JPS6283029A - Method and apparatus for surface modification of solid particle - Google Patents
Method and apparatus for surface modification of solid particleInfo
- Publication number
- JPS6283029A JPS6283029A JP60223158A JP22315885A JPS6283029A JP S6283029 A JPS6283029 A JP S6283029A JP 60223158 A JP60223158 A JP 60223158A JP 22315885 A JP22315885 A JP 22315885A JP S6283029 A JPS6283029 A JP S6283029A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- powder
- impact
- solid particles
- surface modification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Glanulating (AREA)
- Developing Agents For Electrophotography (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、核となる粒子(以下母粒子という)の表面に
あらかじめ微粒子(以下子粒子という)を付着させてお
くか、又は付着させずにおき、該子粒子を母粒子の表面
に埋設又は固着させて、母粒子の表面改質を行なう方法
とその装置に関する。DETAILED DESCRIPTION OF THE INVENTION According to the present invention, fine particles (hereinafter referred to as child particles) are attached to the surface of a core particle (hereinafter referred to as a mother particle) in advance, or fine particles (hereinafter referred to as child particles) are not attached. The present invention relates to a method and an apparatus for modifying the surface of base particles by embedding or fixing them on the surface of base particles.
従来、一般に固体粒子の固結防止、変色変質防止1分散
性の向上、流動性の改善、触媒効果の向上、消化・吸収
の制御、磁気特性の向上、耐光性の向上などを目的とし
て各種の表面改質が、物理吸着法、化学吸着法、真空蒸
着法、静電付着法。Conventionally, various methods have been used to prevent caking of solid particles, prevent discoloration, improve dispersibility, improve fluidity, improve catalytic effect, control digestion and absorption, improve magnetic properties, and improve light resistance. Surface modification methods include physical adsorption, chemical adsorption, vacuum evaporation, and electrostatic adhesion.
溶解物質の被覆法、特殊スプレードライング法などの方
法で行なわれて来た。これらのうち、特に固体粒子の表
面を固体粒子で、即ち、粉体の表面を粉体で表面改質す
る場合は、公知の各種ミキサー型やボールミル型の攪拌
機を使って長時間(数時間〜数十時間)攪拌し、攪拌に
伴なって生ずる静電現象やメカノケミカル現象を応用し
て改質を行なって来たが、母粒子に対する子粒子の密着
性が十分でなく、そのため改質後の粉体を次工程で混合
、混練1分散、ペースト化等の加工をする場合、子粒子
が簡単に脱落したり、成分偏析を生じたりしてその操作
条件を著しく制限するばかりでなく、加工後の生産品の
品質にバラツキが生じる最大の原因となっていた。Methods such as coating with dissolved substances and special spray drying methods have been used. Among these, in particular, when the surface of solid particles is modified with solid particles, that is, the surface of powder with powder, it is necessary to modify the surface of solid particles with powder for a long period of time (several hours to Modification has been carried out by stirring (for several tens of hours) and applying electrostatic and mechanochemical phenomena that occur with stirring, but the adhesion of the child particles to the mother particles is not sufficient, and as a result, after modification. When processing the powder in the next process, such as mixing, kneading, dispersion, and pasting, the child particles may easily fall off or component segregation may occur, which not only severely limits the operating conditions, but also This was the biggest cause of variations in the quality of subsequent products.
さらにまた、上記の各種ミキサー、ボールミル等を使用
した粉体−粉体系の表面改質にあっては、一般に母粒子
表面に対する子粒子の定着力が弱いため、所望の表面改
質を得るためには数時間乃至数十時間を要し、そのため
装置が大型となり、加工効率が決めて悪いなどの問題が
あった。Furthermore, in surface modification of powder-powder systems using the above-mentioned various mixers, ball mills, etc., the fixing force of child particles to the mother particle surface is generally weak, so it is difficult to obtain the desired surface modification. It takes several hours to several tens of hours, and therefore the equipment becomes large and there are problems such as poor processing efficiency.
本発明は前記事情に鑑みてなされたもので、従来技術の
問題点を解消し、第1図に示す如く、母粒子の表面全域
にわたって子粒子を機械的手段により、必要に応じて補
助的手段として熱的手段を用いて強制的に埋設または固
着させて強固に固定化し、極めて短時間(数秒〜数分間
)のうちに均一な安定した粉体粒子の表面改質を行ない
、それによって機能性複合材料(ハイブリッドパウダー
)を得ることができる方法とその装置を提供するもので
、その要旨は、衝撃式打撃手段を用いて、母粒子の表面
に子粒子を埋設又は固着させることを特徴とする粉体粒
子の表面改活方法とその装置にある。The present invention has been made in view of the above circumstances, and solves the problems of the prior art, and as shown in FIG. As a result, the surface of the powder particles is uniformly and stably modified in an extremely short period of time (several seconds to several minutes) by forcibly embedding or fixing them using thermal means, thereby improving functionality. The present invention provides a method and an apparatus for obtaining a composite material (hybrid powder), the gist of which is to embed or fix child particles on the surface of a mother particle using an impact-type impact means. A method and apparatus for surface modification of powder particles.
本発明の方法と装置で表面処理できる代表的母粒子粉体
としては、一般にその粒径が0.1 μ−〜100 μ
−程度であるところの二酸化チタン、酸化鉄などの顔料
、エポキンパウダー、ナイロンパウダー、ポリエチレン
パウダー、ポリス牙しンパウダーなどの合成高分子材料
、及びデンプン、セルロース、シルクパウダーなどの天
然材料、また、代表的子粒子粉体としては、一般に粒径
が0.01μ−〜10μm程度であるところのシリカコ
ロイド粒子。Typical base particle powders that can be surface-treated using the method and apparatus of the present invention generally have a particle size of 0.1 μ to 100 μ.
- Pigments such as titanium dioxide and iron oxide, synthetic polymeric materials such as Epoquin powder, nylon powder, polyethylene powder, and polyethylene powder, and natural materials such as starch, cellulose, and silk powder; A typical child particle powder is a silica colloid particle whose particle size is generally about 0.01 μm to 10 μm.
アルミナコロイド粒子、二酸化チタンパウダ・−2亜鉛
華パウダー、酸化鉄パウダー、雲母パウダー。Alumina colloid particles, titanium dioxide powder/-2 zinc white powder, iron oxide powder, mica powder.
