Nothing Special   »   [go: up one dir, main page]

JPS6299445A - Manufacture of aluminum alloy excellent in thermal neutron absorption property and in strength at high temperature - Google Patents

Manufacture of aluminum alloy excellent in thermal neutron absorption property and in strength at high temperature

Info

Publication number
JPS6299445A
JPS6299445A JP23899585A JP23899585A JPS6299445A JP S6299445 A JPS6299445 A JP S6299445A JP 23899585 A JP23899585 A JP 23899585A JP 23899585 A JP23899585 A JP 23899585A JP S6299445 A JPS6299445 A JP S6299445A
Authority
JP
Japan
Prior art keywords
less
thermal neutron
neutron absorption
aluminum alloy
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23899585A
Other languages
Japanese (ja)
Inventor
Yagorou Hirose
広瀬 彌五郎
Mitsuo Hino
光雄 日野
Takehiko Kondo
近藤 武比古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP23899585A priority Critical patent/JPS6299445A/en
Priority to DE8686402380T priority patent/DE3669541D1/en
Priority to EP86402380A priority patent/EP0225226B1/en
Priority to US06/923,223 priority patent/US4806307A/en
Publication of JPS6299445A publication Critical patent/JPS6299445A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To improve thermal neutron absorption property and strength at high temp. by adding specific amounts of Gd, Mg, elements improving strength at ordinary temp., toughness, and corrosion resistance, and elements having thermal neutron absorption property to Al, by regulating the size of ingot crystalline grain to a specific value or below, and by applying soaking treatment under specific conditions. CONSTITUTION:An Al alloy ingot has a composition consisting of, by weight, 0.2-30% Gd, 0.5-6% Mg, 1 or >=2 kinds among <1% Mn, <0.3% Zr, <0.3% V, <3% B, <3% Li, <1% Si, <1% Zn, <1% Cu, <2% Ni, and <1% Ti, and the balance Al with inevitable impurities. The grain size of the above Al alloy ingot is regulated to <=5mm, to which soaking treatment is applied at 400-550 deg.C for >=2hr.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は熱中性子吸収能および高温強度に優れたアルミ
ニウム合金の製造法に閑し、さらに詳しくは、主に使用
済核燃料を取扱う施設および設備に利用される熱中性子
吸収能および高温強度に優れたアルミニウム合金の製造
法に関する。
[Detailed Description of the Invention] [Industrial Application Field 1] The present invention is directed to a method for producing an aluminum alloy with excellent thermal neutron absorption ability and high-temperature strength. This paper relates to a method for producing aluminum alloys with excellent thermal neutron absorption ability and high-temperature strength, which are used in

[従来技術1 一般に、各種原子炉設備、再処理施設および核燃料物質
貯蔵施設等の核燃料物質を使用する施設や運搬する設備
等においては、核燃料物質に基本的に要求されるのが“
未臨界性の確保”である。
[Prior Art 1] In general, in facilities that use nuclear fuel materials such as various nuclear reactor facilities, reprocessing facilities, and nuclear fuel material storage facilities, as well as facilities that transport nuclear fuel materials, the basic requirements for nuclear fuel materials are “
"Ensuring subcriticality".

ところで、235−U、239−Pu等の核分裂性物質
は熱中性子(〜数eV)に対して、核分裂を起し易いた
めこれを吸収し熱中性子束を下げて、未臨界性を高める
必要があり、これらの施設、設備においては熱中性子吸
収能の高い金属材料が多く使用されている。
By the way, fissile materials such as 235-U and 239-Pu tend to undergo nuclear fission in response to thermal neutrons (~several eV), so it is necessary to absorb them and lower the thermal neutron flux to increase subcriticality. These facilities and equipment often use metal materials with high thermal neutron absorption capacity.

