JPS6310119B2 - - Google Patents
Info
- Publication number
- JPS6310119B2 JPS6310119B2 JP54059900A JP5990079A JPS6310119B2 JP S6310119 B2 JPS6310119 B2 JP S6310119B2 JP 54059900 A JP54059900 A JP 54059900A JP 5990079 A JP5990079 A JP 5990079A JP S6310119 B2 JPS6310119 B2 JP S6310119B2
- Authority
- JP
- Japan
- Prior art keywords
- boron nitride
- powder
- cubic boron
- cemented carbide
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000843 powder Substances 0.000 claims description 42
- 229910052582 BN Inorganic materials 0.000 claims description 15
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 239000011230 binding agent Substances 0.000 claims description 12
- 239000013078 crystal Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 8
- 238000005299 abrasion Methods 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 238000010298 pulverizing process Methods 0.000 claims description 5
- 238000000465 moulding Methods 0.000 claims description 4
- 238000007872 degassing Methods 0.000 claims description 3
- 238000007731 hot pressing Methods 0.000 claims description 3
- 238000005459 micromachining Methods 0.000 claims 5
- 238000010306 acid treatment Methods 0.000 claims 2
- 238000010438 heat treatment Methods 0.000 claims 1
- 238000005520 cutting process Methods 0.000 description 37
- 239000002245 particle Substances 0.000 description 26
- 239000000203 mixture Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000005245 sintering Methods 0.000 description 6
- 238000001000 micrograph Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000007790 scraping Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910000997 High-speed steel Inorganic materials 0.000 description 2
- 229910009043 WC-Co Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910000915 Free machining steel Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000010730 cutting oil Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- -1 iron group metals Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 102200082816 rs34868397 Human genes 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】
立方晶型窒化硼素(CBN)はダイヤモンドに
次いで硬く、熱伝導率も大で、且つ高温での化学
的安定性にも優れているため、金属加工用耐摩物
質として注目され研削用砥粒や切削工具として使
用されている。[Detailed description of the invention] Cubic boron nitride (CBN) is second in hardness to diamond, has high thermal conductivity, and has excellent chemical stability at high temperatures, so it is attracting attention as a wear-resistant material for metal processing. It is used as grinding abrasive grains and cutting tools.
発明者らもこのCBNに注目し、各種のCBN焼
結体を試作研究した結果、このCBNの優れた特
徴を最大限に発揮し得る工具用焼結体を発明し特
許出願した。(特開昭53−77811)
この発明は周期律表4a、5a、6a族遷移金属の
炭化物、窒化物、硼化物、珪化物もしくはこれの
相互固溶体化合物が連続相をなしてCBN結晶を
結合しているというものであり、耐熱性、耐摩耗
性に富むと共に高温でも高い熱伝導率を維持し、
特に熱衝撃特性に富む高硬度工具用焼結体を提供
したものである。 The inventors also paid attention to this CBN, and as a result of prototyping and researching various CBN sintered bodies, they invented a sintered body for tools that can maximize the excellent characteristics of CBN, and filed a patent application. (Japanese Patent Application Laid-Open No. 53-77811) This invention combines CBN crystals by forming a continuous phase of carbides, nitrides, borides, silicides, or mutual solid solution compounds of transition metals of groups 4a, 5a, and 6a of the periodic table. It has excellent heat resistance and abrasion resistance, and maintains high thermal conductivity even at high temperatures.
The present invention provides a sintered body for use in high-hardness tools that has particularly excellent thermal shock properties.
発明者らは更にこれらの焼結体を用いて各種の
切削試験を行つたところ、CBNは高速度鋼が用
いられるような低速切削に於ても、その優れた耐
溶着性の故に極めて秀でた物質であることを発見
した。 The inventors further conducted various cutting tests using these sintered bodies, and found that CBN is extremely effective even in low-speed cutting, where high-speed steel is used, due to its excellent welding resistance. discovered that it is a substance that
そこで、高速度鋼や炭化タングステンを微粒に
した超微粒超硬合金が使用されている小物精密部
品の、いわゆる自動盤作業に前記発明焼結体の一
種である窒化チタンを結合材にしたCBN焼結体
をテストしたところ、耐溶着性が優れることから
光沢のある美しい仕上面が得られたが、一方、寸
法精度があまり良くないとか、面と面とのつなぎ
目でR形状なつてはいけない部分がR形状になつ
てしまうといつたことが原因で、通常使用工具に
比して特に優れた性能を示すには至らなかつた。 Therefore, CBN sintering using titanium nitride, a type of the invented sintered body, as a binder is used for so-called automatic lathe work of small precision parts that use high-speed steel or ultrafine-grained cemented carbide made of fine tungsten carbide. When we tested the structure, we found that it had excellent welding resistance, resulting in a beautiful glossy finished surface, but on the other hand, the dimensional accuracy was not very good, and there were some areas where the R shape should not be formed at the joints between the surfaces. Because it was said that the tool had an R shape, it did not show particularly superior performance compared to normally used tools.
この原因を明らかにするため種々の調査を行つ
た結果、このような用途で使用される工具に特に
必要な特性である刃立性(鋭い切刃が得られるこ
と)に難点があることがわかつた。即ち第1図、
第2図にそれぞれ超微粒超硬合金と前記テスト
CBN焼結体の研削仕上げされた切刃を拡大して
観察した結果を示すが、テスト焼結体は明らかに
刃こぼれが多く超微粒超硬合金とは差がある。従
つて前記の寸法精度などの問題点は、この刃立性
に原因があると思われた。 As a result of conducting various investigations to clarify the cause of this, it was discovered that there was a problem with sharpness (obtaining a sharp cutting edge), which is a particularly necessary characteristic for tools used in such applications. Ta. That is, Figure 1,
Figure 2 shows ultrafine cemented carbide and the above test.
