JPS63101014A - Rolling method for thick plate - Google Patents
Rolling method for thick plateInfo
- Publication number
- JPS63101014A JPS63101014A JP61244087A JP24408786A JPS63101014A JP S63101014 A JPS63101014 A JP S63101014A JP 61244087 A JP61244087 A JP 61244087A JP 24408786 A JP24408786 A JP 24408786A JP S63101014 A JPS63101014 A JP S63101014A
- Authority
- JP
- Japan
- Prior art keywords
- pass
- plate
- rolling
- ratio
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005096 rolling process Methods 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 9
- 230000002950 deficient Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 1
- 238000013000 roll bending Methods 0.000 description 1
Landscapes
- Control Of Metal Rolling (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は厚板圧延方法、特に板幅方向板プロフィルを
考慮した形状制御及び板厚管理に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thick plate rolling method, particularly to shape control and plate thickness management in consideration of the plate profile in the width direction.
(従来の技術〕
従来、被圧延材をリバース圧延する厚板圧延における形
状制御方法は、第6図に示すように圧延材lの板幅中央
の板厚hcと板端部の板FE h−を測定し、中央板厚
hcに対する中央板厚hcと端部板厚り、の差の割合、
すなわち比率クラウンΔCr= (hc−h、)/hc
を算出し、この比率クラウンΔC1をパス毎に一定ある
いはある許容範囲内におさめるように制?111 L、
、ている。(Prior art) Conventionally, a shape control method in plate rolling in which a material to be rolled is reverse rolled is based on the thickness hc of the center of the width of the rolled material l and the plate thickness FE h- of the edge of the plate, as shown in FIG. Measure the ratio of the difference between the center plate thickness hc and the end plate thickness to the center plate thickness hc,
That is, the ratio crown ΔCr= (hc-h,)/hc
Calculate and control this ratio crown ΔC1 to be constant or within a certain tolerance range for each pass? 111 L,
,ing.
しかし、ワークロール軸端部にロールベンディング機能
を具備した圧延機で圧延する場合は、下延時の圧延材板
幅、圧延荷重、ベンダー力等の関係により板幅方向板プ
ロフィルは第7図に示すようになる。第7図は横軸に板
幅中央からの距離をとって示した仮プロフィルの一例を
示し、図においてAは圧延荷重Pを5200ton 、
ベンダー力P。However, when rolling with a rolling mill equipped with a roll bending function at the end of the work roll shaft, the profile in the width direction is shown in Figure 7 due to the relationship between the width of the rolled material, rolling load, bender force, etc. during lower rolling. It becomes like this. Fig. 7 shows an example of a temporary profile with the distance from the center of the plate width plotted on the horizontal axis; in the figure, A indicates a rolling load P of 5200 tons;
Bender power P.
を200tonとして圧延した場合、Bは圧延荷重Pを
5200ton 、ベンダー力Pgを600tonとし
て圧延した場合である。B is the case where the rolling force P is 5200 tons and the bender force Pg is 600 tons.
第717Iに示すように板幅方向プロフィルが4次曲線
的な変化を呈することがあり、従来の制御方法のように
板幅中央板厚hcと端部板厚り、のみで算出した比率ク
ラウンΔC,を考慮した形状制御raにおいては上記板
幅方向の局部的比率クラウン変化をとらえることができ
ず、完全な形状制御は不可能であった。As shown in No. 717I, the plate width direction profile may exhibit a quartic curve-like change, and as in the conventional control method, the ratio crown ΔC calculated only from the plate width center plate thickness hc and the edge plate thickness. , it was not possible to capture the above-mentioned local ratio crown change in the sheet width direction in shape control ra that took into consideration the shape control, and complete shape control was impossible.
