Nothing Special   »   [go: up one dir, main page]

JPS628904B2 - - Google Patents

Info

Publication number
JPS628904B2
JPS628904B2 JP56015685A JP1568581A JPS628904B2 JP S628904 B2 JPS628904 B2 JP S628904B2 JP 56015685 A JP56015685 A JP 56015685A JP 1568581 A JP1568581 A JP 1568581A JP S628904 B2 JPS628904 B2 JP S628904B2
Authority
JP
Japan
Prior art keywords
negative electrode
fuel
liquid fuel
fuel cell
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56015685A
Other languages
Japanese (ja)
Other versions
JPS57132678A (en
Inventor
Kazuo Iwamoto
Hidejiro Kawana
Tatsuo Horiba
Koki Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56015685A priority Critical patent/JPS57132678A/en
Publication of JPS57132678A publication Critical patent/JPS57132678A/en
Publication of JPS628904B2 publication Critical patent/JPS628904B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 本発明は液体燃料電池に係り、特に、コンパク
トで高性能な液体燃料電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to liquid fuel cells, and more particularly to a compact and high performance liquid fuel cell.

従来の液体燃料電池の断面図を第1図に示す。
該液体燃料電池は、電解液としての硫酸を含浸さ
せたイオン交換膜1を挾んで正極2と負極3が向
かい合つており、正極2の外側には酸化剤室4が
負極3の外側には燃料室5が設けられている。ま
た、酸化剤室4には、酸化剤供給口6および酸化
剤排出口7が設けられており、さらに、燃料室5
には、燃料供給口8および炭酸ガス排出口9が設
けられている。なお、正極2、負極3は共に、電
子伝導体の材料から成る多孔質体である。
A cross-sectional view of a conventional liquid fuel cell is shown in FIG.
In this liquid fuel cell, a positive electrode 2 and a negative electrode 3 face each other with an ion exchange membrane 1 impregnated with sulfuric acid as an electrolytic solution sandwiched therebetween. A fuel chamber 5 is provided. Further, the oxidizer chamber 4 is provided with an oxidizer supply port 6 and an oxidizer discharge port 7, and further includes a fuel chamber 5.
is provided with a fuel supply port 8 and a carbon dioxide gas discharge port 9. Note that both the positive electrode 2 and the negative electrode 3 are porous bodies made of an electron conductor material.

しかるに、このような液体燃料電池は、ポータ
ブル電源としての用途が期待されており、そのた
めにはなるべく小型軽量でなければならない。す
なわち、W/Kg、W/dm3、Wh/Kg、Wh/dm3
値が大でなければならない。しかし、従来の液体
燃料電池では、液体燃料を負極3の全面に迅速か
つ均一に供給するために、燃料室5を充分に広く
とらなければならず、この結果電池全体の重量、
体積が大になり、そのために上記W/Kg、W/d
m3、Wh/Kg、Wh/dm3値が大きく、ポータブル
電源としての本格的な実用化が阻害されていた。
However, such liquid fuel cells are expected to be used as portable power sources, and for this purpose, they must be as small and lightweight as possible. That is, W/Kg, W/dm 3 , Wh/Kg, Wh/dm 3
The value must be large. However, in conventional liquid fuel cells, the fuel chamber 5 must be made sufficiently wide in order to quickly and uniformly supply liquid fuel to the entire surface of the negative electrode 3, and as a result, the weight of the entire cell increases.
The volume becomes large, so the above W/Kg, W/d
The large m 3 , Wh/Kg, and Wh/dm 3 values hindered full-scale practical use as a portable power source.

また、液体燃料電池の負極3における反応は、
負極3の電解液側の面3A、すなわち正極に近い
面で進行するが、従来の負極3では、燃料が負極
3の燃料室側の面3Bから浸入して、多孔質であ
る負極3の内部を横切つて反応が進行しやすい面
まで到達しなければならなかつた。そのために、
反応面への燃料供給の不充分な筒所ができやす
く、電流極度、すなわち、とり出された電源値を
見掛けの電極面積で割つた値も小さかつた。
In addition, the reaction at the negative electrode 3 of the liquid fuel cell is
Fuel progresses from the surface 3A of the negative electrode 3 on the electrolyte side, that is, the surface close to the positive electrode, but in the conventional negative electrode 3, fuel enters from the surface 3B of the negative electrode 3 on the fuel chamber side and enters the inside of the porous negative electrode 3. It was necessary to cross the surface to reach a surface where the reaction could easily proceed. for that,
It was easy to create cylinders where fuel was insufficiently supplied to the reaction surface, and the current limit, that is, the value obtained by dividing the extracted power supply value by the apparent electrode area, was also small.