炭酸カルシウムパウダー、硫酸バリウムなどの天然9合
成材料または各種合成顔料などである。しかし、これら
材料に限定されることなく、各種化学工業、電気、磁気
材料工業、化粧品、!!!i料、印刷インキ、及びトナ
ー、色材、繊維、医薬1食品。These include natural and synthetic materials such as calcium carbonate powder and barium sulfate, and various synthetic pigments. However, it is not limited to these materials, and includes various chemical industries, electricity, magnetic materials industries, cosmetics, and more! ! ! i-materials, printing inks, toners, coloring materials, textiles, pharmaceuticals, 1 foods.
ゴム、プラスチックス、窯業などの工業界で使用されて
いる各種材料の各組合わせ成分に適用することができる
。It can be applied to each combination of components of various materials used in industries such as rubber, plastics, and ceramics.
なお、一般に母粒子として大粒径で硬度の小なもの、子
粒子として小粒径で硬度の大なものを用いるが、材料粒
子の大きさの組合わせによっては、母粒子と子粒子が逆
になることもある。即ち、より硬い母粒子の表面に、よ
り軟らかい子粒子を固着・固定化させることもできる。Generally, the mother particles are large in size and have low hardness, and the child particles are small in size and hard. However, depending on the combination of material particle sizes, the mother and child particles may be reversed. Sometimes it becomes. That is, softer child particles can also be fixed and immobilized on the surface of a harder mother particle.
以下、本発明の実施例について図面を参照しながら詳細
に説明する。Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
第2図及び第3図は衝撃式打撃手段として衝撃式粉砕機
を用いた例を示す、企図において、1は本発明方法を実
施するために使用する粉体衝撃装置(代表的な衝撃式粉
砕機)のケーシング、2はその後カバー、3はその前カ
バー、4はケーシング1内にあって高速回転する回転盤
、5は回転盤4の外周に所定間隔を置いて放射状に周設
された複数の衝撃ピンであり、これは一般にハンマー型
またはプレート型のものである。6は回転盤4をケーシ
ング1内に回転可能に軸支持する回転軸、8は衝撃ビン
5の最外周軌道面に沿い、かつそれに対して一定の空間
を置いて周設された衝突リングであり、これは、各種形
状の凹凸型または円周平板型のものを用いる。9は衝突
リングの一部を切欠いて設けた改質粉体排出用の開閉弁
、10は開閉弁9の弁軸、11は弁軸10を介して開閉
弁9を操作するアクチェエータ−213は一端が衝突リ
ング8の内壁の一部に開口し、他端が回転盤4の中心部
付近に開口して閉回路を形成する循環回路、14は原料
ホッパー、15は原料ホッパー14と循環回路13とを
連結する原料供給用のシュート、16は原料計量フィー
ダー、17は原料貯槽である。 1Bは回転盤4の外周
と衝突リング8との間に設けられた衝撃室、19は循環
回路13への循環口を夫々示す、20は改質粉体排出シ
ェード、21はサイクロン、22はロータリーバルブ、
23はバッグフィルター、24はロータリーバルブ、2
5は排風機、31は本発明装置の運転を制御する時限制
tn装置、32はあらかじめは粒子の表面に子粒子を付
着させる必要のある場合に使用する各種ミキサー、電動
乳鉢等公知のプレプロセッサ−を夫々示す。Figures 2 and 3 show an example in which an impact crusher is used as the impact impact means. 2 is a rear cover, 3 is a front cover, 4 is a rotary disk that rotates at high speed within the casing 1, and 5 is a plurality of radially arranged around the outer circumference of the rotary disk 4 at predetermined intervals. impact pin, which is generally of hammer or plate type. Reference numeral 6 designates a rotating shaft that rotatably supports the rotary disk 4 within the casing 1, and 8 designates a collision ring that is disposed along the outermost orbital surface of the impact bin 5 and with a certain space therebetween. , this uses various shapes of concave and convex type or circumferential flat plate type. Reference numeral 9 indicates an on-off valve for discharging reformed powder provided by cutting out a part of the collision ring, 10 indicates a valve shaft of the on-off valve 9, and 11 indicates an actuator 213 for operating the on-off valve 9 via the valve shaft 10; is opened in a part of the inner wall of the collision ring 8, and the other end is opened near the center of the rotary disk 4 to form a closed circuit; 14 is a raw material hopper; 15 is a raw material hopper 14 and a circulation circuit 13; 16 is a raw material measuring feeder, and 17 is a raw material storage tank. 1B is a shock chamber provided between the outer periphery of the rotary disk 4 and the collision ring 8, 19 is a circulation port to the circulation circuit 13, 20 is a modified powder discharge shade, 21 is a cyclone, and 22 is a rotary valve,
23 is a bag filter, 24 is a rotary valve, 2
5 is an exhaust fan, 31 is a time-limited tn device for controlling the operation of the device of the present invention, and 32 is a known preprocessor such as various mixers, electric mortars, etc. used when it is necessary to attach child particles to the surface of particles in advance. - are shown respectively.
上記装置を用いて、本発明の粉体表面改質の方法を実施
する場合、次の要領で操作する。When carrying out the powder surface modification method of the present invention using the above apparatus, the following procedure is performed.
まず、改質粉体排出用の開閉弁9を閉鎖した状態として
おき、必要に応じて不活性ガスを装置内に導入しながら
、駆動手段(図示せず)によって回転軸6を駆動し、改
質処理すべき物質の性質により5層へee〜160va
/secの周速度で回転盤4を回転させる。この際回転
盤4外周の衝撃ビン5の回転に伴って急激な空気・不活
性ガスの気流が生じ、この気流の遠心力に基づくファン
効果によって衝撃室18に開口する循環回路13の循環
口19から循環回路13を巡って回転盤4の中心部に戻
る気流の循環流れ、即ち完全な自己循環の流れが形成さ
れる。First, the opening/closing valve 9 for discharging the modified powder is closed, and while introducing an inert gas into the device as necessary, the rotating shaft 6 is driven by a driving means (not shown) to improve the modification powder. Depending on the nature of the material to be treated, it is possible to
The rotary disk 4 is rotated at a circumferential speed of /sec. At this time, as the impact bottle 5 on the outer periphery of the rotary disk 4 rotates, a rapid airflow of air/inert gas is generated, and the circulation port 19 of the circulation circuit 13 opens into the impact chamber 18 due to the fan effect based on the centrifugal force of this airflow. A circulating flow of air flows from the air through the circulation circuit 13 and back to the center of the rotary disk 4, that is, a completely self-circulating flow is formed.
しかもこの際発生する単位時間当りの循環風量は、衝撃
室と循環系の全容積に較べて著しく多量であるため、短
時間のうちに真人な回数の空気流循環サイクルが形成さ
れることになる。Moreover, since the amount of circulating air generated per unit time is significantly larger than the total volume of the shock chamber and circulation system, a large number of airflow circulation cycles are formed in a short period of time. .