また、従来の圧延作業における板厚管理は上記比率クラ
ウンΔCrの算出と同様に板幅中央板厚hcと端部板厚
り、の管理が一触的であるが、第6図のBに示すような
仮プロフィルの場合は板幅中央と端部間に最小板厚部が
存在して板厚不良材を発生させるおそれがあるという問
題点があった。In addition, in the conventional rolling operation, the control of the plate thickness at the center of the plate width hc and the edge plate thickness is only temporary, as is the case with the calculation of the ratio crown ΔCr, as shown in B in Figure 6. In the case of such a temporary profile, there is a problem that a minimum thickness part exists between the center of the width of the sheet and the end, and there is a risk of producing a material with defective sheet thickness.
この発明ばかかかる問題点を解決するためになされたも
のであり、完全な形状制御ができると共に板厚不良材を
発生させないl″X仮圧延方法を提案することを目的と
するものである。This invention has been made to solve these problems, and it is an object of the present invention to propose an l″X temporary rolling method that allows complete shape control and does not cause sheet thickness defects.
この発明に係る厚板圧延方法は、被圧延材をリバース圧
延する厚板圧延において、
圧延材板輻方向を圧延材中央、両端部及び中央と両端間
のすくなくとも一点以上の各位置に分割し、該各位置に
分割したゲージメータモデルを用い各パス毎における上
記各位置の比率クラウンを算出し、各位置の比率クラウ
ンの変化を考慮してパススケジュールを決定しロールギ
ャップ、ベンダー力、シフ)ff1等を調整することを
1>ffiとする。The thick plate rolling method according to the present invention, in plate rolling in which a material to be rolled is reverse rolled, divides the plate radius direction of the rolled material into the center of the rolled material, both ends, and at least one or more positions between the center and both ends, Using the gauge meter model divided into each position, calculate the ratio crown at each position for each pass, and determine the pass schedule by considering changes in the ratio crown at each position (roll gap, bender force, shift)ff1 etc. is adjusted as 1>ffi.
この発明においては、圧延時の圧延材長手方向伸び板幅
方向分布を考慮して形状制御及び板厚管理を行ないなが
ら圧延材の圧延を行なう。In this invention, the rolled material is rolled while controlling the shape and thickness of the rolled material in consideration of the longitudinal elongation distribution of the rolled material in the width direction of the plate.
第1図はこの発明の一実施例に係る圧延機の概略構成図
であり、図において1は圧延材、2は上ワークロール、
3は下ワークロールであり、上ワークロール2と下ワー
クロール3はパス間あるいはバー間においてロール幅方
向に各々シフトできるように構成されている。4は上・
下ワークロール2.3の上下に設けられたバックアップ
ロールである。FIG. 1 is a schematic configuration diagram of a rolling mill according to an embodiment of the present invention, in which 1 is a rolled material, 2 is an upper work roll,
3 is a lower work roll, and the upper work roll 2 and the lower work roll 3 are configured to be able to shift in the roll width direction between passes or between bars. 4 is above
These are backup rolls provided above and below the lower work roll 2.3.
5は目標板厚、板幅、圧延荷重等の諸元を入力する入力
装置、6は入力装置5から入力される諸元及び前パス時
のロールギャップ、ベンダー力、シフト量又は板プロフ
イル測定値等の圧延実績により各パス毎のパススケジュ
ールを決定し、またパス間にて前パス圧延実績により次
パス以降のパススケジュールを再修正する演算装置、7
は演算装置6で決定したパススケジュールにより各パス
のロールギャップ、ベンダー力、シフト量等を出力する
出力装置である。5 is an input device for inputting specifications such as target plate thickness, plate width, rolling load, etc.; 6 is an input device for inputting specifications such as target plate thickness, plate width, rolling load, etc., and 6 is a specification input from input device 5 and measured values of roll gap, bender force, shift amount, or plate profile during the previous pass. a calculation device that determines a pass schedule for each pass based on the rolling results such as, and re-corrects the pass schedule for the next pass and subsequent passes based on the rolling results of the previous pass between passes;
is an output device that outputs the roll gap, bender force, shift amount, etc. of each pass according to the pass schedule determined by the calculation device 6.
