of the connecting contacts x3 are input to the NOT circuit 40C, and the signals of the connecting contacts X1. The signal of X2 and the output signal of NOT circuit 40G are input to AND circuit 40d, and A
The output signal of the ND circuit 40d is output from the output contact Y.
従って、出力接点Yに信号が出力されるのは、水力機械
の軸振れの回転同期周波数成分が設定値を越え、軸受装
置温度が設定値を越え、かつ軸受油膜厚さが平均値の場
合でおる。Therefore, a signal is output to output contact Y when the rotation synchronous frequency component of the shaft runout of the hydraulic machine exceeds the set value, the bearing device temperature exceeds the set value, and the bearing oil film thickness is the average value. is.
前記出力接点Yに出力が生ずると、この信号は第5図に
示すようにブザー等から成る警報器60に導かれてこれ
を作動させると共に、異常表示器70に導かれて異常の
発生を表示する。また、記録装置90は前記変位センサ
ー、温度センサーU1〜Unからの信号と前記周波数分
析装置8oがらの信号および組合せパターン作成回路1
10の出力接点Yからの信号を時間の経過と共に記録す
る。When an output is generated at the output contact Y, this signal is guided to an alarm device 60 consisting of a buzzer or the like to activate it, as shown in FIG. 5, and is also guided to an abnormality indicator 70 to indicate the occurrence of an abnormality. do. The recording device 90 also includes signals from the displacement sensors and temperature sensors U1 to Un, signals from the frequency analysis device 8o, and a combination pattern creation circuit 1.
The signals from the 10 output contacts Y are recorded over time.
この実施例においては第4図につき説明した同様の効果
が得られる上、異常の発生箇所を検出部異常表示器12
0によって容易に知ることができる。In this embodiment, the same effect as explained with reference to FIG.
It can be easily determined by 0.
また、周波数分析装置はFFT分析装置に限らず、所定
の範囲の周波数帯域を通過させるバンドパスフィルタや
くし形フィルタで構成してもよい。Furthermore, the frequency analysis device is not limited to the FFT analysis device, but may be configured with a bandpass filter or a comb filter that passes a frequency band within a predetermined range.
上述の周波数分析装置、比較器、警報回路、判別回路、
組合せパターン作成回路等の回路をソフトウェアにより
実現しても同様の効果をあげることができる。The above-mentioned frequency analyzer, comparator, alarm circuit, discrimination circuit,
Similar effects can be achieved by implementing a circuit such as a combination pattern creation circuit using software.
本発明によれば、次のような効果が得られる。 According to the present invention, the following effects can be obtained.
■ 水力機械の主軸の変形を常時監視でき、信頼性が向
上する。■ The deformation of the main shaft of hydraulic machinery can be constantly monitored, improving reliability.
■ 従来のように水力機械の回転部を点検する為に運転
を停止し、分解する必要がない。■ There is no need to stop operation and disassemble the rotating parts of hydraulic machinery to inspect them, unlike conventional methods.
(3)水力機械の回転部点検に要する経費、期間、作業
の大幅な削減が可能となる。(3) It is possible to significantly reduce the cost, time, and work required to inspect the rotating parts of hydraulic machinery.
(イ)水力機械の主軸の変形異常を初期段階で検出する
ことが可能゛であり、重大事故への波及を防止できる。(b) It is possible to detect abnormal deformation of the main shaft of hydraulic machinery at an early stage, and prevent it from spreading into a serious accident.