次に、一定量の母粒子の表面に例えば静電現象を利用し
て子粒子を付着させた被処理粉体を、計量フィーダー1
6より原料ホッパー14に短時間で投入する。プレプロ
センサー27を使用する必要のない場合は、母粒子、子
粒子を夫々側々に計量して原料ホッパー14に投入する
。被処理粉体は原料ホンパー14からシェード15を通
り衝撃室18に入る。Next, the powder to be treated, in which child particles are attached to the surface of a certain amount of mother particles using, for example, an electrostatic phenomenon, is transferred to the weighing feeder 1.
6, the raw material is put into the raw material hopper 14 in a short time. When it is not necessary to use the preprosensor 27, the mother particles and child particles are weighed side by side and put into the raw material hopper 14. The powder to be processed passes through the shade 15 from the raw material pumper 14 and enters the impact chamber 18 .
衝撃室18へ送入された粉体粒子群は、ここで高速回転
する回転盤4の多数の衝撃ビン5によって瞬間的な打撃
作用を受け、さらに周辺の衝突リング8に衝突して母粒
子表面の子粒子が選択的に強度の圧縮作用を受ける。そ
して同時に前記循環ガスの流れに同伴して被処理粉体は
循環回路13を循環t、て再び衝撃室18へ戻り、再度
打撃作用を受けるやこの様な衝撃作業が短時間のうちに
連続して何回も繰り返され、子粒子は母粒子の表面へ埋
設または強固に固着される。そしてこの一連の衝撃作業
、即ち母粒子表面に対する子粒子の埋設または固着固定
化作業は、母粒子の全表面が均一に、しかも強固に固定
化されるまで継続させるが、衝撃室と循環系の全容積に
較べて多量のガス(空気及び不活性ガス)が系内を循環
するため、ガスと同伴して循環する被処理粉体(母粒子
と子粒子)は極めて短時間のうちに真人な衝撃回数を受
けることになる。−回分の処理量にもよるが、この表面
固定化に要する時間は被処理粉体の供給時間を含めても
一般に数秒乃至数分の極めて短時間内で終了する。The powder particles sent into the impact chamber 18 are instantaneously impacted by a large number of impact bins 5 on the rotary disk 4 that rotates at high speed, and then collide with the surrounding impact ring 8 to impact the surface of the base particles. The child particles are selectively subjected to strong compression. At the same time, the powder to be treated is circulated through the circulation circuit 13 along with the flow of the circulating gas, and returns to the impact chamber 18 again, and once again receives impact action, such impact operations continue in a short period of time. This process is repeated many times, and the child particles are embedded or firmly attached to the surface of the mother particle. This series of impact operations, that is, embedding or fixation of child particles on the surface of the mother particle, is continued until the entire surface of the mother particle is uniformly and firmly immobilized. Since a large amount of gas (air and inert gas) circulates in the system compared to the total volume, the powder to be processed (mother particles and child particles) that circulates with the gas is completely transformed in a very short time. You will receive a number of shocks. - Although it depends on the amount of treatment per batch, the time required for this surface immobilization is generally completed within an extremely short time of several seconds to several minutes, even including the feeding time of the powder to be treated.
第1図(1)〜(2)は、母粒子aに子粒子す又は子粒
子すおよび異種の子粒子Cを予め静電気により耐着させ
た状態を示すが、上記固定化作業を受けることによって
、仝図(31〜(5)に示すように、母粒子aに子粒子
すが埋設、固着され、さらに、子粒子すと子粒子Cの供
給順序を変えることによって、仝(6)〜f8)に示す
ように母粒子aに互いに異なる子粒子す、cを単層又は
復層に固着させることができる。FIGS. 1 (1) and (2) show a state in which child particles S, child particles S, and child particles C of different types are made to adhere to mother particle a in advance by static electricity. , As shown in Figures (31 to (5)), the child particles are embedded and fixed to the mother particle a, and further, by changing the supply order of the child particles and the child particles C, (6) to f8 ), different child particles S and C can be fixed to a mother particle a in a single layer or in multiple layers.
以上の固定化作業が終了した後は、改質粉体排出用の開
閉弁9を鎖線で示す位置に移動させて開き、固定化処理
された粉体を排出する。この固定化処理された粉体は、
それ自身に作用している遠心力(処理粉体に遠心力が作
用しているところであれば排出弁9の位置は別のところ
でも良い、)と、排風機25の吸引力によって短時間(
数秒間)で衝撃室18及び循環回路13から排出され、
シュート20を通ってサイクロン2I及び循環回路工3
から排出され、シュート20を通ってサイクロン21及
びバッグフィルター23などの粉末捕集装置に誘導され
た後捕集され、ロータリーバルブ22.24を介して系
外に排出される。After the above immobilization work is completed, the on-off valve 9 for discharging the modified powder is moved to the position shown by the chain line and opened, and the powder subjected to the immobilization process is discharged. This immobilized powder is
Due to the centrifugal force acting on itself (as long as the centrifugal force is acting on the processed powder, the discharge valve 9 may be placed in a different position) and the suction force of the exhaust fan 25,
is discharged from the shock chamber 18 and circulation circuit 13 in several seconds),
Cyclone 2I and circulation circuit 3 through chute 20
The powder is discharged from the system, guided through a chute 20 to a powder collecting device such as a cyclone 21 and a bag filter 23, collected, and discharged to the outside of the system via rotary valves 22 and 24.
固定化処理された粉体排出後、開閉弁9は直ちに閉鎖さ
れ、再び計量フィダー16から、次回以降の一定量の被
処理粉体が衝撃室に供給されて同様な工程を経て固定化
処理された粉体が次々と生産される。なお、これら一連
の回分固定化処理操作は、関連機器の動作時間に関連し
て、予め時限設定された時限制御装置31によって制御
され継続される。After discharging the immobilized powder, the on-off valve 9 is immediately closed, and a certain amount of powder to be treated from the next time onward is supplied to the shock chamber from the metering feeder 16 again, and is immobilized through the same process. powder is produced one after another. Note that these series of batch fixing processing operations are controlled and continued by a time limit control device 31 whose time limit is set in advance in relation to the operating time of related equipment.
母粒子表面への子粒子固定化が部分的局部的固定化処理
でよい場合は、第2図の粉体衝撃装置をワンパス式の連
続処理システムとして使用することも出来る。その場合
は第2図における循環口19を閉塞し、開閉弁9を開と
した状態で被処理粉体を原料ホンパー15から連続的に
供給すれば良い。If a partial local immobilization process is sufficient for immobilizing the child particles on the surface of the mother particle, the powder impacting apparatus shown in FIG. 2 can also be used as a one-pass continuous processing system. In that case, the powder to be treated may be continuously supplied from the material pumper 15 with the circulation port 19 in FIG. 2 closed and the on-off valve 9 open.