本発明の目的は、燃料室のスペースを削減する
と共に、電流密度、すなわち電極単位面積当りの
とり出し得る電流を増大させて、小型軽量で高出
力、高エネルギー密度の液体燃料電池を提供する
にある。
An object of the present invention is to reduce the space of the fuel chamber and increase the current density, that is, the current that can be taken out per unit electrode area, to provide a small, lightweight, high output, and high energy density liquid fuel cell. be.

このような目的を達成するために、本発明は、
燃料供給口および炭酸ガス排出口を、負極の電解
液側の面を除く面に接するように設けると共に、
負極の内部に樹枝状の燃料含浸体を備えた構成と
したものである。
In order to achieve such an objective, the present invention
A fuel supply port and a carbon dioxide gas discharge port are provided so as to be in contact with the surface of the negative electrode other than the surface on the electrolyte side,
This structure includes a dendritic fuel-impregnated body inside the negative electrode.

以下、図に示す実施例を用いて本発明の詳細を
説明する。
Hereinafter, details of the present invention will be explained using examples shown in the drawings.

第2図は本発明に係る液体燃料電池の断面図、
第3図は本発明に係る液体燃料電池に用いる負極
の縦断面図、すなわち負極の面に平行な方向の断
面図、第4図は第3図の−線で切断した時の
断面図であり、これらの図において上記第1図と
同一部分には同一符号を付してある。液体燃料電
池は、白金触媒を添加した炭素粉末とポリテトラ
フルオロエチレン微粉末を混合して多孔性炭素基
板に塗布して作つて正極2と、電解液としての硫
酸を含浸されたイオン交換膜1と、内部に樹枝状
の多孔質燃料含浸体10を備えた多孔質炭素板の
負極3を組み合わせることによつて構成されてい
る。多孔質燃料含浸体10としては、炭化ケイ素
の微粉末と少量のポリテトラフルオロエチレン微
粉末を混和した後、熱処理して作つたものであ
る。なお、負極3にも触媒として白金を分散添加
させてある。また、燃料供給口8は、負極3の下
面に接するよう設けられていると共に、炭酸ガス
排出口9は負極3の上面に接するように設けられ
ている。そして、燃料含浸体10は、上記燃料供
給口8の筒所を起点にして負極3内に設けられて
いる。なお、正極2の外側に設けられた酸化剤室
4には、従来と同様、酸化剤供給口6および酸化
剤排出口7が設けられている。
FIG. 2 is a cross-sectional view of a liquid fuel cell according to the present invention;
FIG. 3 is a longitudinal cross-sectional view of the negative electrode used in the liquid fuel cell according to the present invention, that is, a cross-sectional view in a direction parallel to the surface of the negative electrode, and FIG. 4 is a cross-sectional view taken along the - line in FIG. In these figures, the same parts as in FIG. 1 are designated by the same reference numerals. A liquid fuel cell is made by mixing carbon powder to which a platinum catalyst is added and polytetrafluoroethylene fine powder and applying the mixture to a porous carbon substrate to form a positive electrode 2 and an ion exchange membrane 1 impregnated with sulfuric acid as an electrolyte. and a porous carbon plate negative electrode 3 having a dendritic porous fuel-impregnated body 10 therein. The porous fuel-impregnated body 10 is made by mixing fine powder of silicon carbide and a small amount of fine powder of polytetrafluoroethylene, and then heat-treating the mixture. Note that platinum is also dispersed and added to the negative electrode 3 as a catalyst. Further, the fuel supply port 8 is provided so as to be in contact with the lower surface of the negative electrode 3 , and the carbon dioxide gas discharge port 9 is provided so as to be in contact with the upper surface of the negative electrode 3 . The fuel-impregnated body 10 is provided within the negative electrode 3 starting from the cylindrical location of the fuel supply port 8 . Note that the oxidizing agent chamber 4 provided outside the positive electrode 2 is provided with an oxidizing agent supply port 6 and an oxidizing agent discharge port 7, as in the conventional case.

しかるに、上記樹枝状の燃料含浸体10は、第
3図に詳細に示すよう、主幹11、準主幹12、
枝幹13および細線14から構成されており、燃
料供給口10から供給された燃料タンク15内の
液体燃料16は、該燃料含浸体10内を通つて負
極3の全面に均一に供給されることおになる。も
ちろん、主幹11から細線14に至るまでの断面
積が連続的に変化していてもよい。なお、上記液
体燃料16としては、メタノールやヒドラジンあ
るいはこれに他の液体燃料を混合したものが採用
される。
However, as shown in detail in FIG. 3, the dendritic fuel-impregnated body 10 has a main trunk 11, a semi-main trunk 12,
It is composed of a branch trunk 13 and a thin wire 14, and the liquid fuel 16 in the fuel tank 15 supplied from the fuel supply port 10 is uniformly supplied to the entire surface of the negative electrode 3 through the fuel impregnated body 10. Become a baby. Of course, the cross-sectional area from the main stem 11 to the thin wire 14 may change continuously. Note that, as the liquid fuel 16, methanol, hydrazine, or a mixture thereof with another liquid fuel is employed.