特に、近年になって、商業用原子炉においては核燃料の
高燃焼度化に伴なう高濃縮度化が進んでおり、また、研
究用原子炉においてはこれより海かに高い濃縮度の核燃
料が使用されており、そのために、使用済核燃料の輸送
や貯蔵の容器(以下単にバスケットということがある。
In particular, in recent years, commercial nuclear reactors have become increasingly highly enriched due to the higher burnup of nuclear fuel, and research reactors are using nuclear fuel with much higher enrichment than this. Containers (hereinafter simply referred to as baskets) are used to transport and store spent nuclear fuel.

)においても、従来よりさらに熱中性子吸収能の高い金
属材料が必要になってぎでいる。
), metal materials with even higher thermal neutron absorption ability than before are needed.

また、使用済核燃料の崩壊熱によりバスケットは、さら
に高温にさらされるようになり、そして、200〜30
0″Cという高温になるといわれ、そのため、高温強度
の高い金属材料が必要になってきている。
In addition, the basket is exposed to even higher temperatures due to the decay heat of the spent nuclear fuel, and
It is said that the temperature reaches as high as 0''C, and for this reason, there is a need for metal materials with high high-temperature strength.

このような金属材料として、いままでにB(ボロン)の
熱中性子吸収能の優れた特性を利用して、ボラール(B
rooks&Perkins社の商品名)、B、CとC
uの混合焼結材を鋳ぐるんだアルミニウム合金、B含有
アルミニウム合金等があるが、熱中性子吸収能のさらに
優れたアルミニウム合金が要求されている。
As such a metal material, Boral (B
Rooks & Perkins product name), B, C and C
There are aluminum alloys in which a mixed sintered material of U is cast, aluminum alloys containing B, etc., but there is a demand for aluminum alloys with even better thermal neutron absorption ability.

[発明が解決しようとする問題点] 本発明は上記に説明したように、従来における熱中性子
吸収能を有する材料および本発明者が先に提案し出願を
完了しているアルミニウム合金と熱中性子吸収能は同等
以」二であるが、特に高温強度に優れたアルミニウム合
金について研究を行なった結果、高温強度と熱中性子吸
収能が著しく優れており、鋳造性、展伸加工性、成形加
工性も極めて良好である熱中性子吸収能および高温強度
に優れたアルミニウム合金の製造法を開発したのである
[Problems to be Solved by the Invention] As explained above, the present invention is based on the conventional materials having thermal neutron absorption ability and the aluminum alloy and thermal neutron absorption which the present inventor has previously proposed and has filed an application for. However, as a result of research on aluminum alloys, which have particularly excellent high-temperature strength, we found that they have significantly superior high-temperature strength and thermal neutron absorption ability, and have excellent castability, stretchability, and moldability. They developed a method for producing an aluminum alloy with extremely good thermal neutron absorption ability and high-temperature strength.

E問題点を解決するための手段1 本発明に係る熱中性子吸収能に優れたアルミニウム合金
の製造法の特徴とするところは、Gd 0.2〜30田
L%、Mg 0.5〜6+ut%を含有し、さらに、 Mn 1u+j%以下、Cr 0.3u+t%以下、Z
r O8:3u+1%、V 0.3wt%以下、B 3
u+t%以下、Li5ult%以下、Si]u+t%以
下、Zn ]、u+t%以下、Cu 1ust%以下、
Ni2wt%以下、Tilす1%以下 のうちから選んだ1腫または2種以上 を含有し、残部A1および不可避不純物からなるアルミ
ニウム合金の鋳塊の結晶粒の大きさを5■以下とし、4
00〜550℃の温度において2時間以上の均熱処理を
行なうことにある。
Means for Solving Problem E 1 The method of manufacturing an aluminum alloy with excellent thermal neutron absorption ability according to the present invention is characterized by: Gd 0.2-30%, Mg 0.5-6+ut% furthermore, Mn 1u+j% or less, Cr 0.3u+t% or less, Z
r O8:3u+1%, V 0.3wt% or less, B 3
u+t% or less, Li5ult% or less, Si] u+t% or less, Zn], u+t% or less, Cu 1ust% or less,
The crystal grain size of an aluminum alloy ingot containing one or more selected from Ni2wt% or less and Ti1% or less, and the balance A1 and unavoidable impurities, is 5cm or less, and 4
The purpose is to perform soaking treatment at a temperature of 00 to 550°C for 2 hours or more.