The results of an enlarged observation of the ground cutting edge of a CBN sintered body are shown, and it is clear that the test sintered body has a lot of edge loss and is different from ultrafine-grained cemented carbide. Therefore, it was thought that the problems such as the above-mentioned dimensional accuracy were caused by this edge sharpness.
そこで、焼結体中のCBN粒子の粒度を極めて
微細にすることによつて、これらの問題点が克服
されると考え、このような焼結体を試作してみ
た。さてCBN焼結体の製造法として、例えば日
本特許公告昭52−43846号に示されているような
CBN粉末とCBN合成の触媒になるAlとCo、Ni、
Fe等を粉末で混合するか、あるいはこれら金属
板をCBN粉末と接する様に配置してCBNが安定
な高温、高圧条件下でホツトプレスする方法があ
る。 Therefore, we thought that these problems could be overcome by making the CBN particles in the sintered body extremely fine, so we tried making a prototype of such a sintered body. Now, as a method for manufacturing CBN sintered bodies, for example, there is a method as shown in Japanese Patent Publication No. 52-43846.
CBN powder and Al, Co, Ni, which become catalysts for CBN synthesis,
There is a method of mixing Fe etc. in powder form, or placing these metal plates in contact with CBN powder and hot pressing under high temperature and high pressure conditions where CBN is stable.
しかしこの方法では、これら金属の液相の存在
下で焼結を行うため、原料CBN粉末が1μ以下の
ものであると表面エネルギーが大であり、焼結中
にCBN粒子の粒成長が生じ、目的とした微粒の
焼結体が得られないことと、焼結体中のこれら金
属相は被削体との親和性が大で、CBNの耐溶着
性に優れるという特性を阻害するものであるので
好ましくない。 However, in this method, sintering is performed in the presence of a liquid phase of these metals, so if the raw CBN powder is less than 1 μm in size, the surface energy is large, and grain growth of CBN particles occurs during sintering. The desired fine-grained sintered body cannot be obtained, and these metal phases in the sintered body have a high affinity with the workpiece, which inhibits the excellent adhesion resistance of CBN. So I don't like it.
CBN焼結体を製造する他の方法として、先に
述べたが発明者らの出願による、セラミツク物質
よりなる粉末とCBN粉末を混合したものをCBN
が安定な高温、高圧中でホツトプレスする方法が
ある。 As another method for producing a CBN sintered body, as mentioned above, the CBN sintered body is prepared by mixing a powder made of a ceramic material and a CBN powder, which was applied by the inventors.
There is a method of hot pressing at high temperature and high pressure, which is stable.
この方法によれば、焼結体中のCBN粒子の粒
成長もおこらず、均一で微細な焼結体が得られる
上、結合材として用いたセラミツクも一般的に被
削材との親和性が乏しく、耐溶着性に優れた
CBNの特性を生かした焼結体となると考えられ
る。そこで実際に原料として粒度1μ以下のCBN
粒子と各種のセラミツク粉末を混合して高温、高
圧中で焼結したところ、殆んどの場合1μ以下の
CBN粒子が均一に分散した微細組織の緻密な焼
結体を得ることができた。得られた各種のセラミ
ツク結合の焼結体を用いて、あらためて前記した
自動盤作業によるテストを行つたところ、WCを
主成分とする炭化物もしくはこれに微量の鉄族金
属を含有する超硬合金を結合材とした場合に最も
優れた性能を示すことを発見した。結合材として
WCを用いたものが最も優れた性能を示した原因
は次のように考えられる。 According to this method, grain growth of CBN particles in the sintered body does not occur, and a uniform and fine sintered body can be obtained, and the ceramic used as a binder generally has a good affinity with the work material. Poor, excellent welding resistance
It is thought that this will be a sintered body that takes advantage of the characteristics of CBN. Therefore, CBN with a particle size of 1μ or less is actually used as a raw material.
When particles and various ceramic powders were mixed and sintered at high temperature and pressure, most of the particles were smaller than 1μ.
We were able to obtain a dense sintered body with a fine microstructure in which CBN particles were uniformly dispersed. Using the various ceramic-bonded sintered bodies obtained, we again conducted tests using the automatic lathe process described above, and found that carbide containing WC as a main component or cemented carbide containing trace amounts of iron group metals. It was discovered that it showed the best performance when used as a binder. as a binding material
The reason why the one using WC showed the best performance is thought to be as follows.