演算装置6は第2図に示すように仮クラウンを算出する
仮クラウン算出手段8、算出した仮クラウンから比率ク
ラウンを算出する比率クラウン算出手段9、各パス毎の
圧延実績値13により算出した実績比率クラウンを記憶
するメモリ10、各パスの比率クラウンから各パス毎の
比率クラウン変化率を算出する比率クラウン変化率算出
手段11及びパススケジュール決定手段12を備えてい
る。As shown in FIG. 2, the arithmetic device 6 includes a temporary crown calculation means 8 for calculating a temporary crown, a ratio crown calculation means 9 for calculating a ratio crown from the calculated temporary crown, and an actual result calculated from a rolling result value 13 for each pass. The apparatus includes a memory 10 for storing ratio crowns, a ratio crown change rate calculating means 11 for calculating a ratio crown change rate for each pass from the ratio crown of each pass, and a path schedule determining means 12.
上記のように構成した圧延機により厚板を圧延する場合
の動作を第3図に示したフローチャートに基いて説明す
る。The operation of rolling a thick plate using the rolling mill configured as described above will be explained based on the flowchart shown in FIG. 3.
ここでゲージモデルは圧延材1の板幅方向を圧延材中央
、両端部及び圧延材中央と端部間を最低一点以上の複数
点、例えば第4図に示すように圧延材lの板幅中央C点
と両端部El、E2点及び板幅中央C点と両端部El、
E2点間を各々2分割したFl、F2.CI、02点の
複数点に分割したものとする。Here, the gauge model measures the width direction of the rolled material 1 at the center of the rolled material, at least one point or more between both ends and the center and end of the rolled material, for example, the center of the width of the rolled material 1 as shown in FIG. Point C and El at both ends, point E2, point C at the center of the plate width and El at both ends,
Fl, F2, which are each divided into two between two points E. Assume that it is divided into multiple points of CI and 02 points.
まず、圧延開始前の時点では圧延材lの目標板厚、幅、
長さ、クラウン目標荷重等の諸元情報を入力装置5から
演算装置6に入力する(ステップ31)。First, before starting rolling, the target thickness and width of the rolled material l,
Specification information such as length and crown target load is input from the input device 5 to the calculation device 6 (step 31).
演算装置6の仮クラウン算出手段8は入力された諸条件
を基準として板幅方向各点C,E、、F、。The temporary crown calculation means 8 of the calculation device 6 calculates each point C, E, , F, in the board width direction based on the input conditions.
G= (i=1.2)に多分割したゲージメータモデ
ルを用い、その代表点における概略パススケジーニルを
決定しくステップ32)、そのパススケジュールに基く
各パス毎における多分割ゲージモデル各点の板厚he
、l1m!+ l1ri、h*i (+ −1。G = (i = 1.2) using the multi-segmented gauge meter model, determine the approximate path schedule at its representative point (Step 32), and calculate the plate thickness at each point of the multi-segmented gauge model for each pass based on the pass schedule. he
,l1m! + l1ri, h*i (+ -1.
2)と、各点の仮クラウン(h、−h、i)、(hc−
hr+) + (hc−ha+)を算出し、算出した
各点の板厚及び板クラウンを比率クラウン算出手段9に
入力する。2) and the temporary crowns (h, -h, i), (hc-
hr+) + (hc-ha+), and input the calculated plate thickness and plate crown at each point to the ratio crown calculation means 9.
比率クラウン算出手段10は上記板幅方向各点の板厚及
び仮クラウンから各パス毎に次式で示す比率クラウンを
算出し、比率クラウン変化率算出手段11に出力する。The ratio crown calculation means 10 calculates a ratio crown expressed by the following formula for each pass from the plate thickness at each point in the sheet width direction and the temporary crown, and outputs it to the ratio crown change rate calculation means 11.