本発明に係る熱中性子吸収能および高温強度に優れたア
ルミニウム合金の製造法について以下詳細に説明する。
The method for producing an aluminum alloy with excellent thermal neutron absorption ability and high-temperature strength according to the present invention will be described in detail below.

先ず、本発明に係る熱中性子吸収能および高温強度に優
れたアルミニウム合金の製造法において使用するアルミ
ニウム合金の含有成分および成分割合について説明する
First, the components and component ratios of the aluminum alloy used in the method for producing an aluminum alloy with excellent thermal neutron absorption ability and high-temperature strength according to the present invention will be explained.

Gdは熱中性子吸収能を付り、する重要な元素であり、
含有量が0,2u+L%未満ではその効果が少なく、か
つ、従来材よりも小さくなり、また、30υ+L%を越
えて含有されると鋳造ヤ1.が悪くなり、鋳塊の製造が
困難となり、さらに、圧延、押出し等の成形加工性も悪
くなり製品となり難くなる。よって、Gd含有量は0.
2〜30wt%とする。
Gd is an important element that provides thermal neutron absorption ability.
If the content is less than 0.2u+L%, the effect will be small and it will be smaller than conventional materials, and if the content exceeds 30υ+L%, the casting layer 1. This makes it difficult to produce an ingot, and furthermore, the molding processability by rolling, extrusion, etc. becomes poor, making it difficult to form into a product. Therefore, the Gd content is 0.
The content is 2 to 30 wt%.

Mgは常温強度のみならず、高温強度を付与するのに有
効な元素であり、含有量が0.5u+t%未満ではその
効果が少なく、まtこ、6u+t%を越えて含有される
と圧延、押出し等の展伸加工性が悪くなり、かつ、耐蝕
性が劣化し、さらに、溶接性も悪くなる。よって、Mg
含有量は0.5〜6u+t%とする。
Mg is an effective element for imparting not only room-temperature strength but also high-temperature strength.If the content is less than 0.5u+t%, the effect is small, and if the content exceeds 6u+t%, it will cause rolling problems. Stretching workability such as extrusion becomes poor, corrosion resistance deteriorates, and weldability also becomes poor. Therefore, Mg
The content is 0.5-6u+t%.

Mn、 Cr、 Zr、■は常温強度、靭性、耐蝕性を
向上させる元素であり、かつ、高温強度を向上させる効
果があ1)、含有量がMn1wt%、Cr 0.3wt
%、Zr 013u+t%、V 0.3wt%を夫々越
えて含有されると効果の向上は期待できず、靭性、耐蝕
性を劣化させる巨大化合物が生成し易くなる。しかし、
Crは放射化するので待に含有させる必要がなければ含
有させない方がよい。よって、Mn含有量は1wt%以
下、Cr含有量は0.3す1%以下、Zr含有量は0,
3wt%以下、■含有量は0.3u+t%以下とする。
Mn, Cr, Zr, ■ are elements that improve room-temperature strength, toughness, and corrosion resistance, and also have the effect of improving high-temperature strength 1), with a content of Mn 1wt% and Cr 0.3wt.
%, Zr 013u+t%, and V 0.3wt%, no improvement in effectiveness can be expected, and giant compounds that deteriorate toughness and corrosion resistance are likely to be produced. but,
Since Cr is activated, it is better not to include it unless there is an immediate need to include it. Therefore, the Mn content is 1 wt% or less, the Cr content is 0.3% or less, and the Zr content is 0.
3wt% or less, (2) content is 0.3u+t% or less.