一般に小物部品の自動盤作業では、加工物が直
径数mm〜30mm程度のものであり、加工物の回転数
も機械的な制約があるため切削速度を自由に選定
することができず、多くの場合数10m/min以下
の低速で切削せざるを得ない。この為、切削時の
工具刃先の温度は低く、従つて工具の摩耗は機械
的なこすりとり作用によるものが主で、化学的な
反応によるものはごく僅かである。更にやはり機
械的な制約から、加工物1回転当りの工具送り量
も小さく、通常超硬工具による切削では0.1〜0.5
mm/revといつた送り量が一般的であるのに対し、
自動盤の場合は0.01mm/rev以下が普通である。
このような微少送りの場合にも機械的こすりとり
摩耗が主となることはよく知られている。これら
のことから、自動盤作業の如き用途に使用される
工具材としては化学的な安定性よりもむしろ、硬
度が高く且つ強度、靭性の優れた物質が適してい
ると云える。WCは種々のセラミツク材料の中で
硬度も高く、且つ強度、靭性の優れた材料として
よく知られており、このような理由でWCを結合
材としたものが優れた性能を示したのであろう。 In general, in automatic lathe work for small parts, the workpiece is a few mm to 30mm in diameter, and there are mechanical restrictions on the rotation speed of the workpiece, so the cutting speed cannot be freely selected, and many In some cases, it is necessary to cut at a low speed of less than 10 m/min. For this reason, the temperature of the cutting edge of the tool during cutting is low, and therefore tool wear is mainly due to mechanical scraping action, with very little wear due to chemical reactions. Furthermore, due to mechanical constraints, the amount of tool feed per revolution of the workpiece is also small, typically 0.1 to 0.5 when cutting with a carbide tool.
While the feed rate is generally mm/rev,
For automatic lathes, 0.01mm/rev or less is normal.
It is well known that even in the case of such minute feed, mechanical scraping wear is the main cause. For these reasons, it can be said that materials with high hardness, excellent strength, and toughness, rather than chemical stability, are suitable for tool materials used in applications such as automatic lathe work. WC has the highest hardness among various ceramic materials, and is well known as a material with excellent strength and toughness, and this is probably why products using WC as a binder showed excellent performance. .
この他にCBNと複合焼結体を作る上で重要な
要素となる熱膨脹係数もWCは殆んどCBNに近い
値を有しており、焼結体中に不都合な内部残留応
力を残さない点でも結合材物質として好適であ
る。 In addition, the thermal expansion coefficient of WC, which is an important factor in making a composite sintered body with CBN, is almost close to that of CBN, and it does not leave any undesirable internal residual stress in the sintered body. However, it is suitable as a binder material.
WC以外にこれに類した特性を有するものとし
てWの一部または大部分をMoで置換して得られ
るWCと同一結晶構造を有する(MoW)Cがあ
る。発明者等の一人は別の研究者と共にこの化合
物を使用した超硬合金について詳細な特性の研究
を行い、例えば(Mo7W3)Cや(Mo5W5)Cで
表わされる炭化物の硬度、剛性率、耐摩耗性、熱
伝導率、熱膨脹係数等の特性がWCと殆んど類似
していることを確認した。以下の説明ではWCに
限つて述べるが、本発明ではWCと全く同様にこ
の(MoW)C炭化物を用いることができる。 In addition to WC, there is C (MoW), which has the same crystal structure as WC and is obtained by replacing part or most of W with Mo. One of the inventors, along with another researcher, conducted detailed research on the properties of cemented carbide using this compound, and found that, for example, the hardness of carbides expressed by (Mo 7 W 3 )C and (Mo 5 W 5 )C It was confirmed that properties such as rigidity, abrasion resistance, thermal conductivity, and thermal expansion coefficient are almost similar to WC. In the following explanation, only WC will be described, but in the present invention, this (MoW)C carbide can be used in the same way as WC.
本発明の工具用焼結体は1μ以下のCBN粒子が
1μ以下のWCを主成分とする炭化物で結合された
均一な組織を有する焼結体である。硬質成分であ
るCBN粒子が極めて微細で均一に分散している
為に研削してバイトに仕立てると、その刃先は極
めて鋭い凹凸のないものが得られる。このよう
に、研削による刃立性の良いものを得るためには
結合材中のWCも1μ以下のものとする必要があ
る。更にCBN及び結合材中のWCの粒度が0.5μ以
下としたものが最も好ましい。微細な組織とする
ことにより、刃先が改善されると共に、工具とし
て重要な靭性、強度が向上するという利点もあ
る。 The sintered body for tools of the present invention contains CBN particles of 1μ or less.
It is a sintered body with a uniform structure bonded by carbides mainly composed of WC of 1μ or less. The hard component, CBN particles, are extremely fine and uniformly dispersed, so when ground into a cutting tool, the cutting edge is extremely sharp and has no irregularities. In this way, in order to obtain good edge sharpness by grinding, the WC in the binder must also be 1μ or less. Furthermore, it is most preferable that the particle size of CBN and WC in the binder is 0.5μ or less. The fine structure not only improves the cutting edge but also has the advantage of improving toughness and strength, which are important for tools.
又、自動盤作業等に一般的な数10m/minとい
つた切削速度では切削中に刃先に構成刃先が発達
したり、溶着物が滞留するため被削面がむしれた
り、加工物の寸法精度が悪くなつたりするが、
CBNは被削材との親和性が少なく、耐溶着性に
優れているため寸法精度よく、且つ美麗な仕上面
が得られる。その上、結合材に強度が高く、靭性
のあるWCを用いているため、機械的こすりとり
摩耗に強く、且つ、鋭い刃先角度にしても欠損が
少ない強靭な焼結体となつている。 In addition, at cutting speeds of several tens of meters/min, which are common in automatic lathe work, a built-up cutting edge may develop on the cutting edge during cutting, the workpiece surface may be peeled off due to the accumulation of deposits, and the dimensional accuracy of the workpiece may deteriorate. may become worse,
CBN has a low affinity with the workpiece material and has excellent welding resistance, so it can achieve good dimensional accuracy and a beautiful finished surface. Furthermore, since WC, which has high strength and toughness, is used as the bonding material, it is resistant to mechanical scraping and wear, and is a strong sintered body with little breakage even when the cutting edge angle is sharp.