また、固定化処理操作中、熱的処理を補助的に併用する
必要のある場合(例えば母粒子と子粒子の硬度の差をよ
り大きくする必要のある場合など)は、衝突リング8や
循環回路13をジャケット構造とし、各種の熱媒や冷媒
を通して被処理粉体の固定化処理に都合のよい温度条件
を設定することができる。In addition, during the immobilization treatment operation, if it is necessary to use supplementary thermal treatment (for example, when it is necessary to increase the difference in hardness between the mother particles and child particles), the collision ring 8 or the circulation circuit 13 has a jacket structure, and temperature conditions convenient for fixing the powder to be treated can be set through various heating mediums and coolants.
また、本発明の粉体衝撃装置においては、前記回転盤4
に補助羽根を装着し、あるいは循環回路13の途中に、
たとえば遠心力型プレートファンなどを配置して循環流
に更に強制力を与えることもできる。すなわち、循環風
量を増大させれば単位時間内の循環回数が増加し、従っ
て粉体粒子の衝突回数も増加するので、固定化処理時間
を短縮することができる。Further, in the powder impact device of the present invention, the rotary disk 4
by attaching an auxiliary blade to the auxiliary blade, or in the middle of the circulation circuit 13,
For example, a centrifugal plate fan or the like may be arranged to further force the circulating flow. That is, if the circulating air volume is increased, the number of times of circulation within a unit time increases, and therefore the number of collisions of powder particles also increases, so that the immobilization processing time can be shortened.
次に本発明の粉体衝撃装置において行なう粉体表面の改
質(固定化)作業においては、被処理粉体の固定化中に
おける酸化劣化を防止したり、発火や爆発を防止する目
的で窒素ガスなどの各種の不活性ガスを使用する場合を
説明する。Next, in the powder surface modification (immobilization) work performed in the powder impacting device of the present invention, nitrogen is The case of using various inert gases such as gas will be explained.
第4図は本発明に係る粉体衝撃装置において、この不活
性ガスを使用する実施例を示す、なおこの実施例の説明
に際し、前記実施例と同一部材については同一符号を付
し、説明を省略する。第4図において、26は原料ホッ
パー14の下部に設けた原料供給弁、27は原料供給用
のシュート15に開口する不活性ガスの供給弁、28は
不活性ガス供給源、29は不活性ガスの供給路を示す、
尚、この実施例では循環回路13をケーシングl内に収
納した態様を示す。FIG. 4 shows an embodiment in which this inert gas is used in a powder impacting device according to the present invention. In explaining this embodiment, the same reference numerals are given to the same members as in the previous embodiment, and explanations will be given. Omitted. In FIG. 4, 26 is a raw material supply valve provided at the bottom of the raw material hopper 14, 27 is an inert gas supply valve that opens into the raw material supply chute 15, 28 is an inert gas supply source, and 29 is an inert gas supply valve. indicates the supply route of
Note that this embodiment shows a mode in which the circulation circuit 13 is housed within the casing l.
運転開始に際して、まず、原料供給弁26を閉じ、開閉
弁9を開いたあと、不活性ガスの供給弁27を開き衝γ
室18及び循環回路13内に不活性ガスを充満させてお
く。この固定化作業開始に先立って行なう衝撃室及び循
環回路内への不活性ガスの置換は、通常数分以内で終了
する。When starting the operation, first close the raw material supply valve 26, open the on-off valve 9, and then open the inert gas supply valve 27 to reduce the pressure γ.
The chamber 18 and circulation circuit 13 are filled with inert gas. The substitution of inert gas into the shock chamber and circulation circuit, which is performed prior to the start of this immobilization work, is usually completed within a few minutes.
次に開閉弁9と供給弁27とを同時に閉じたあと、直ち
に原料供給弁26を開いて、予め計量された被処理粉体
をシュート15を通じて衝撃室18に供給する。なお供
給後、供給弁26は直ちに閉の状態に戻し、その信号を
受けて計量フィーダー16は原料ホッパー14に次回の
被処理粉体を計量し供給しておく。Next, after closing the on-off valve 9 and the supply valve 27 at the same time, the raw material supply valve 26 is immediately opened and the pre-measured powder to be processed is supplied to the shock chamber 18 through the chute 15. After supplying, the supply valve 26 is immediately returned to the closed state, and upon receiving this signal, the metering feeder 16 measures and supplies the next powder to be processed to the raw material hopper 14.
以後は、不活性ガスと共に前記実施例の場合と同様に被
処理粉体の衝撃を行ない、被処理粉体は循環回路13内
を循環しながら不活性ガスとの十分な接触を保ちつつ固
定化処理される。次に開閉弁9と供給弁27とを開くと
固定化処理された粉体は、衝撃室18及び循環回路13
からシュート20へ排出され、同時に衝撃室18及び循
環回路13は新らしい不活性ガスで置換される。排出さ
れた固定化粉体は前記実施例と同様に処理される。Thereafter, the powder to be treated is bombarded with an inert gas in the same manner as in the above embodiment, and the powder to be treated is fixed while circulating in the circulation circuit 13 while maintaining sufficient contact with the inert gas. It is processed. Next, when the on-off valve 9 and the supply valve 27 are opened, the immobilized powder is transferred to the shock chamber 18 and the circulation circuit 13.
is discharged into the chute 20, and at the same time the shock chamber 18 and circulation circuit 13 are replaced with fresh inert gas. The discharged fixed powder is treated in the same manner as in the previous example.
以後は開閉弁9及び供給弁27を閉じて原料供給弁26
を開とすれば、次回分の固定化処理操作が進行する。な
お、不活性ガスの供給、停止を含むこれら一連の回分固
定化操作は、前記実施例と同様に時限制御装置31によ
って制御され継続される。After that, close the on-off valve 9 and the supply valve 27 and open the raw material supply valve 26.
If it is opened, the next immobilization processing operation will proceed. Note that this series of batch fixing operations including supply and stop of inert gas are controlled and continued by the time control device 31 as in the previous embodiment.