BはGdと同様に熱中性子吸収能を有する元素であり、
Gdと共に含有させることによりAl−Gd系合金に存
在するA13Gdの晶出化合物を微細均一に分散させて
、熱中性子吸収能の偏在を少なくし、含有量が31%を
越えて含有させると鋳造性が悪くなり、かつ、高温強度
が低下する。よって、B含有量は3u+t%以下とする
B is an element that has thermal neutron absorption ability like Gd,
By including it together with Gd, the crystallized compound of A13Gd present in the Al-Gd alloy is finely and uniformly dispersed, and the uneven distribution of thermal neutron absorption ability is reduced, and when the content exceeds 31%, castability is improved. becomes worse, and high-temperature strength decreases. Therefore, the B content is set to 3u+t% or less.

LiはBと同様に熱中性子吸収能を有する元素であり、
かつ、Al−Gd系合金の常温強度を向上させ、含有量
が3u+L%を越えて含有されると鋳造性および圧延、
押出し等の成形加工性を著しく劣化させ、伸びら著しく
低下して延性が劣化し、構造材としての性能を失なうよ
うになる。よって、Li含金石は3u+t%以下とする
Like B, Li is an element that has thermal neutron absorption ability,
In addition, it improves the room temperature strength of the Al-Gd alloy, and when the content exceeds 3u+L%, it improves castability and rolling properties.
Forming processability such as extrusion is significantly deteriorated, elongation is significantly reduced, ductility is deteriorated, and performance as a structural material is lost. Therefore, the Li-containing goldstone should be 3u+t% or less.

Si、Zn、Cuは常温強度および高温強度を向」ニさ
せる元素であり、Si含有量が]u+I%を越えて含有
されると圧延、押出し等の展伸加工性が悪くなり、Zn
含有量が1u+L%、Cu含有量がbut%を夫々越え
て含有されると一般耐蝕性および耐応力腐蝕割れ性等の
耐蝕性が悪化する。よって、Si含有は1ul1%以下
、Zn含有量は]u+t%以下、Cu含有量は1wt%
以下とする。
Si, Zn, and Cu are elements that improve room-temperature strength and high-temperature strength, and if the Si content exceeds ]u+I%, the stretching processability in rolling, extrusion, etc. will deteriorate, and Zn
If the content exceeds 1u+L% and the Cu content exceeds but%, corrosion resistance such as general corrosion resistance and stress corrosion cracking resistance will deteriorate. Therefore, the Si content is 1ul1% or less, the Zn content is ]u+t% or less, and the Cu content is 1wt%.
The following shall apply.

Niは高温強度を向上させる元素であり、含有量が2u
+t%を越えて含有されると効果が飽和し、かつ、圧延
、押出し等の展伸加工性、耐蝕性を劣化させるようにな
る。よって、Ni含有量は2u+t%以下とする。
Ni is an element that improves high temperature strength, and the content is 2u
If the content exceeds +t%, the effect will be saturated and the stretchability in rolling, extrusion, etc. and corrosion resistance will deteriorate. Therefore, the Ni content is set to 2u+t% or less.

Tiはla塊の組織を微細化して鋳造割れを防止すると
共に高温強度を向上させる元素であり、含有量か111
It%を越えて含有されるとこのような効果は飽和し、
かつ、A I 3T iの晶出化合物が多くなって靭性
を劣化させる。よって、Ti含有量は11%以下とする
Ti is an element that refines the structure of the la mass, prevents casting cracks, and improves high-temperature strength.
When the content exceeds It%, this effect is saturated,
In addition, the crystallized compound of A I 3T i increases and the toughness deteriorates. Therefore, the Ti content is set to 11% or less.

なお、上記に説明した成分以外に、不純物としてFe 
1ust%以下、その池の元素が0,5u+t%以下の
含有であれば、熱中性子吸収能および高温強度の特性に
は影響を与えることはない。
In addition to the components explained above, Fe is an impurity.
If the content of elements in the pond is 0.5 u+t% or less, the properties of thermal neutron absorption capacity and high temperature strength will not be affected.

次に、本発明に係る熱中性子吸収能および高温強度に優
れたアルミニウム合金の製造法について説明する。
Next, a method for manufacturing an aluminum alloy having excellent thermal neutron absorption ability and high-temperature strength according to the present invention will be explained.