本発明の焼結体中のCBN含有量は容量で80〜
20%であり、用途に応じて変え得る。特に強靭性
が必要とされ、耐摩耗性を多少犠性にしてもよい
断続切削加工用の工具では結合材量の多い方を選
択する。CBN含有量が20%未満では本発明の焼
結体の如く超高圧装置を用いて製造する工具の価
格と寿命の点からメリツトは少ないようである。 The CBN content in the sintered body of the present invention is 80~80 in terms of capacity.
It is 20% and can be changed depending on the application. In particular, for tools for interrupted cutting that require toughness and may sacrifice wear resistance to some extent, a tool with a large amount of bonding material is selected. When the CBN content is less than 20%, there seems to be little advantage in terms of cost and life of tools manufactured using ultra-high pressure equipment, such as the sintered body of the present invention.
さて、本発明の組成の焼結体で何故1μ以下の
超微粒のCBN粒子からなる均一な組織を有し、
更には工具性能の優れた焼結体を得ることができ
たのかは次の如く推定される。 Now, why does the sintered body having the composition of the present invention have a uniform structure consisting of ultrafine CBN particles of 1μ or less?
Furthermore, whether a sintered body with excellent tool performance could be obtained is estimated as follows.
CBN粒子は極めて高硬度で変形し難い。従つ
て超高圧下で圧縮してもCBN粒子のみでは粒子
間に空隙が残る。CBN粒子が微粒である程空隙
率は増加するが、本発明の焼結体では前述した如
く、CBNの体積含有量で80〜20%であるため
CBN粒子間には必ず微粒なWCが存在し、これを
超高圧下で焼結することによつてWCが変形して
完全に緻密で均一な焼結体を得ることができるの
であろう。また、超高圧下においては物質の拡散
速度は常圧時のそれより低下すると共に、本発明
焼結体においてはCBN−CBNあるいはWC−WC
粒子同志の接触が少ないため、CBNやWCの粒成
長が抑制され1μ以下の微粒な焼結体を得ること
ができるものと考えられる。 CBN particles have extremely high hardness and are difficult to deform. Therefore, even if CBN particles are compressed under ultra-high pressure, voids remain between the particles. The finer the CBN particles, the higher the porosity, but in the sintered body of the present invention, as mentioned above, the CBN volume content is 80 to 20%.
There are always fine grains of WC between CBN particles, and by sintering these under ultra-high pressure, the WC deforms and a completely dense and uniform sintered body can be obtained. Furthermore, under ultra-high pressure, the diffusion rate of substances is lower than that under normal pressure, and in the sintered body of the present invention, CBN-CBN or WC-WC
It is thought that because there is little contact between particles, the grain growth of CBN and WC is suppressed, making it possible to obtain a fine-grained sintered body of 1 μm or less.
更には焼結体中においては、CBN−WC−Co
の界面では反応が生じWボライドが形成される
が、これらのボライドが生成するためCBN−WC
の界面での接着性が良好となりCBNは強固に結
合相であるWCに付着し、切削中におけるCBN粒
子の脱落が減少すると共に、CBNやWボライド
の耐摩耗性の良さとWCの靭性の高さの故、その
工具性能は非常に優れたものとなる。 Furthermore, in the sintered body, CBN−WC−Co
A reaction occurs at the interface of CBN-WC and W boride is formed.
CBN has good adhesion at the interface, and CBN firmly adheres to WC, which is the binder phase, reducing the chance of CBN particles falling off during cutting. Therefore, the tool performance is very excellent.
しかしWボライド相が厚くなり過ぎると、これ
らのボライドは脆いためボライド中にクラツクな
どが発生し、この点から破壊しCBN粒子が脱落
しやすくなり、工具性能は悪くなる。この点にお
いても超高圧焼結技術を用いれば前述した如く拡
散速度が低下し、Wボライドの形成が遅くなり、
最適なボライドの厚みを持つた焼結体を容易に得
ることができる。 However, if the W boride phase becomes too thick, these borides are brittle and cracks will occur in the boride, which will break at these points and CBN particles will easily fall off, resulting in poor tool performance. In this respect, if ultra-high pressure sintering technology is used, the diffusion rate will decrease as mentioned above, and the formation of W boride will be slowed down.
A sintered body with an optimum boride thickness can be easily obtained.
本発明の実施に当つてこのようなミクロン以下
のCBN結晶、WC結晶とから合金が構成される時
には、超硬合金製ボール及び超硬合金で内張りし
たポツトを用いて両者を湿式ボールミル混合する
ことが便利である。又湿式ボールミルとほゞ同じ
作用をするアトライターや振動ミルを用いても良
い。 In carrying out the present invention, when an alloy is composed of such sub-micron CBN crystals and WC crystals, they are mixed in a wet ball mill using a cemented carbide ball and a pot lined with cemented carbide. is convenient. Alternatively, an attritor or vibrating mill may be used, which has almost the same function as a wet ball mill.
CBNは硬いからボールや内張りからかなり多
量の摩耗粉が混入する。これをそのまゝ結合材成
分として利用すれば便利である。特にボールと内
張りを結合材を構成しようとする超硬合金と同じ
組成としておけばより便利である。 Since CBN is hard, a considerable amount of abrasion powder gets mixed in from the balls and lining. It is convenient to use this as it is as a binder component. In particular, it is more convenient if the ball and the inner lining have the same composition as the cemented carbide used to form the bonding material.