第1図は本発明における電気回路を例示するブロック図
、第2図は本発明を適用した水力機械の実施例を示す縦
断面図、第3図は第1図における警報回路の具体例を示
すブロック図、第4図は本発明の変形例を示すブロック
図、第5図は本発明の他の実施例を示すブロック図、第
6図は第5図における組合せパターン作成回路の具体例
を示すブロック図である。
1・・・上カバー 2・・・下カバー3・・
・ランナ 4・・・主軸5・・・ドラフト
チューブ 6・・・主軸スカート7・・・軸受メタル
8・・・軸受油槽20・・・油膜厚さ信号
21・・・軸受温度信号22・・・軸振れ信号
23・・・軸受油膜厚さ異常信号
24・・・軸受温度異常信号 25・・・主軸軸振れ
異常26・・・正常信号
27・・・軸振れ回転同期周波数信号
30〜32・・・比較器 40・・・警報回路
40a−N OT回路 40b−AND回路40
C・・・NOT回路 40d・・・AND回路5
0・・・主軸異常警報信号 60・・・警報器70・
・・異常表示器 80・・・周波数分析装置9
0・・・記録装置 100・・・判別回路1
10・・・組合せパターン作成回路
120・・・検出部異常表示器
Sl・・・軸受油膜厚さ検出センサー
S2・・・軸受温度検出センサー
S3・・・軸系れ検出センサー
T1〜Tn・・・振動センサー
U1〜Un・・・変位センサーまたは温度センサー×1
〜X3・・・取合い接点
Y・・・出力接点
代理人 弁理士 則 近 憲 佑
同 三俣弘文
第1図
第2図
第3図FIG. 1 is a block diagram illustrating an electric circuit according to the present invention, FIG. 2 is a longitudinal sectional view illustrating an embodiment of a hydraulic machine to which the present invention is applied, and FIG. 3 is a specific example of the alarm circuit in FIG. 1. 4 is a block diagram showing a modification of the present invention, FIG. 5 is a block diagram showing another embodiment of the invention, and FIG. 6 is a specific example of the combination pattern creation circuit in FIG. 5. It is a block diagram. 1...Top cover 2...Bottom cover 3...
・Runner 4...Main shaft 5...Draft tube 6...Main shaft skirt 7...Bearing metal 8...Bearing oil tank 20...Oil film thickness signal
21...Bearing temperature signal 22...Shaft runout signal 23...Bearing oil film thickness abnormality signal 24...Bearing temperature abnormality signal 25...Spindle shaft runout abnormality 26...Normal signal 27... Shaft runout rotation synchronous frequency signal 30-32...Comparator 40...Alarm circuit 40a-NOT circuit 40b-AND circuit 40
C...NOT circuit 40d...AND circuit 5
0...Spindle abnormality alarm signal 60...Alarm 70.
... Abnormality indicator 80 ... Frequency analyzer 9
0...Recording device 100...Discrimination circuit 1
10...Combination pattern creation circuit 120...Detection unit abnormality indicator Sl...Bearing oil film thickness detection sensor S2...Bearing temperature detection sensor S3...Shaft system deviation detection sensor T1-Tn... Vibration sensor U1~Un...Displacement sensor or temperature sensor x 1
~X3...Connection contact Y...Output contact agent Patent attorney Nori Chika Ken Yudo Hirofumi MitsumataFigure 1 Figure 2 Figure 3
Claims (6)
プ水車と発電機又は発電々動機とが配置され、回転軸に
設けられた主軸スカートと、相対的に配置された軸受メ
タルと、潤滑流体が内部に充填され前記主軸スカートお
よび軸受メタルを収納した軸受油槽とからなる主軸受装
置に支承された水力機械において、前記主軸メタルに設
けられ軸受温度を検出するセンサーと、軸受油膜厚さを
検出するセンサーと、前記油槽近くに回転軸の軸振れを
検出するセンサーとを備え、これ等検出センサーからの
電気出力信号を予め定めた設定値と比較し、前記出力信
号のいずれかが前記設定値を越えた場合に警報回路を作
動させると共に異常表示器に出力を伝達するよう構成し
たことを特徴とする水力機械の主軸変形自動監視装置。(1) A water wheel or a pump water wheel and a generator or a power generator are arranged on one shaft, directly connected by a flange, etc., and the main shaft skirt provided on the rotating shaft, the bearing metal arranged relatively, and the lubrication In a hydraulic machine supported by a main bearing device that is filled with fluid and is composed of a main shaft skirt and a bearing oil tank that houses a bearing metal, a sensor provided on the main shaft metal detects the bearing temperature, and a sensor that detects the bearing oil film thickness is provided. and a sensor for detecting shaft runout of the rotating shaft near the oil tank, the electrical output signals from these detection sensors are compared with a predetermined setting value, and one of the output signals is determined as the setting value. An automatic main shaft deformation monitoring device for a hydraulic machine, characterized in that it is configured to activate an alarm circuit and transmit an output to an abnormality indicator when a value exceeds a value.