上記に説明したような含有成分および成分割合のアルミ
ニウム合金の鋳塊の結晶粒である等軸品が511111
1以下でないと、晶出化合物の分散が均一でなく、高温
強度が低くなり、また、鋳造性および=7− 圧延、押出し等の展伸加−1−性が劣化する。
511111 is an equiaxed product that is a crystal grain of an aluminum alloy ingot with the above-mentioned components and component ratios.
If it is less than 1, the crystallized compound will not be uniformly dispersed, the high-temperature strength will be low, and the castability and 7-stretching properties such as rolling and extrusion will deteriorate.

均熱処理は400 ’C未71シフにJ:び550℃を
越える温度では高温強度が低くなり、また、均熱処理時
間が2時間未満では効果がなくなり、がっ、圧延、押出
し等の展伸加工性が劣化するようになる。
Soaking treatment is carried out at temperatures exceeding 400°C and 71 degrees Celsius, and high temperature strength decreases at temperatures exceeding 550°C.If soaking time is less than 2 hours, the effect is lost, and stretching processes such as rolling, extrusion, etc. Sexuality begins to deteriorate.

よって、アルミニウム合金鋳塊の結晶粒の大きさは5m
+n以下とし、また、均熱処理は400〜550℃の温
度で2時間以上行なうのである。
Therefore, the grain size of the aluminum alloy ingot is 5m.
+n or less, and the soaking treatment is carried out at a temperature of 400 to 550°C for 2 hours or more.

[実 施 例1 本発明に係る熱中性子吸収能および高温強度に優れたア
ルミニウム合金の製造法について実施例を説明する。
[Example 1] An example will be described regarding the method for producing an aluminum alloy having excellent thermal neutron absorption ability and high-temperature strength according to the present invention.

実施例1 第1表に示す含有成分および成分割合のアルミニウム合
金を通常の方法により溶製後、鋳造し厚さ50mmの結
晶粒の大きさが1.++uaのアルミニウム合金鋳塊を
450℃×12時間の均熱処理を行なった後、熱間圧延
により板厚S+n+nの板材とした。
Example 1 An aluminum alloy having the components and proportions shown in Table 1 was melted and cast by a conventional method, and the crystal grain size was 50 mm thick. After soaking an aluminum alloy ingot of ++ua at 450° C. for 12 hours, it was hot rolled into a plate material with a thickness of S+n+n.

次いで、この板材を350”CX2時間の焼鈍を行なっ
て供試材とした。
Next, this plate material was annealed at 350"C for 2 hours to obtain a test material.

これらの供試材について、熱中性子吸収能、250℃の
温度における高温の機械的性質を調査した。
These test materials were investigated for thermal neutron absorption capacity and high temperature mechanical properties at a temperature of 250°C.

その結果を第1表に示す。The results are shown in Table 1.

この第1表から明らかなようtこ、本発明に係る熱中性
子吸収能および高温強度に優れたアルミニウム合金は、
比較合金に比べて熱中性子吸収能および高温の機械的性
質が共に優れていることがわかる。
As is clear from Table 1, the aluminum alloy of the present invention, which has excellent thermal neutron absorption ability and high-temperature strength,
It can be seen that both thermal neutron absorption ability and high-temperature mechanical properties are superior to comparative alloys.

実施例2 実施例1の第1表に示されたNo、2、No、6の合金
について、鋳塊の結晶粒の大きさの異なるアルミニウム
合金鋳塊(厚さ50mm)を350〜600℃の温度に
おいて均熱処理を行なった後、熱間圧延により板厚5m
mの板材を製作し、次いで、この板材を350℃×2時
間の焼鈍を行なって供試材とした。
Example 2 Regarding alloys No., 2, No. 6 shown in Table 1 of Example 1, aluminum alloy ingots (50 mm thick) with different crystal grain sizes were heated at 350 to 600°C. After soaking at high temperature, the plate thickness is 5m by hot rolling.
A plate material of m was manufactured, and then this plate material was annealed at 350° C. for 2 hours to obtain a test material.