WCが主成分でなくても良いがWCのもつ強靭
性や熱伝導率が高いといつた優れた特性を利用す
るという立場からWCを用いることが最も好まし
い。 Although WC does not have to be the main component, it is most preferable to use WC from the standpoint of utilizing its excellent properties such as toughness and high thermal conductivity.
WCの一部を置換する他の炭化物としてTiC、
ZrC、HfC、TaC、NbC等が使用できる。 TiC as other carbide to replace part of WC,
ZrC, HfC, TaC, NbC, etc. can be used.
本発明の焼結体の原料CBN粉末として、粒度
1μ以上のものを前記した如く超硬合金製のボー
ル、ポツトを用いて粉砕して使用しても良い。 As the raw material CBN powder for the sintered body of the present invention, the particle size is
A material of 1 μm or more may be used by crushing it using a cemented carbide ball or pot as described above.
本発明の如く微細な1μ以下のCBN粉末とWC
を均一に混合することが必要な場合は、前述した
如くボールミルによる方法が最も適しているが、
この場合は超硬合金製のボール、ポツトを用いて
もその超硬合金に含まれる結合金属が混入するこ
とになる。この場合、結合金属の混入量が少ない
場合は問題ないが、多すぎると結合金属とCBN
が低温で反応して、結合金属をMとするとM−W
−B系のボライドを多量に生成するため、切削中
CBN粒子が脱落し工具性能は低下する。この混
入量が多い場合はCBNとWCの粉砕混合後、これ
を塩酸溶液中で金属成分を溶解除去することがで
きる。 Fine CBN powder of 1μ or less and WC as in the present invention
If it is necessary to mix the ingredients uniformly, the ball mill method is most suitable as mentioned above, but
In this case, even if a ball or pot made of cemented carbide is used, the bonding metal contained in the cemented carbide will be mixed in. In this case, there is no problem if the amount of the bonding metal mixed in is small, but if it is too much, the bonding metal and CBN
reacts at low temperature, and if the bonding metal is M, then M-W
-During cutting to generate a large amount of B-based boride.
CBN particles fall off and tool performance deteriorates. If the amount of this mixture is large, the metal components can be dissolved and removed in a hydrochloric acid solution after pulverizing and mixing CBN and WC.
本発明の使用原料粉末は極めて微細であるため
吸着ガス量が多い。従つて、通常300℃以上の温
度で真空中で加熱脱ガス后焼結する必要がある。
300℃未満の温度で脱ガスする場合は長時間を必
要とするため実際的でない。 Since the raw material powder used in the present invention is extremely fine, it has a large amount of adsorbed gas. Therefore, it is usually necessary to heat, degas, and sinter in a vacuum at a temperature of 300° C. or higher.
Degassing at temperatures below 300°C requires a long time and is therefore impractical.
以下実施例を述べる。 Examples will be described below.
実施例 1
粒度1μ以下の超微粒のCBNパウダーを用い、
WC−7%Co超硬合金製のボールと同一組成の超
硬合金で内張されたポツトを使用してアセトンを
溶媒にして粉砕した。CBNの投入量は5gであ
つたが100時間粉砕したところ重量は9.3gに増加
していた。この増加分がポツトとボールより混入
した超硬合金の微細な粉末である。これよりこの
粉末の組成を推定すると容量で70%のCBNを含
んでいる。この粉末を走査型電子顕微鏡を用いて
観察したところ、全部が1μ以下の極めて微細な
粉末からなることが判つた。この粉末を型押、成
型して厚さ1.5mm、外径10mmの円板とした。Example 1 Using ultrafine CBN powder with a particle size of 1μ or less,
Grinding was carried out using acetone as a solvent using a WC-7%Co cemented carbide ball and a pot lined with a cemented carbide having the same composition. The amount of CBN added was 5 g, but after pulverizing for 100 hours, the weight increased to 9.3 g. This increased amount is the fine cemented carbide powder mixed in from the pots and balls. From this, the composition of this powder is estimated to contain 70% CBN by volume. When this powder was observed using a scanning electron microscope, it was found that all of the powder consisted of extremely fine powder of 1 μm or less in size. This powder was stamped and molded into a disk with a thickness of 1.5 mm and an outer diameter of 10 mm.
これを真空炉中で1000℃まで加熱して脱ガスし
た。脱ガス后超高圧装置を用いて55kb、1370℃
で10分間保持して焼結した。 This was heated to 1000°C in a vacuum furnace to degas it. After degassing, use ultra-high pressure equipment to 55kb, 1370℃
It was held for 10 minutes and sintered.
得られた焼結体をダイヤモンドペーストを用い
て研磨して組織を調べたところ、0.5μ以下の
CBN粒子と0.5μ以下のWCからなる極めて微細な
粒子の焼結体であつた。また、この焼結体の組成
をX線で調べたところ、CBN−W.Coボライド−
WC−Coであつた。これを切断して1片を鋼製の
シヤンクにロウ付けし、刃先をダイヤモンド砥石
で研削した。刃先の拡大顕微鏡写真を第3図に示
す。比較のためWC基の超微粒超硬合金も同様の
形状にしてバイトを作成した。 When the obtained sintered body was polished with diamond paste and its structure was examined, it was found that
It was a sintered body of extremely fine particles consisting of CBN particles and WC of 0.5μ or less. In addition, when the composition of this sintered body was examined using X-rays, it was found that CBN-W.Co boride-
It was WC-Co. This was cut, one piece was brazed to a steel shank, and the cutting edge was ground with a diamond grindstone. Figure 3 shows an enlarged micrograph of the cutting edge. For comparison, a cutting tool was also created using a WC-based ultrafine-grained cemented carbide in the same shape.