なお、+11式においてΔC,(E盈)、八C,(F五
)ΔC,(Gi)は各々E8点、F+点、at点におけ
る比率クラウンを示す。In addition, in formula +11, ΔC, (E), 8C, (F5)ΔC, (Gi) represent the ratio crown at the E8 point, F+ point, and at point, respectively.
比率クラウン変化率算出手段11は比率クラウン算出手
段9から送られた各パス、各点の比率クラウンから各点
の各パス毎における比率クラウン変化率を算出してパス
スケジュール決定手段12に出力する。(ステップ33
)。The ratio crown change rate calculation means 11 calculates the ratio crown change rate for each pass of each point from the ratio crown of each pass and each point sent from the ratio crown calculation means 9, and outputs it to the path schedule determination means 12. (Step 33
).
ノぐススケジュール決定手段12は人力された板幅方向
各点の比率クラウン変化率を比較し、各点の比率クラウ
ン変化率が一定値、あるいはあらかしめ定められた許容
範囲に入るように重みずけをして(ステップ34)、そ
の良否を判断した後(ステップ35)各パスのロールギ
ャップ、ヘングー力、シフト量を決定する(ステップ3
6)。The nozzle schedule determining means 12 compares the ratio crown change rate at each point in the board width direction manually inputted, and weights it so that the ratio crown change rate at each point is a constant value or within a predetermined tolerance range. (Step 34), and after determining its acceptability (Step 35), determine the roll gap, heng force, and shift amount for each pass (Step 3).
6).
また、上記結果として得られた板幅方向各点に分割した
ゲージメータモデル値より圧延材1の板幅方向の最小板
厚及びその位でを予測し、予測した最小板厚部の板厚が
圧延精度、公差下限厚等より定められた板厚許容範囲に
入るように各パスのロールギャップ、ベンダー力、シフ
)fflを微調整する(ステップ37)。In addition, the minimum plate thickness in the plate width direction of rolled material 1 and its extent are predicted from the gauge meter model values divided at each point in the plate width direction obtained as the above results, and the plate thickness of the predicted minimum plate thickness part is The roll gap, bender force, shift) ffl of each pass is finely adjusted so that the plate thickness falls within the allowable range determined by the rolling accuracy, lower limit thickness of tolerance, etc. (step 37).
上記のようにして決定したパススケジュールにおける板
厚、形状制御性および各パス毎のロールギャップ、ベン
ダー力、シフト量等諸設定値の良否を判断した後(ステ
ップ38)、各パス毎のロールギャップ、ベンダー力、
シフト量等の設定値を出力装置7に送り、出力装置7で
各パス毎のローブギャップ、ベンダー力、シフト量を設
定出力して各パス毎の圧延を行なう(ステップ39)。After determining the acceptability of the board thickness, shape controllability, roll gap, bender force, shift amount, and other set values for each pass in the pass schedule determined as described above (step 38), the roll gap for each pass is determined. , vendor power,
The set values such as the shift amount are sent to the output device 7, and the output device 7 sets and outputs the lobe gap, bender force, and shift amount for each pass to perform rolling for each pass (step 39).
さらに、パス間ではパス毎のロールギャップ、圧延荷重
、ベンダー力、シフト量等の諸実績を求め(ステップ4
0)、この諸実績により次パス以降のパススケジュール
を再修正する。Furthermore, between passes, various results such as roll gap, rolling load, bender force, and shift amount are determined for each pass (step 4).
0), the pass schedule for the next pass and subsequent passes is revised again based on these results.
なお、パス間修正におけるロールギャップ等の実績値か
らパススケジュールを修正する代りに第5図に示すよう
にT線厚さ計等の厚み検出器「◆による仮プロフィルを
用いる場合もある。In addition, instead of correcting the pass schedule from actual values such as roll gaps in the inter-pass correction, a temporary profile may be used using a thickness detector such as a T-line thickness meter (◆) as shown in FIG.