これらの供試材について熱中性子吸収能および250℃
の高温における機械的性質を調査し、結果を第2表に示
す。
Thermal neutron absorption capacity and 250°C of these test materials
The mechanical properties at high temperatures were investigated and the results are shown in Table 2.

この第2表から明らかであるが、アルミニウム合金鋳塊
の結晶粒および均熱処理の温度が、本発明に係る熱中性
子吸収能および高温強度に優れたアルミニウム合金の製
造法に規定した条件の範囲外では、熱中性子吸収能は大
体同程度であるが、機械的性質においで著しく劣ってい
ることがわかる。
It is clear from Table 2 that the crystal grains of the aluminum alloy ingot and the temperature of the soaking treatment are outside the range of conditions specified in the method for producing an aluminum alloy with excellent thermal neutron absorption ability and high-temperature strength according to the present invention. It can be seen that although the thermal neutron absorption capacity is roughly the same, the mechanical properties are significantly inferior.

1発明の効果) 以−1−説明したように、本発明に係る熱中性子吸収能
および高温強度に優れたアルミニウム合金の製造法は上
記の構成であるか呟慢れた熱中性子吸収能を有し、かつ
、高温における強度にも優れているという効果を有する
ものである。
1. Effects of the Invention) As explained below-1, the method for producing an aluminum alloy having excellent thermal neutron absorption ability and high temperature strength according to the present invention has the above-mentioned structure or has excellent thermal neutron absorption ability. Moreover, it has the effect of being excellent in strength at high temperatures.

Claims (1)

【特許請求の範囲】 Gd0.2〜30wt%、Mg0.5〜6wt%を含有
し、さらに、 Mn1wt%以下、Cr0.3wt%以下、Zr0.3
wt%、V0.3wt%以下、 B3wt%以下、Li3wt%以下、 Si1wt%以下、Zn1wt%以下、 Cu1wt%以下、Ni2wt%以下、 Ti1wt%以下 のうちから選んだ1腫または2種以上 を含有し、残部Alおよび不可避不純物からなるアルミ
ニウム合金の鋳塊の結晶粒の大きさを5mm以下とし、
400〜550℃の温度において2時間以上の均熱処理
を行なうことを特徴とする熱中性子吸収能および高温強
度に優れたアルミニウム合金の製造法。
[Claims] Contains 0.2 to 30 wt% of Gd, 0.5 to 6 wt% of Mg, and further contains 1 wt% or less of Mn, 0.3 wt% or less of Cr, and 0.3 wt% of Zr.
Contains one or more types selected from the following: wt%, V0.3wt% or less, B3wt% or less, Li3wt% or less, Si1wt% or less, Zn1wt% or less, Cu1wt% or less, Ni2wt% or less, Ti1wt% or less. , the grain size of the aluminum alloy ingot consisting of the remainder Al and unavoidable impurities is set to 5 mm or less,
A method for producing an aluminum alloy having excellent thermal neutron absorption ability and high-temperature strength, the method comprising performing soaking treatment at a temperature of 400 to 550°C for 2 hours or more.
JP23899585A 1985-10-25 1985-10-25 Manufacture of aluminum alloy excellent in thermal neutron absorption property and in strength at high temperature Pending JPS6299445A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23899585A JPS6299445A (en) 1985-10-25 1985-10-25 Manufacture of aluminum alloy excellent in thermal neutron absorption property and in strength at high temperature
DE8686402380T DE3669541D1 (en) 1985-10-25 1986-10-23 ALUMINUM ALLOY WITH BETTER ABSORPTION ABILITY FOR THERMAL NEUTRON.
EP86402380A EP0225226B1 (en) 1985-10-25 1986-10-23 Aluminum alloy with superior thermal neutron absorptivity
US06/923,223 US4806307A (en) 1985-10-25 1986-10-27 Aluminum alloy with superior thermal neutron absorptivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23899585A JPS6299445A (en) 1985-10-25 1985-10-25 Manufacture of aluminum alloy excellent in thermal neutron absorption property and in strength at high temperature

Publications (1)