なお母粒子表面への子粒子固定化が局所的部分の固定化
処理でよい場合は、第4図の粉体衝撃装置をワンパス式
の連続処理システムとして使用することができる。その
場合は第4図における循環回路13を閉塞し、原料供給
弁26及び不活性ガスの供給弁27並び開閉弁9を開と
した状態で被処理粉体を原料ホンパー14から連続的に
一定量の割合で供給すればよい。この際、排風機(第2
図の25)出口の不活性ガスを原料供給シュート15へ
戻す方式を採れば不活性ガスの使用量を節減することに
なり経済的である。If the child particles are immobilized on the surface of the mother particle by local immobilization treatment, the powder impacting apparatus shown in FIG. 4 can be used as a one-pass continuous processing system. In that case, the circulation circuit 13 shown in FIG. It should be supplied at a ratio of . At this time, use the exhaust fan (second
If the method shown in 25) in the figure is to return the inert gas at the outlet to the raw material supply chute 15, the amount of inert gas used can be reduced, which is economical.
上述の如く、本願発明に係る固体(粉体、)粒子の表面
改質の方法とその装置の特長は、衝撃式打撃手段として
の衝撃式粉砕機構の微小粉体粒子に対する強力な衝撃力
と、母粒子と子粒子のもつ硬度の差に着目し、かつ一定
の形状を有する母粒子の全表面に対する衝撃力付与のた
めの衝撃力の大きさそれ自体及び衝撃回数を任意に調節
できることろにある。As mentioned above, the features of the method and device for surface modification of solid (powder) particles according to the present invention are that the impact type crushing mechanism as an impact impact means has a strong impact force on the fine powder particles; Focusing on the difference in hardness between the mother particle and child particles, the size of the impact force itself and the number of impacts can be arbitrarily adjusted to apply impact force to the entire surface of the mother particle having a certain shape. .
また、第1図に示す如く本発明の方法と装置によれば、
各種材料の母粒子に対する子粒子の固定化は単なる一成
分子粒子による単粒子層の固定化処理にどどまらす、二
成分以上の子粒子の固定化、さらには−成分以上の子粒
子による複数層に固定化処理することができる。Furthermore, according to the method and apparatus of the present invention as shown in FIG.
The immobilization of child particles to the mother particles of various materials is limited to the immobilization of a single particle layer using simple single-component child particles, the immobilization of child particles of two or more components, and furthermore, the immobilization of child particles of two or more components. It can be fixed in multiple layers.
また、本発明の方法と装置によれば、各母粒子に対する
固定化子粒子の割合(比率)がそれ程厳密でなくともよ
い場合(即ち、全体としての成分比率が一定であればよ
い場合)は、各種ミキサー。Furthermore, according to the method and apparatus of the present invention, when the proportion (ratio) of immobilized particles to each base particle does not need to be so strict (that is, when the overall component ratio only needs to be constant), , various mixers.
電動乳鉢などのプレプロセッサ−を使用せず、別々に計
量された母粒子粉体と子粒子粉体を直接衝撃室に供給し
て母粒子表面に対する子粒子の固定化処理を行なうこと
ができる。It is possible to immobilize the child particles on the surface of the mother particle by directly supplying separately measured mother particle powder and child particle powder to the impact chamber without using a preprocessor such as an electric mortar.
以上のように、本願発明に係る固体粒子の表面改活方法
と装置によれば、各種粉体材料の組合わせから成る母粒
子に対して子粒子を埋設または強固に固着・固定化させ
る表面の改質処理を行ない、均一で安定した特性を有す
る機能性複合・混成粉体材料(コンポジットまたはハイ
ブリッドパウダー)を極めて短時間で効率よく生産する
ことができる。As described above, according to the method and apparatus for surface modification of solid particles according to the present invention, child particles are embedded in or firmly fixed to the mother particles made of a combination of various powder materials. Through modification treatment, functional composite/hybrid powder materials (composite or hybrid powder) with uniform and stable properties can be efficiently produced in an extremely short time.
また、本発明に係る固体粒子の表面改質装置は、衝撃室
及び循環回路の構造が非常に簡単であり、前カバーを開
くことにより回転盤4を取り外して容易に分解ができる
。そのため装置内の点検並びに清掃が極めて容易であり
、品種切換時の異物混入が避けられることによって広い
範囲の種類の粉体材料の表面改質処理に提供できる。Furthermore, the solid particle surface modification device according to the present invention has a very simple structure of the impact chamber and circulation circuit, and can be easily disassembled by removing the rotary disk 4 by opening the front cover. Therefore, it is extremely easy to inspect and clean the inside of the device, and by avoiding the contamination of foreign matter when changing types, the device can be used for surface modification treatment of a wide range of types of powder materials.
また、不活性ガスを使用する場合にも、効率よく、また
その使用量を最低にすることができる。Furthermore, even when using an inert gas, the amount used can be minimized efficiently.
実施例1
回転盤に周設された8枚のプレート型衝撃ビンの外径が
235fl、循環回路の直径が54.9msである第2
図の粉体衝撃装置を使用した。母粒子として平均粒径d
p50−5μ鴎の球状ナイロン12の表面に平均粒径d
p50−0.3μ−の二酸化チタン子粒子をあらかじめ
ミキサーで付着させたオーダードミクスチャーを夫々下
表に示す処理条件で固定化処理した結果、何れも二酸化
チタン(子粒子)がナイロン12(母粒子、核粒子)の
表面に埋設または強固に固着して固定化され、均一安定
したナイロン12の二酸化チタンによる表面改質粉体を
得た。Example 1 A second example in which the outer diameter of the eight plate-type impact bins installed around the rotary disk is 235 fl, and the diameter of the circulation circuit is 54.9 ms.
The powder impact device shown in the figure was used. Average particle size d as a base particle
Average particle size d on the surface of p50-5μ spherical nylon 12
As a result of immobilizing ordered mixtures in which titanium dioxide child particles with p50-0.3μ- were attached in advance using a mixer under the treatment conditions shown in the table below, titanium dioxide (child particles) was mixed with nylon 12 (mother particles). A uniformly stable powder of nylon 12 surface-modified with titanium dioxide was obtained, which was embedded or firmly fixed on the surface of the nylon 12 (core particles).
ナイロン120触りを核とする二酸化チタン固定イレリ
艶紹牛回路の内容積から算出した。Calculated from the internal volume of a titanium dioxide-fixed irreli luster circuit with a core made of nylon 120.
なお、前記実施例(T−3とT〜4)で得られた固定化
改質後の粉体の走査型電子顕微鏡写真を第5図に示す。Incidentally, scanning electron micrographs of the immobilized and modified powders obtained in the above Examples (T-3 and T-4) are shown in FIG.