これらのバイトにより鉛快削鋼を切削速度30
m/min、切込み0.3mm、送り0.02mm/revで、不
水溶性切削油を用いて切削テストした。その結
果、超微粒超硬合金では切削時間30分で、すくい
面方向よりみた刃先直角コーナー部の丸みが20μ
mに達したのに対し、本発明焼結体では同じ状態
に達するまでに300分切削可能であつた。 These tools cut lead free-cutting steel at a speed of 30
A cutting test was conducted using water-insoluble cutting oil at m/min, depth of cut of 0.3 mm, and feed rate of 0.02 mm/rev. As a result, with ultra-fine grained cemented carbide, after 30 minutes of cutting time, the roundness of the right-angled corner of the cutting edge when viewed from the rake face direction was 20 μm.
In contrast, the sintered body of the present invention could be cut for 300 minutes to reach the same state.
実施例 2
実施例1と同様のCBN原料粉末と超硬合金製
のボールとポツトを用い150時間粉砕した。5g
投入したCBN粉末は14.2g増加しており全体で
19.2gとなつていた。これより粉末の組成を推定
すると、容量で60%のCBNと残部がWC−7%
Coからなるものである。これを希塩酸溶液を用
いて金属成分を酸洗除去した。Example 2 Using the same CBN raw powder as in Example 1 and cemented carbide balls and pots, the powder was pulverized for 150 hours. 5g
The amount of CBN powder introduced increased by 14.2g, and the total amount increased by 14.2g.
It was 19.2g. Estimating the composition of the powder from this, the volume is 60% CBN and the balance is WC-7%.
It is made of Co. The metal components were removed by pickling using a dilute hydrochloric acid solution.
この粉末を型押成型后、実施例1と同様に加熱
脱ガスした。別にWC−10%Coの厚み3mm、直径
10mmの円板とMo製の厚さ0.05mm、直径10mmの円
板を用意した。脱ガスしたCBNを含む型押体に
接してMo円板を置き、その下に超硬合金の円板
を配置して、この全体を超高圧装置に入れ実施例
1と同一条件で焼結した。焼結体を切断して断面
を観察すると厚さ1mmの超微粒のCBNを含有す
る焼結体がMoの炭化物からなる厚さ50μの中間
層を介して超硬合金円板に強固に接合していた。 After molding this powder, it was heated and degassed in the same manner as in Example 1. Separately, WC-10%Co thickness 3mm, diameter
A 10 mm disc and a Mo disc with a thickness of 0.05 mm and a diameter of 10 mm were prepared. A Mo disk was placed in contact with the stamped body containing degassed CBN, a cemented carbide disk was placed below it, and the whole was placed in an ultra-high pressure device and sintered under the same conditions as Example 1. . When the sintered body was cut and the cross section was observed, it was found that the 1 mm thick sintered body containing ultrafine CBN particles was firmly bonded to the cemented carbide disk through a 50 μ thick intermediate layer made of Mo carbide. was.
この焼結体の組織をX線により調べたところ、
CBN−Wボライド−WCであつた。この焼結体を
実施例1と同様にしてバイトを作成しS45Cの丸
棒を切削加工した。なお、切削速度10〜40m/
min、切込み1mm、送り0.05mm/revで120分間切
削した。比較のためJIS分類P40の超硬合金と超
微粒超硬合金の切削テストも同時にした。この結
果を第4図に示したが、いずれの速度とも本発明
焼結体が最も優れている。 When the structure of this sintered body was examined using X-rays, it was found that
It was CBN-W bolide-WC. A cutting tool was prepared from this sintered body in the same manner as in Example 1, and an S45C round bar was cut. In addition, cutting speed 10~40m/
Cutting was performed for 120 minutes at min, depth of cut of 1 mm, and feed rate of 0.05 mm/rev. For comparison, cutting tests were also conducted on JIS classification P40 cemented carbide and ultra-fine grained cemented carbide. The results are shown in FIG. 4, and the sintered body of the present invention is the best at all speeds.
実施例 3
(Mo7W3)C−10%Co−5%Ni合金からなる
ボールとポツトを用いて実施例1で用いたCBN
粉末4gと粒度3μのTaC粉末を1g加え120時間
粉砕した。粉砕后の重量は15gであつた。Example 3 CBN used in Example 1 using a ball and pot made of ( Mo7W3 )C-10%Co-5%Ni alloy
4 g of powder and 1 g of TaC powder with a particle size of 3 μm were added and pulverized for 120 hours. The weight after crushing was 15g.
これを実施例2と同様にして混入した金属成分
を酸洗除去した。この粉末は容量でCBN65%、
(Mo7W3)C32%、TaC3%を含むものである。
この粉末を実施例2と同様にして超硬合金製円板
にMo炭化物の中間層を介して接合した焼結体を
作成した。焼結条件は55kb、1450℃で10分間保
持した。 The mixed metal components were removed by pickling in the same manner as in Example 2. This powder has 65% CBN by volume.
(Mo 7 W 3 ) Contains 32% C and 3% TaC.