今、電極寸法を10cm×15cmにした時、酸化剤室
4の幅が3.0mm、正極2の厚さが0.3mm、電解液を
含浸させたイオン交換膜1の厚さが0.2mm、負極
3の厚、さが2.0mm、燃料室5の厚さが0mmであ
つた。したがつて、単位電池1個当りの厚さ寸法
は5.5mmで、周辺の枠等を無視するとすれば、体
積は82.5cm3である。同様に周辺の枠等を除くと、
この時の重量は90.7gであつた。
Now, when the electrode dimensions are 10 cm x 15 cm, the width of the oxidizer chamber 4 is 3.0 mm, the thickness of the positive electrode 2 is 0.3 mm, the thickness of the ion exchange membrane 1 impregnated with electrolyte is 0.2 mm, and the thickness of the negative electrode 3 is 0.2 mm. The thickness of the fuel chamber 5 was 2.0 mm, and the thickness of the fuel chamber 5 was 0 mm. Therefore, the thickness of one unit battery is 5.5 mm, and if the surrounding frame etc. are ignored, the volume is 82.5 cm 3 . Similarly, if you remove the surrounding frames, etc.
The weight at this time was 90.7g.

この単位電池からは、放電電圧0.40Vで18Aの
電流が得られた。電流密度にして120mA/cm2
ある。したがつて、この単位電池の出力は7.2W
であり、単位体積当りの出力は87.3W/、単位
重量当りの出力は79.4W/Kgとなる。
A current of 18A was obtained from this unit battery at a discharge voltage of 0.40V. The current density is 120mA/cm 2 . Therefore, the output of this unit battery is 7.2W
The output per unit volume is 87.3W/, and the output per unit weight is 79.4W/Kg.

一方、従来の構造の電池では、電極寸法を上記
本発明の実施例と同じ10cm×15cmにした時、酸化
剤室4の幅が3.0mm、正極2の厚さが0.3mm、電解
液を含浸させたイオン交換膜1の厚さが0.2mm、
負極3の厚さが2.0mmと変わらないが、燃料室5
として幅3.0の空間をとらなければならず、この
ため単位電池の厚さは8.5mmとなり、周辺の枠等
を無視した時の単位電池の体積は127.5cm3であ
る。そして、この時の重量は145gである。この
単位電池は放電電圧0.40Vで15Aの電流が得られ
た。電流密度にして10mA/cm2である。したがつ
て、従来の方式をとるこの単位電池の出力は
6.0Wであり、単位体積当りの出力は47.0W/
、単位重量当りの出力は41.4W/Kgである。
On the other hand, in a battery with a conventional structure, when the electrode dimensions are 10 cm x 15 cm, which is the same as in the embodiment of the present invention, the width of the oxidizer chamber 4 is 3.0 mm, the thickness of the positive electrode 2 is 0.3 mm, and the electrode is impregnated with the electrolyte. The thickness of the ion exchange membrane 1 was 0.2 mm,
Although the thickness of the negative electrode 3 remains the same at 2.0 mm, the thickness of the fuel chamber 5
Therefore, the thickness of the unit battery is 8.5 mm, and the volume of the unit battery is 127.5 cm 3 when the surrounding frame etc. are ignored. The weight at this time is 145g. This unit battery obtained a current of 15A at a discharge voltage of 0.40V. The current density is 10 mA/cm 2 . Therefore, the output of this unit battery using the conventional method is
6.0W, and the output per unit volume is 47.0W/
, the output per unit weight is 41.4W/Kg.

本発明の方式は電池と従来の方式の電池とを比
較すると、本発明の方式の電池の方が、従来の方
式の電池に較べて単位体積当りの出力において、
1.86倍、単位重量当りの出力において1.92倍にな
つている。
When comparing the battery of the present invention and the conventional battery, the battery of the present invention has a higher output per unit volume than the conventional battery.
1.86 times, and 1.92 times the output per unit weight.