第1図(11〜(8)は本発明に係る方法と装置で処理
される各種改質削粉体と改質固定化後の粉体の態様を示
す概念的な説明図、第2図は、本発明に係る粉体衝撃装
置の一実施例を、その前後装置とともに系統的に示した
概念的な説明図、第3図は第2図の側断面説明図、第4
図は同じく不活性ガスを用いる場合の他の実施例の説明
図であり、第5図は表面改質後の粉体の走査型電子顕微
鏡写真を示し、仝図(1)は6000倍、仝図(2)は
20000倍、仝図(3)は40000倍のものを示す
。
a・・・母粒子、 b、c・・・子粒子、l・・
・衝撃式粉砕機。
第i図
第;、λ凶
手続補正書岨釦
昭和60年12月 3日
1、事件の表示
昭和60年特許願第223158号
2、発明の名称
固体粒子の表面改活方法とその装置
3、補正をする者
事件との関係 特許出願人
名称 株式会社 奈良機械製作所
4、代理人 〒107
(ほか2名)
5、補正の対象
補正の内容
明細書第12頁第1O行と第1+行の間に下記を加入す
る。
記
さらにまた、本発明の粉体衝撃装置は、上述した循環回
路を備えたもののみでなく、第2図および第3図の装置
において循環回路を取除いた構造のものも、これを使用
することができる。
手続補正書動式)
%式%
特許庁長官 宇 賀 道 部 殿 帽す1、
事件の表示
昭和60年特許願第223158号
2、 発明の名称
固体粒子の表面改活方法とその装置
3、補正をする者
事件との関係 特許出願人
名称 株式会社 奈良機械製作所
4、代理人 〒107
(ほか2名)
6、補正の対象 明細書の「図面の簡単な説明」
の欄。
補正の内容
明細書第19頁第12行〜第13行に「第5図は表面改
質後の粉体の走査型電子*i鏡写真を示し、」とあるを
下記のとおりに訂正する。
記
第5図は表面改質後の粉体の粒子構造を示すための走査
型電子顕微鏡写真を示し、Fig. 1 (11 to (8)) is a conceptual explanatory diagram showing various modified ground powders processed by the method and apparatus according to the present invention and the form of the powder after modification and immobilization. , a conceptual explanatory diagram systematically showing one embodiment of the powder impact device according to the present invention together with its front and rear devices; FIG. 3 is a side cross-sectional explanatory diagram of FIG. 2;
The figure is an explanatory diagram of another example in which an inert gas is used, and Figure 5 shows a scanning electron micrograph of the powder after surface modification, and Figure (1) is a 6000x magnification. Figure (2) shows a magnification of 20,000 times, and Figure (3) shows a magnification of 40,000 times. a... Mother particle, b, c... Child particle, l...
・Impact crusher. Figure i; Lambda procedural amendment letter 岨燦 December 3, 1985 1, Indication of the case Patent Application No. 223158 of 1985 2, Name of the invention Method and apparatus for surface modification of solid particles 3, Relationship with the case of the person making the amendment Patent applicant name Nara Kikai Seisakusho Co., Ltd. 4, Agent 107 (and 2 others) 5. Specification of contents of amendment subject to amendment, page 12, between line 1O and line 1+ Add the following to . Furthermore, the powder impacting device of the present invention is not only equipped with the above-mentioned circulation circuit, but also the structure of the device shown in FIGS. 2 and 3 with the circulation circuit removed. be able to. Procedural amendment form) % form % Mr. Michibe Uga, Commissioner of the Patent Office, 1.
Display of the case 1985 Patent Application No. 223158 2 Name of the invention Method for surface modification of solid particles and its device 3 Person making the amendment Relationship with the case Patent applicant name Nara Kikai Seisakusho Co., Ltd. 4, Agent 〒 107 (2 others) 6. Subject of amendment “Brief explanation of drawings” in the specification
column. The statement ``Figure 5 shows a scanning electron*i mirror photograph of the powder after surface modification'' on page 19, lines 12 to 13 of the description of the amendment is corrected as follows. Figure 5 shows a scanning electron micrograph to show the particle structure of the powder after surface modification,
Claims (8)
体粒子を埋設又は固着させることを特徴とする固体粒子
の表面改質方法とその装置。(1) A method and apparatus for surface modification of solid particles, characterized by embedding or fixing other solid particles on the surface of solid particles using an impact-type impact means.
おくことを特徴とする特許請求の範囲第(1)項に記載
の固体粒子の表面改質方法とその装置。(2) The method and apparatus for surface modification of solid particles according to claim (1), characterized in that other solid particles are attached to the surface of the solid particles in advance.
とを特徴とする特許請求の範囲第(1)項又は第(2)
項に記載の固体粒子の表面改質方法とその装置。(3) Claims (1) or (2) characterized in that the particles are fused together by heating as an auxiliary means.
A method for surface modification of solid particles and an apparatus therefor described in Section 1.
行なうことを特徴とする特許請求の範囲第(1)項〜第
(3)項のいずれかに記載の固体粒子の表面改活方法と
その装置。(4) A method for surface reforming solid particles according to any one of claims (1) to (3), characterized in that the embedding or fixing step is performed under an inert gas atmosphere. and its equipment.
子と他の固体粒子を送るための供給口と、衝撃室の出口
から上記供給口に連通する循環路を備えることを特徴と
する固体粒子の表面改質とその装置。(5) It is characterized by comprising an impact chamber provided with an impact impact means, a supply port for feeding solid particles and other solid particles into the chamber, and a circulation path communicating from the outlet of the impact chamber to the supply port. surface modification of solid particles and its equipment.
囲第(5)項に記載の固体粒子の表面改質方法とその装
置。(6) The method and apparatus for surface modification of solid particles according to claim (5), characterized in that the method includes heating means.
許請求の範囲第(5)項又は第(6)項に記載の固体粒
子の表面改質方法とその装置。(7) The method and apparatus for surface modification of solid particles according to claim (5) or (6), characterized in that the method includes an inert gas supply means.