第5図において、厚み検出器+4は板幅方向に複数個固
定されているか、あるいは1個または複数個の厚み検出
器が板幅方向に移動できるように構成されている。この
厚み検出器14により各パス毎の圧延材1の板幅方向複
数点の板厚を測定し、そノ結果により次パス以降のパス
スケジュールを修正することにより、圧延材1のより完
全な形状制御を行なうことができる。In FIG. 5, a plurality of thickness detectors +4 are fixed in the width direction of the plate, or one or more thickness detectors +4 are configured to be movable in the width direction of the plate. This thickness detector 14 measures the thickness of the rolled material 1 at multiple points in the width direction of the rolled material 1 for each pass, and by modifying the pass schedule for the next pass and subsequent passes based on the results, a more perfect shape of the rolled material 1 can be obtained. can be controlled.
この発明は以上説明したように圧延材を板幅方向の局部
的な比率クラウン変化を考慮して圧延を行なうから、圧
延材の完全な形状制御を行なうことができる。In the present invention, as explained above, the rolled material is rolled in consideration of the local ratio crown change in the sheet width direction, so that the shape of the rolled material can be completely controlled.
また、板幅方向の板プロフィルを考慮して圧延材の板厚
を管理するから板厚不良材の発生を防止することができ
、歩留向上をはかることができる効−果も有する。Furthermore, since the thickness of the rolled material is managed in consideration of the sheet profile in the width direction, it is possible to prevent the occurrence of materials with defective sheet thickness, and it also has the effect of improving yield.
第1図はこの発明の実施例に係る圧延機の概略構成図、
第2図は上記実施例の演算装置を示すブロック図、第3
図は上記実施例の動作を示すフローチャート、第4図は
上記実施例の板幅方向断面を示す説明図、第5図は他の
実施例を示す概略構成図、第6図は従来例の説明図、第
7図は板プロフイル分布図である。
1・・・・・・・・・圧延材、2・・・・・・・・・上
ワークロール、3・・・・・・・・・下ワークロール、
4・・・・・・・・・バックアップロール、5・・・・
・・・・・人力装で、6・・・・・・・・・演算装置、
7・・・・・・・・・出力装置、+4・・・・・・・・
・厚み検出器。FIG. 1 is a schematic configuration diagram of a rolling mill according to an embodiment of the present invention;
FIG. 2 is a block diagram showing the arithmetic device of the above embodiment, and FIG.
The figure is a flowchart showing the operation of the above embodiment, FIG. 4 is an explanatory diagram showing a cross section in the board width direction of the above embodiment, FIG. 5 is a schematic configuration diagram showing another embodiment, and FIG. 6 is an explanation of the conventional example. FIG. 7 is a plate profile distribution diagram. 1...Rolled material, 2...Upper work roll, 3...Lower work roll,
4... Backup roll, 5...
・・・・・・Human powered equipment, 6・・・・・・・・・Arithmetic equipment,
7・・・・・・・・・Output device, +4・・・・・・・・・
・Thickness detector.
Claims (2)
圧延材板幅方向を圧延材中央、両端部及び中央と両端間
のすくなくとも一点以上の各位置に分割し、該各位置に
分割したゲージメータモデルを用い各パス毎における上
記各位置の比率クラウンを算出し、該各位置の比率クラ
ウンの変化を考慮してパススケジュールを決定しロール
ギャップ、ベンダー力、シフト量等を調整することを特
徴とする厚板圧延方法。(1) In plate rolling where the material to be rolled is reverse rolled,
The width direction of the rolled material plate is divided into the center of the rolled material, both ends, and at least one or more points between the center and both ends, and the ratio crown of each of the above positions for each pass is calculated using a gauge meter model divided into each of the positions. A method for rolling a thick plate, characterized in that the pass schedule is determined by calculating the ratio crown at each position, and the roll gap, bender force, shift amount, etc. are adjusted.