以上説明したように本発明によれば、燃料室ス
ペースの削減と、電池性能の向上とにより、単位
体積当りの出力および単位重量当りの出力が従来
の液体燃料電池に較べて大幅に増加することにな
るので、小型軽量でかつ高出力、高エネルギー密
度の液体燃料電池を提供できるという極めて優れ
た効果を奏する。
As explained above, according to the present invention, the output per unit volume and the output per unit weight can be significantly increased compared to conventional liquid fuel cells by reducing the fuel chamber space and improving cell performance. Therefore, it is possible to provide a small and lightweight liquid fuel cell with high output and high energy density, which is an extremely excellent effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の液体燃料電池の断面図、第2図
は本発明に係る液体燃料電池の断面図、第3図は
本発明に係る液体燃料電池に用いる負極の縦断面
図、第4図は第3図を−線で切断した時の断
面図である。 1……イオン交換膜、2……正極、3……負
極、4……酸化剤室、5……燃料室、8……燃料
供給口、9……炭酸ガス排出口、10……燃料含
浸体。
FIG. 1 is a cross-sectional view of a conventional liquid fuel cell, FIG. 2 is a cross-sectional view of a liquid fuel cell according to the present invention, FIG. 3 is a longitudinal cross-sectional view of a negative electrode used in a liquid fuel cell according to the present invention, and FIG. 3 is a sectional view taken along the - line in FIG. 3. 1... Ion exchange membrane, 2... Positive electrode, 3... Negative electrode, 4... Oxidizer chamber, 5... Fuel chamber, 8... Fuel supply port, 9... Carbon dioxide gas discharge port, 10... Fuel impregnation body.

Claims (1)

【特許請求の範囲】 1 燃料供給口および炭酸ガス排出口を、負極の
電解液側の面を除く面に接するように設けると共
に、負極の内部に樹枝状の燃料含浸体を備えた構
成としたことを特徴とする液体燃料電池。 2 前記燃料含浸体は、数十μ以下の微細粉末を
焼結して成る多孔質体である特許請求の範囲第1
項記載の液体燃料電池。
[Claims] 1. A fuel supply port and a carbon dioxide gas discharge port are provided so as to be in contact with a surface of the negative electrode other than the surface on the electrolyte side, and a dendritic fuel-impregnated body is provided inside the negative electrode. A liquid fuel cell characterized by: 2. Claim 1, wherein the fuel-impregnated body is a porous body formed by sintering fine powder of several tens of microns or less.
Liquid fuel cell as described in section.
JP56015685A 1981-02-06 1981-02-06 Liquid fuel cell Granted JPS57132678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56015685A JPS57132678A (en) 1981-02-06 1981-02-06 Liquid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56015685A JPS57132678A (en) 1981-02-06 1981-02-06 Liquid fuel cell

Publications (2)

Publication Number Publication Date
JPS57132678A JPS57132678A (en) 1982-08-17
JPS628904B2 true JPS628904B2 (en) 1987-02-25

Family

ID=11895604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56015685A Granted JPS57132678A (en) 1981-02-06 1981-02-06 Liquid fuel cell

Country Status (1)

Country Link
JP (1) JPS57132678A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921551A (en) * 1982-07-28 1984-02-03 Sanyo Electric Co Ltd Manufacture of double-layered transparent plate
JPS5921548A (en) * 1982-07-28 1984-02-03 Sanyo Electric Co Ltd Double-layered transparent plate
WO2009038198A1 (en) * 2007-09-19 2009-03-26 Kabushiki Kaisha Toshiba Fuel cell

Also Published As

Publication number Publication date
JPS57132678A (en) 1982-08-17

Similar Documents

Publication Publication Date Title
US3905832A (en) Novel fuel cell structure
US3188242A (en) Fuel cell battery containing flat carbon electrodes
US4492741A (en) Boron monoxide-hydrogen peroxide fuel cell
US3202546A (en) Electrochemical reaction apparatus
US4271003A (en) Chemoelectric cell
US3364071A (en) Fuel cell with capillary supply means
US4520081A (en) Hydrogen/bromine cell
US3300343A (en) Fuel cell including electrodes having two dissimilar surfaces
US3544375A (en) Rechargeable fuel cell
JPH0529006A (en) Fuel cell
JPS628904B2 (en)
GB1176632A (en) Fuel Cell.
US4181776A (en) Chemoelectric cell
JPH0821415B2 (en) Fuel cell for rebalancing device for secondary battery
US3196048A (en) Cathode catalyst for fuel cells
US3297482A (en) Carbon electrode with polytetrafluoroethylene on one side and platinium on the otherside, fuel cell with same and electrodepositing method of preparing same
FR2296703A1 (en) Electrolytic cell producing hydrogen and oxygen - from steam at 800-1000degrees celsius
GB1080245A (en) Improvements in or relating to the production of electrical power
US3261716A (en) Method of operating a fuel cell containing a sulfuric-nitric acid electrolyte
US4363855A (en) Galvanic primary element
JPS5975569A (en) Storing method of fuel cell
JPH0633284A (en) Water electrolytic cell
JPS6247968A (en) Molten carbonate fuel cell capable of internal reformation
JPS6042589B2 (en) liquid fuel cell
US3296030A (en) Fuel cell with stabilized zirconia electrolyte and nickel-silver alloy anode