範囲第(5)項に記載の固体粒子の表面改質方法とその
装置。(8) The method and apparatus for surface modification of solid particles according to claim (5), which is an impact crusher.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60223158A JPS6283029A (en) | 1985-10-07 | 1985-10-07 | Method and apparatus for surface modification of solid particle |
DE8686112228T DE3687219T2 (en) | 1985-10-07 | 1986-09-04 | METHOD FOR IMPROVING THE SURFACE QUALITY OF SOLID PARTICLES AND DEVICE THEREFOR. |
EP86112228A EP0224659B1 (en) | 1985-10-07 | 1986-09-04 | Method of improving quality of surface of solid particles and apparatus thereof |
CN 86106765 CN1007127B (en) | 1985-05-07 | 1986-10-06 | Method for improving quality of surface of solid particles and apparatus |
US07/183,297 US4915987A (en) | 1985-10-07 | 1988-04-11 | Method of improving quality of surface of solid particles and apparatus thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60223158A JPS6283029A (en) | 1985-10-07 | 1985-10-07 | Method and apparatus for surface modification of solid particle |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6283029A true JPS6283029A (en) | 1987-04-16 |
JPH032009B2 JPH032009B2 (en) | 1991-01-14 |
Family
ID=16793698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60223158A Granted JPS6283029A (en) | 1985-05-07 | 1985-10-07 | Method and apparatus for surface modification of solid particle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6283029A (en) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6177550A (en) * | 1984-09-25 | 1986-04-21 | Mazda Motor Corp | Brake system of car |
JPS62140636A (en) * | 1985-12-13 | 1987-06-24 | Nara Kikai Seisakusho:Kk | Method and device for reforming surface of solid grain |
JPS62209541A (en) * | 1986-03-11 | 1987-09-14 | Toyo Ink Mfg Co Ltd | Electrophotographic toner |
JPS63240937A (en) * | 1986-10-27 | 1988-10-06 | Japan Synthetic Rubber Co Ltd | Microencapsulated fine particle and production thereof |
JPH01196070A (en) * | 1988-02-01 | 1989-08-07 | Canon Inc | Positively charged developer |
JPH01257857A (en) * | 1988-04-07 | 1989-10-13 | Minolta Camera Co Ltd | Toner |
JPH0241210A (en) * | 1988-08-01 | 1990-02-09 | Calp Corp | High function composite material and molded piece thereof |
JPH02194828A (en) * | 1989-01-20 | 1990-08-01 | Nippon Spindle Mfg Co Ltd | Surface improvement of powder and its apparatus |
JPH02261536A (en) * | 1989-03-31 | 1990-10-24 | Kurimoto Ltd | Device for reforming powder surface |
JPH03254834A (en) * | 1990-03-02 | 1991-11-13 | Sangi Co Ltd | Adsorbent |
JPH05281776A (en) * | 1992-04-02 | 1993-10-29 | Tomoegawa Paper Co Ltd | Positive charging color toner |
JPH05317679A (en) * | 1992-05-25 | 1993-12-03 | Hosokawa Micron Corp | Production of composite particles and composite particles obtained by the same |
US5474803A (en) * | 1991-12-25 | 1995-12-12 | Nara Machinery Co., Ltd. | Method for preparing composite particles |
JPH084738B2 (en) * | 1989-08-04 | 1996-01-24 | エルブィエムアー リシェルシェ | Method for producing powder by spraying using at least two kinds of particles |
US5865381A (en) * | 1996-07-30 | 1999-02-02 | Canon Kabushiki Kaisha | Surface treating apparatus for solid particles, surface treating method therefor and method for producing toner |
JP2007291502A (en) * | 2006-03-28 | 2007-11-08 | Brother Ind Ltd | Film-forming apparatus, film-forming method and particle-supplying apparatus |
JP2007301548A (en) * | 2007-02-16 | 2007-11-22 | Dowa Holdings Co Ltd | Metal powder for decomposing organic halogen compound and method for cleaning soil using the same |
JP2009531197A (en) * | 2006-03-29 | 2009-09-03 | ビック−ケミー ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method for producing fine particle composite material |
JP2010066610A (en) * | 2008-09-11 | 2010-03-25 | Sharp Corp | Method for producing toner, toner, developer, developing device and image forming apparatus |
JP2012516235A (en) * | 2009-01-29 | 2012-07-19 | ビー・エイ・エス・エフ、コーポレーション | Mechanically fused materials for pollution reduction in mobile and stationary sources |
WO2012126600A2 (en) | 2011-03-18 | 2012-09-27 | Schaefer Kalk Gmbh & Co. Kg | Microstructured composite particles |
JP2013500942A (en) * | 2009-08-04 | 2013-01-10 | ロレアル | Composite pigment and preparation method thereof |
JP2013014564A (en) * | 2011-07-06 | 2013-01-24 | Nbc Meshtec Inc | Antiviral agent |
JP2013026014A (en) * | 2011-07-21 | 2013-02-04 | Honda Motor Co Ltd | Catalyst for fuel cell and manufacturing method of catalyst for fuel cell |
JP2013209338A (en) * | 2012-03-30 | 2013-10-10 | Nbc Meshtec Inc | Bactericide |
DE102013213645A1 (en) | 2013-07-12 | 2015-01-15 | Siemens Aktiengesellschaft | Highly filled matrix-bonded anisotropic high-performance permanent magnets and method for their production |
JP2015529700A (en) * | 2012-07-02 | 2015-10-08 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company | Method for producing coated filler particles |
WO2018046572A1 (en) | 2016-09-08 | 2018-03-15 | Schaefer Kalk Gmbh & Co. Kg | Composite powder containing calcium carbonate and having microstructured particles |
WO2018046127A1 (en) | 2016-09-08 | 2018-03-15 | Schaefer Kalk Gmbh & Co. Kg | Inhibiting calcium carbonate additive |
WO2018046574A1 (en) | 2016-09-08 | 2018-03-15 | Schaefer Kalk Gmbh & Co. Kg | Calcium-salt-containing composite powder having microstructured particles |
WO2018046269A1 (en) | 2016-09-08 | 2018-03-15 | Karl Leibinger Medizintechnik Gmbh & Co. Kg | Method for producing an implant using a calcium carbonate-containing composite powder comprising microstructured particles |
WO2018046276A1 (en) | 2016-09-08 | 2018-03-15 | Karl Leibinger Medizintechnik Gmbh & Co. Kg | Implant that contains inhibiting calcium carbonate |
WO2018046238A1 (en) | 2016-09-08 | 2018-03-15 | Karl Leibinger Medizintechnik Gmbh & Co. Kg | Implant comprising a calcium salt-containing composite powder having microstructred particles |