This powder was bonded to a cemented carbide disk via an intermediate layer of Mo carbide to create a sintered body in the same manner as in Example 2. The sintering conditions were 55 kb and held at 1450°C for 10 minutes.
得られた焼結体の組織はやはり1μ以下の微粒
CBNと1μ以下の(Mo7W3)C及び少量のTaCか
らなる均一な組織の超微粒合金であつた。 The structure of the obtained sintered body is still fine grains of 1μ or less.
It was an ultrafine-grained alloy with a uniform structure consisting of CBN, (Mo 7 W 3 )C of less than 1 μm, and a small amount of TaC.
第1図は本発明の効果を説明する為のもので、
市販されている超微粒WC基超硬合金で製作した
バイトの刃先を拡大した顕微鏡写真である。第2
図は粒度3〜6μmのCBNを用いてTiNを結合材
とした焼結体で製作したバイトの刃先を拡大した
顕微鏡写真である。第3図は本発明焼結体で作成
したバイトの刃先を拡大した顕微鏡写真である。
第4図は本発明焼結体と超硬合金の切削試験の結
果を示したグラフである。
Figure 1 is for explaining the effects of the present invention.
This is an enlarged micrograph of the cutting edge of a cutting tool made from commercially available ultra-fine grained WC-based cemented carbide. Second
The figure is an enlarged micrograph of the cutting edge of a cutting tool made from a sintered body of CBN with a particle size of 3 to 6 μm and TiN as a binder. FIG. 3 is an enlarged micrograph of the cutting edge of a cutting tool made of the sintered body of the present invention.
FIG. 4 is a graph showing the results of a cutting test of the sintered body of the present invention and cemented carbide.
Claims (1)
%含有し、残部が1μ以下のWCを主体とする炭化
物結合相より成り、実質的に全ての立方晶型窒化
硼素の結晶が隣接しないことを特徴とする精密小
物部品微少加工工具用焼結体。 2 1μ以下の立方晶型窒化硼素を体積で80〜20
%含有し、残部が1μ以下のWCと同一結晶構造を
有する(MoW)C炭化物結合相より成り、実質
的に全ての立方晶型窒化硼素の結晶が隣接しない
特許請求の範囲第1項記載の精密小物部品微少加
工工具用焼結体。 3 1μ以下の立方晶型窒化硼素を体積で80〜20
%含有し、残部が1μ以下のWCもしくはこれと同
一結晶構造を有する(MoW)C炭化物を主成分
とする超硬合金結合相から成り、実質的に全ての
立方晶型窒化硼素の結晶が隣接しない特許請求の
範囲第1項記載の精密小物部品微少加工工具用焼
結体。 4 WCを主成分とする超硬合金ボール、同じく
この超硬合金を内張りしたポツトを用いて、必要
ならばWC炭化物粉末を加え、立方晶型窒化硼素
粉末を粉砕し、同時にボールと内張材とから摩耗
によつて混入した微細超硬合金粉末を付加し、こ
れ等の粉末を1μ以下に粉砕した後、必要ならば
酸処理により超硬合金の結合金属を除去し、これ
を粉状でもしくは型押成型し、真空中で300℃以
上の温度に加熱脱ガスした後、立方晶型窒化硼素
が安定な高温、高圧下でホツトプレスすることを
特徴とする1μ以下の立方晶型窒化硼素を体積で
80〜20%含有し、残部が1μ以下のWCを主体とす
る炭化物結合相より成り、実質的に全ての立方晶
型窒化硼素の結晶が隣接しない精密小物部品微少
加工工具用焼結体の製造方法。 5 (MoW)を主成分とする超硬合金ボール、
同じくこの超硬合金を内張りしたポツトを用い
て、必要ならば(MoW)C炭化物粉末を加え、
立方晶型窒化硼素粉末を粉砕し、同時にボールと
内張材とから摩耗によつて混入した微細超硬合金
粉末を付加し、これ等の粉末を1μ以下に粉砕し
た後、必要ならば酸処理により超硬合金の結合金
属を除去し、これを粉状もしくは型押成型し、真
空中で300℃以上の温度に加熱、脱ガスした後、
立方晶型窒化硼素が安定な高温、高圧下でホツト
プレスする特許請求の範囲第4項記載の精密小物
部品微少加工工具用焼結体の製造方法。 6 WCもしくはこれと同一結晶構造を有する
(MoW)Cを主成分とする超硬合金ボール、同
じくこの超硬合金を内張りしたポツトを用いて、
必要ならばWCもしくは(MoW)C炭化物粉末
を加え、立方晶型窒化硼素粉末を粉砕し、同時に
ボールと内張材とから摩耗によつて混入した微細
超硬合金粉末を付加し、これ等の粉末を1μ以下
に粉砕した後、これを粉状で、もしくは型押成型
し、真空中で300℃以上の温度に加熱、脱ガスし
た後、立方晶型窒化硼素が安定な高温、高圧下で
ホツトプレスする特許請求の範囲第4項記載の精
密小物部品微少加工工具用焼結体の製造方法。[Claims] 1. Cubic boron nitride with a size of 1 μ or less, 80 to 20 by volume.
% and the remainder is 1 μ or less of WC, and is characterized by substantially all cubic boron nitride crystals not being adjacent to each other. . 2 Cubic boron nitride with a size of 1 μ or less is 80 to 20 by volume.