ルにより算出した板幅方向最小板厚部の板厚、位置を考
慮してパススケジュールを修正する特許請求の範囲第1
項記載の厚板圧延方法。(2) The pass schedule is modified in consideration of the plate thickness and position of the minimum plate thickness in the plate width direction calculated by the gauge meter model divided into each position in the plate width direction.
The thick plate rolling method described in .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61244087A JPS63101014A (en) | 1986-10-16 | 1986-10-16 | Rolling method for thick plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61244087A JPS63101014A (en) | 1986-10-16 | 1986-10-16 | Rolling method for thick plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63101014A true JPS63101014A (en) | 1988-05-06 |
Family
ID=17113541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61244087A Pending JPS63101014A (en) | 1986-10-16 | 1986-10-16 | Rolling method for thick plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63101014A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040004946A (en) * | 2002-07-06 | 2004-01-16 | 주식회사 포스코 | Method for controlling the automatic gauge control device and bender of rolling mill in hot rolling process |
DE19618712B4 (en) * | 1996-05-09 | 2005-07-07 | Siemens Ag | Control method for a roll stand for rolling a strip |
JP2007130667A (en) * | 2005-11-10 | 2007-05-31 | Nippon Steel Corp | Method for manufacturing thick steel plate with high flatness |
JP2014042928A (en) * | 2012-08-27 | 2014-03-13 | Kobe Steel Ltd | Method of determining roll pass schedule |
-
1986
- 1986-10-16 JP JP61244087A patent/JPS63101014A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19618712B4 (en) * | 1996-05-09 | 2005-07-07 | Siemens Ag | Control method for a roll stand for rolling a strip |
KR20040004946A (en) * | 2002-07-06 | 2004-01-16 | 주식회사 포스코 | Method for controlling the automatic gauge control device and bender of rolling mill in hot rolling process |
JP2007130667A (en) * | 2005-11-10 | 2007-05-31 | Nippon Steel Corp | Method for manufacturing thick steel plate with high flatness |
JP2014042928A (en) * | 2012-08-27 | 2014-03-13 | Kobe Steel Ltd | Method of determining roll pass schedule |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU697496B2 (en) | Method and apparatus for the control of rolling mills | |
JPS63101014A (en) | Rolling method for thick plate | |
US3468145A (en) | Billet mill wherein the rolling gap is controlled during the penultimate pass and fixed during the final pass | |
JP3067879B2 (en) | Shape control method in strip rolling | |
JP3069001B2 (en) | Feedback control method of sheet crown / shape model | |
JP2696421B2 (en) | Edge drop control method in strip rolling | |
JP4470667B2 (en) | Shape control method in temper rolling mill | |
JPH0239326B2 (en) | ||
KR100929015B1 (en) | Prediction of rolling load by calibrating plasticity factor of rolled material | |
JPS649086B2 (en) | ||
JP2719215B2 (en) | Edge drop control method for sheet rolling | |
JPS6134881B2 (en) | ||
JP2713158B2 (en) | Roll width control method and apparatus for variable width roll | |
JP3618463B2 (en) | Product cross-sectional shape automatic control device for steel bar rolling equipment | |
JP2000254720A (en) | Method for controlling plate thickness in rolling mill | |
JP2505990B2 (en) | Edge-drop control method for strip rolling | |
JPS62137114A (en) | Plate width control method for thick plate | |
JPS59183918A (en) | Gage meter type automatic controlling method of plate thickness | |
JPH0441010A (en) | Method for controlling edge drop in cold rolling | |
JP2826792B2 (en) | Rolling method for steel plate with protrusions with excellent protrusion height accuracy | |
JPS6134882B2 (en) | ||
JPH07185625A (en) | Control method to guarantee minimum plate thickness of hoop steel sheet | |
JPH01228605A (en) | Method for controlling sheet crown in continuous hot rolling mill | |
JPS6228014A (en) | Plane shape control method for thick plate rolling | |
JP2505989B2 (en) | Edge-drop control method for strip rolling |