び軸受油膜厚さ検出センサーの出力信号が比較器におい
て設定値と比較され、各比較器の出力が異常表示器に入
力されると共に、警報回路を通して警報器に入力される
ことを特徴とする特許請求の範囲第1項記載の水力機械
の主軸変形自動監視装置。(2) The output signals of the shaft runout detection sensor, bearing temperature detection sensor, and bearing oil film thickness detection sensor are compared with the set value in the comparator, and the output of each comparator is input to the abnormality indicator and passed through the alarm circuit. 2. The automatic main shaft deformation monitoring device for a hydraulic machine according to claim 1, wherein the information is input to an alarm.
る主軸受温度検出センサーの出力に基づく比較器からの
信号と主軸の軸振れを検出する主軸軸振れ検出センサー
の出力に基づく比較器からの信号を入力して、尚、主軸
受装置の軸受油膜厚さを検出する軸受油膜厚さ検出セン
サーの出力に基づく比較器からの異常信号を入力しなか
つた場合に出力を生じるAND回路で構成されているこ
とを特徴とする特許請求の範囲第2項記載の水力機械の
主軸変形自動監視装置。(3) The alarm circuit receives a signal from a comparator based on the output of the main bearing temperature detection sensor that detects the bearing metal temperature of the main bearing device and a signal from a comparator based on the output of the main shaft runout detection sensor that detects the shaft runout of the main shaft. It is composed of an AND circuit that produces an output when the signal is input and an abnormal signal from the comparator based on the output of the bearing oil film thickness detection sensor that detects the bearing oil film thickness of the main bearing device is not input. An automatic main shaft deformation monitoring device for a hydraulic machine according to claim 2, characterized in that:
からの出力が周波数分析装置に入力され、水力機械の同
期した回転同期周波数成分が取出されて比較器に入力さ
れるよう構成した特許請求の範囲第3項記載の水力機械
の主軸変形自動監視装置。(4) A patent claim configured such that the output from a spindle runout detection sensor that detects spindle runout is input to a frequency analyzer, and a synchronized rotational synchronous frequency component of the hydraulic machine is extracted and input to a comparator. Scope: Automatic main shaft deformation monitoring device for hydraulic machinery according to item 3.
器からの出力信号が記録装置に入力され、経時的に記録
されるよう構成した特許請求の範囲第4項記載の水力機
械の主軸変形自動監視装置。(5) Automatic monitoring of main shaft deformation of a hydraulic machine according to claim 4, wherein the output signals from each of the sensors, the frequency analyzer, and the comparator are input to a recording device and recorded over time. Device.
プ水車と発電機又は発電々動機とが配置され、回転軸に
設けられた主軸スカートと、相対的に配置された軸受メ
タルと、潤滑流体が内部に充填され前記主軸スカートお
よび軸受メタルを収納した軸受油槽とからなる主軸受装
置に支承された水力機械において、前記主軸メタルに設
けられ軸受温度を検出するセンサーと、軸受油膜厚さを
検出するセンサーと、前記油槽近くに回転軸の軸振れを
検出するセンサーと、主軸の軸振れを検出する主軸軸振
れ検出センサーの出力を入力する周波数分析装置と、前
記軸受温度を検出するセンサーおよび前記軸受油膜厚さ
を検出するセンサーの出力と前記周波数分析装置の出力
を入力し、これらの入力信号が設定値を越えている場合
に出力を生ずる判別回路と、この判別回路の出力に基づ
いて組合せパターンを作成する組合せパターン作成回路
と、この組合せパターン作成回路の出力によつて作動す
る警報器、異常表示器、記録装置と、前記判別回路の出
力信号を入力する検出部異常表示器とを具備することを
特徴とする水力機械の主軸変形自動監視装置。(6) A water wheel or a pump water wheel and a generator or a power generator are arranged on one shaft, directly connected by a flange, etc., and the main shaft skirt provided on the rotating shaft, the bearing metal arranged relatively, and the lubrication In a hydraulic machine supported by a main bearing device that is filled with fluid and is composed of a main shaft skirt and a bearing oil tank that houses a bearing metal, a sensor provided on the main shaft metal detects the bearing temperature, and a sensor that detects the bearing oil film thickness is provided. a sensor for detecting the shaft runout of the rotating shaft near the oil tank; a frequency analyzer for inputting the output of the main shaft shaft runout detection sensor for detecting the shaft runout of the main shaft; a sensor for detecting the bearing temperature; a discrimination circuit which inputs the output of the sensor for detecting the bearing oil film thickness and the output of the frequency analyzer and generates