% and the remainder is 1μ or less, consisting of a (MoW) C carbide bonding phase having the same crystal structure as WC, and substantially all of the cubic boron nitride crystals are not adjacent to each other. Sintered body for small precision parts and micro-machining tools. 3 Cubic boron nitride with a size of 1 μ or less, 80 to 20 by volume
% and the remainder is less than 1μ of WC or (MoW) having the same crystal structure as the cemented carbide binder phase mainly composed of C carbide, and substantially all of the cubic boron nitride crystals are adjacent to each other. A sintered body for a precision small part micromachining tool according to claim 1. 4 Using a cemented carbide ball whose main component is WC and a pot lined with this cemented carbide, add WC carbide powder if necessary, crush the cubic boron nitride powder, and simultaneously remove the ball and lining material. After adding fine cemented carbide powder mixed in by abrasion and pulverizing these powders to less than 1 μm, if necessary, the bonding metal of the cemented carbide is removed by acid treatment, and this is made into powder. Alternatively, cubic boron nitride with a size of 1μ or less is formed by stamp molding, heated and degassed in a vacuum to a temperature of 300°C or higher, and then hot pressed at a high temperature and high pressure where the cubic boron nitride is stable. by volume
Manufacture of sintered bodies for precision small parts and micro-machining tools, which are composed of a carbide binder phase containing 80 to 20% WC with the remainder being 1μ or less, and in which virtually no cubic boron nitride crystals are adjacent to each other. Method. 5 Cemented carbide balls whose main component is (MoW),
Using the same pot lined with this cemented carbide, add (MoW) C carbide powder if necessary.
Cubic boron nitride powder is pulverized, and at the same time, fine cemented carbide powder mixed in from the balls and lining material due to wear is added. After pulverizing these powders to 1μ or less, acid treatment is performed if necessary. After removing the bonding metal of the cemented carbide, molding it into powder or stamping, heating it to a temperature of 300℃ or higher in a vacuum, and degassing it,
5. The method for producing a sintered body for small precision parts and micromachining tools according to claim 4, wherein cubic boron nitride is hot-pressed at a stable temperature and under high pressure. 6 Using a cemented carbide ball whose main component is WC or (MoW) C, which has the same crystal structure as this, and a pot lined with this cemented carbide,
If necessary, add WC or (MoW)C carbide powder, crush cubic boron nitride powder, and at the same time add fine cemented carbide powder mixed in by abrasion from the ball and lining material. After pulverizing the powder to less than 1 μm, it is molded into a powder form or molded by molding, heated in a vacuum to a temperature of 300℃ or higher, degassed, and then processed at high temperatures and high pressures where cubic boron nitride is stable. A method for producing a sintered body for a micromachining tool for precision small parts according to claim 4, which involves hot pressing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5990079A JPS55154376A (en) | 1979-05-15 | 1979-05-15 | Sintered body for precise small part minor cutting tool and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5990079A JPS55154376A (en) | 1979-05-15 | 1979-05-15 | Sintered body for precise small part minor cutting tool and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55154376A JPS55154376A (en) | 1980-12-01 |
JPS6310119B2 true JPS6310119B2 (en) | 1988-03-03 |
Family
ID=13126449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5990079A Granted JPS55154376A (en) | 1979-05-15 | 1979-05-15 | Sintered body for precise small part minor cutting tool and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55154376A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63114747A (en) * | 1986-10-31 | 1988-05-19 | 株式会社 第一ホ−ム | Panel with crossbeam for roof sheathing panel |
-
1979
- 1979-05-15 JP JP5990079A patent/JPS55154376A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63114747A (en) * | 1986-10-31 | 1988-05-19 | 株式会社 第一ホ−ム | Panel with crossbeam for roof sheathing panel |
Also Published As
Publication number | Publication date |
---|---|
JPS55154376A (en) | 1980-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4505746A (en) | Diamond for a tool and a process for the production of the same | |
KR900002701B1 (en) | Diamond sintered body for tools and method of manufacturing the same | |
JP4945814B2 (en) | Tough-coated hard powder and its sintered product | |
EP1309732B1 (en) | Method of producing an abrasive product containing diamond | |
EP2101903B1 (en) | Abrasive compacts with improved machinability | |
KR960008726B1 (en) | Method for production of high-pressure phase sintered article of boron nitride for use in cutting tool and sintered article produced thereby | |
JP3309897B2 (en) | Ultra-hard composite member and method of manufacturing the same | |
EP1313887B1 (en) | Method of producing an abrasive product containing cubic boron nitride | |
JP5574566B2 (en) | Cubic boron nitride compact | |
JP5462622B2 (en) | Cubic boron nitride composite material and tool | |
EP1948837A2 (en) | Cubic boron nitride compact | |
US20050226691A1 (en) | Sintered body with high hardness for cutting cast iron and the method for producing same | |
JP3606311B2 (en) | Composite material containing ultra-hard particles | |
JP5008789B2 (en) | Super hard sintered body | |
JPS6158432B2 (en) | ||
JP2858600B2 (en) | Sintered materials for tools | |
JPS6310119B2 (en) | ||
JPS6246510B2 (en) | ||
JP2001040446A (en) | Diamond-containing hard member and its production | |
JPH0551261A (en) | Sintering material for tool | |
JPS6137221B2 (en) | ||
JPS6159392B2 (en) | ||
CN114728853B (en) | Polycrystalline diamond with iron-containing binder | |
JPS6251911B2 (en) | ||
KR810001998B1 (en) | Method producing a sintered diamond compact |