Publication Number Publication Date
JPS6299445A true JPS6299445A (en) 1987-05-08

Family

ID=17038345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23899585A Pending JPS6299445A (en) 1985-10-25 1985-10-25 Manufacture of aluminum alloy excellent in thermal neutron absorption property and in strength at high temperature

Country Status (1)

Country Link
JP (1) JPS6299445A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925313A (en) * 1995-05-01 1999-07-20 Kabushiki Kaisha Kobe Seiko Sho Aluminum base alloy containing boron and manufacturing method thereof
US6238495B1 (en) * 1996-04-04 2001-05-29 Corus Aluminium Walzprodukte Gmbh Aluminium-magnesium alloy plate or extrusion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925313A (en) * 1995-05-01 1999-07-20 Kabushiki Kaisha Kobe Seiko Sho Aluminum base alloy containing boron and manufacturing method thereof
US6238495B1 (en) * 1996-04-04 2001-05-29 Corus Aluminium Walzprodukte Gmbh Aluminium-magnesium alloy plate or extrusion
US6342113B2 (en) 1996-04-04 2002-01-29 Corus Aluminium Walzprodukte Gmbh Aluminum-magnesium alloy plate or extrusion

Similar Documents

Publication Publication Date Title
US4073667A (en) Processing for improved stress relaxation resistance in copper alloys exhibiting spinodal decomposition
US6261516B1 (en) Niobium-containing zirconium alloy for nuclear fuel claddings
US20080131306A1 (en) Zirconium alloy composition having excellent corrosion resistance for nuclear applications and method of preparing the same
EP0225226B1 (en) Aluminum alloy with superior thermal neutron absorptivity
JP6734867B2 (en) Zirconium alloy for nuclear fuel cladding having excellent corrosion resistance and method for producing the same
KR20130098618A (en) Zirconium alloys for nuclear fuel claddings having a superior oxidation resistance in the reactor accident conditions, zirconium alloy nuclear fuel claddings prepared by using thereof and method of preparing the same
KR101378066B1 (en) Zirconium alloys for nuclear fuel cladding, having a superior corrosion resistance by reducing the amount of alloying elements, and the preparation method of zirconium alloys nuclear fuel claddings using thereof
JP6535752B2 (en) Manufacturing method of zirconium component for nuclear fuel applying multistage hot rolling
KR20020062742A (en) Zirconium alloy highly resistant to corrosion and to sun burst by water and water vapour and method for thermomechanical transformation of the alloy
CN110629128A (en) FeCrAlZr cladding material and preparation method thereof
JPS6137347B2 (en)
JPS6299445A (en) Manufacture of aluminum alloy excellent in thermal neutron absorption property and in strength at high temperature
JPS6214207B2 (en)
JPS6335750A (en) Zr alloy for nuclear reactor fuel clad pipe excellent in corrosion resistance
JPH0114991B2 (en)
JPS6338553A (en) Aluminum alloy having superior thermal neutron absorbing power
JP2674052B2 (en) Zr alloy with excellent corrosion resistance for reactor fuel cladding
KR20140118949A (en) Zirconium alloys for nuclear fuel cladding, having a superior oxidation resistance in a severe reactor operation conditions, and the preparation method of zirconium alloys nuclear fuel claddings using thereof
JPS5850307B2 (en) Structural aluminum-based alloy with excellent neutron shielding effect
KR20130098622A (en) Zirconium alloys for nuclear fuel claddings, having a superior oxidation resistance in the high temperature pressurized water and steam, and the preparation method of zirconium alloys nuclear fuel claddings using thereof
KR20130098621A (en) Zirconium alloys for nuclear fuel cladding, having a superior oxidation resistance in a severe reactor operation conditions, and the preparation method of zirconium alloys nuclear fuel claddings using thereof
JPH02173235A (en) Corrosion resisting zirconium alloy
JPS59123735A (en) Structural aluminum alloy with low radiation characteristic and improved electric resistance
JPS62243733A (en) Aluminum alloy for casting having superior neutron absorbing power
JPH07166280A (en) Highly corrosion resistant zirconium alloy