an output when these input signals exceed a set value; and a discrimination circuit based on the output of this discrimination circuit. A combination pattern creation circuit that creates a combination pattern, an alarm, an abnormality indicator, and a recording device that are activated by the output of the combination pattern creation circuit, and a detection unit abnormality indicator that inputs the output signal of the discrimination circuit. What is claimed is: 1. An automatic main shaft deformation monitoring device for a hydraulic machine, characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61255806A JPS63111599A (en) | 1986-10-29 | 1986-10-29 | Automatic spindle deformation monitor for hydraulic machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61255806A JPS63111599A (en) | 1986-10-29 | 1986-10-29 | Automatic spindle deformation monitor for hydraulic machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63111599A true JPS63111599A (en) | 1988-05-16 |
Family
ID=17283886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61255806A Pending JPS63111599A (en) | 1986-10-29 | 1986-10-29 | Automatic spindle deformation monitor for hydraulic machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63111599A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019124222A1 (en) * | 2017-12-20 | 2019-06-27 | ダイキン工業株式会社 | Fluid apparatus |
-
1986
- 1986-10-29 JP JP61255806A patent/JPS63111599A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019124222A1 (en) * | 2017-12-20 | 2019-06-27 | ダイキン工業株式会社 | Fluid apparatus |
JP2019115086A (en) * | 2017-12-20 | 2019-07-11 | ダイキン工業株式会社 | Fluid device |
CN111492138A (en) * | 2017-12-20 | 2020-08-04 | 大金工业株式会社 | Fluid device |
US11502630B2 (en) | 2017-12-20 | 2022-11-15 | Daikin Industries, Ltd. | Fluid apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112161806B (en) | Fault monitoring method and fault monitoring device for fan | |
JPS6293620A (en) | Diagnostic device for rotary machine | |
JPH0579903A (en) | Abnormality diagnostic method and device for rotating machine | |
JPS63111599A (en) | Automatic spindle deformation monitor for hydraulic machine | |
JPS58143222A (en) | Method and apparatus for diagnosing rotary machine | |
JP3676273B2 (en) | Turbine vibration monitoring device | |
JP3103193B2 (en) | Diagnostic equipment for rotating machinery | |
JPS6243538A (en) | Abnormality monitor for rotating part of rotary machine | |
JPS588823A (en) | Diagnosis method for abnormality in bearing | |
JP3256324B2 (en) | Rotary machine abnormality diagnosis method and apparatus | |
JPH02232529A (en) | Method and apparatus for diagnosing vibration of rotary machine | |
JPH05118298A (en) | Vertical shaft submergible motor type pump | |
JP3670468B2 (en) | Local oil flushing method for rotating electrical machines | |
JPH05225474A (en) | Method and device for abnormality diagnosis of plant apparatus | |
JPS61169677A (en) | Automatic monitor for runner in hydraulic machine | |
JPS6023622A (en) | Observing device of thrust bearing | |
JPH0666241A (en) | Soundeness diagnostic unit for rotary machine | |
JPS6135410B2 (en) | ||
JPS61157821A (en) | Automatic supervising device of thrust bearing device | |
CN210769368U (en) | Online vibration monitoring and controlling system for main circulating pump of converter station | |
JPS62100149A (en) | Automatic monitor device for rotational section of revolving electric machine | |
JPH01261511A (en) | Automatic surveillange device and surveillance method for thrust bearing unit | |
JPS61215459A (en) | Shaft shift monitoring device for hydraulic machine | |
JPS61229975A (en) | Device for monitoring abnormality of runner cone in hydraulic machinery | |
JPH0650108B2 (en) | Hydropower plant automatic monitoring device |