WO2018046571A1 (en) | 2016-09-08 | 2018-03-15 | Schaefer Kalk Gmbh & Co. Kg | Composite powder containing calcium carbonate and having microstructured particles having inhibiting calcium carbonate |
WO2018046274A1 (en) | 2016-09-08 | 2018-03-15 | Karl Leibinger Medizintechnik Gmbh & Co. Kg | Method for producing an implant comprising calcium carbonate-containing composite powder having microstructured particles having inhibiting calcium carbonate |
WO2018211626A1 (en) * | 2017-05-17 | 2018-11-22 | 株式会社アドマテックス | Composite particle material, and production method therefor |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3662753B2 (en) * | 1997-12-02 | 2005-06-22 | アイン興産株式会社 | Photocatalyst pulp composition, photocatalytic pulp foam using the photocatalytic pulp composition, photocatalytic pulp molded article using the photocatalytic pulp composition, photocatalytic pulp foam molded article using the photocatalytic pulp foam, and the photocatalytic pulp composition , The photocatalyst pulp foam, the photocatalyst pulp molding, and the method for producing the photocatalytic pulp foam |
JP4596134B2 (en) * | 2004-11-19 | 2010-12-08 | 清水建設株式会社 | Method for improving dispersibility of carbon nanotubes |
JP5377436B2 (en) * | 2010-07-28 | 2013-12-25 | 株式会社奈良機械製作所 | Powder processing equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5037631A (en) * | 1973-08-06 | 1975-04-08 | ||
JPS5256060A (en) * | 1975-11-04 | 1977-05-09 | Nippon Kokuen Kogyo Kk | Method to manufacture ferroussgraphite composite powder for powder metallurgy |
JPS5318650A (en) * | 1976-08-04 | 1978-02-21 | Mitsui Aluminium Kogyo Kk | Granules for molding building materials made by bonding gypsum dihydrate and high polymer and method of manufacture |
JPS60129144A (en) * | 1983-12-16 | 1985-07-10 | 株式会社奈良機械製作所 | Finely pulverizing machine |
-
1985
- 1985-10-07 JP JP60223158A patent/JPS6283029A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5037631A (en) * | 1973-08-06 | 1975-04-08 | ||
JPS5256060A (en) * | 1975-11-04 | 1977-05-09 | Nippon Kokuen Kogyo Kk | Method to manufacture ferroussgraphite composite powder for powder metallurgy |
JPS5318650A (en) * | 1976-08-04 | 1978-02-21 | Mitsui Aluminium Kogyo Kk | Granules for molding building materials made by bonding gypsum dihydrate and high polymer and method of manufacture |
JPS60129144A (en) * | 1983-12-16 | 1985-07-10 | 株式会社奈良機械製作所 | Finely pulverizing machine |
Cited By (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6177550A (en) * | 1984-09-25 | 1986-04-21 | Mazda Motor Corp | Brake system of car |
JPH0376177B2 (en) * | 1985-12-13 | 1991-12-04 | Nara Machinery Co Ltd | |
JPS62140636A (en) * | 1985-12-13 | 1987-06-24 | Nara Kikai Seisakusho:Kk | Method and device for reforming surface of solid grain |
JPS62209541A (en) * | 1986-03-11 | 1987-09-14 | Toyo Ink Mfg Co Ltd | Electrophotographic toner |
JPH0584900B2 (en) * | 1986-03-11 | 1993-12-03 | Toyo Ink Mfg Co | |
JPS63240937A (en) * | 1986-10-27 | 1988-10-06 | Japan Synthetic Rubber Co Ltd | Microencapsulated fine particle and production thereof |
JPH01196070A (en) * | 1988-02-01 | 1989-08-07 | Canon Inc | Positively charged developer |
JPH01257857A (en) * | 1988-04-07 | 1989-10-13 | Minolta Camera Co Ltd | Toner |
JPH0241210A (en) * | 1988-08-01 | 1990-02-09 | Calp Corp | High function composite material and molded piece thereof |
JPH0461688B2 (en) * | 1989-01-20 | 1992-10-01 | Nippon Spindle Mfg Co Ltd | |
JPH02194828A (en) * | 1989-01-20 | 1990-08-01 | Nippon Spindle Mfg Co Ltd | Surface improvement of powder and its apparatus |
JPH02261536A (en) * | 1989-03-31 | 1990-10-24 | Kurimoto Ltd | Device for reforming powder surface |
JPH084738B2 (en) * | 1989-08-04 | 1996-01-24 | エルブィエムアー リシェルシェ | Method for producing powder by spraying using at least two kinds of particles |
JPH03254834A (en) * | 1990-03-02 | 1991-11-13 | Sangi Co Ltd | Adsorbent |
US5474803A (en) * | 1991-12-25 | 1995-12-12 | Nara Machinery Co., Ltd. | Method for preparing composite particles |
JPH05281776A (en) * | 1992-04-02 | 1993-10-29 | Tomoegawa Paper Co Ltd | Positive charging color toner |
JPH05317679A (en) * | 1992-05-25 | 1993-12-03 | Hosokawa Micron Corp | Production of composite particles and composite particles obtained by the same |
US5865381A (en) * | 1996-07-30 | 1999-02-02 | Canon Kabushiki Kaisha | Surface treating apparatus for solid particles, surface treating method therefor and method for producing toner |
JP2007291502A (en) * | 2006-03-28 | 2007-11-08 | Brother Ind Ltd | Film-forming apparatus, film-forming method and particle-supplying apparatus |
JP2009531197A (en) * | 2006-03-29 | 2009-09-03 | ビック−ケミー ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method for producing fine particle composite material |
JP2007301548A (en) * | 2007-02-16 | 2007-11-22 | Dowa Holdings Co Ltd | Metal powder for decomposing organic halogen compound and method for cleaning soil using the same |
JP2010066610A (en) * | 2008-09-11 | 2010-03-25 | Sharp Corp | Method for producing toner, toner, developer, developing device and image forming apparatus |
JP2012516235A (en) * | 2009-01-29 | 2012-07-19 | ビー・エイ・エス・エフ、コーポレーション | Mechanically fused materials for pollution reduction in mobile and stationary sources |
JP2013500942A (en) * | 2009-08-04 | 2013-01-10 | ロレアル | Composite pigment and preparation method thereof |
WO2012126600A2 (en) | 2011-03-18 | 2012-09-27 | Schaefer Kalk Gmbh & Co. Kg | Microstructured composite particles |
US9707734B2 (en) | 2011-03-18 | 2017-07-18 | Schaefer Kalk Gmbh & Co. Kg | Microstructured composite particles |
JP2013014564A (en) * | 2011-07-06 | 2013-01-24 | Nbc Meshtec Inc | Antiviral agent |
JP2013026014A (en) * | 2011-07-21 | 2013-02-04 | Honda Motor Co Ltd | Catalyst for fuel cell and manufacturing method of catalyst for fuel cell |
JP2013209338A (en) * | 2012-03-30 | 2013-10-10 | Nbc Meshtec Inc | Bactericide |
JP2015529700A (en) * | 2012-07-02 | 2015-10-08 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company | Method for producing coated filler particles |
DE102013213645A1 (en) | 2013-07-12 | 2015-01-15 | Siemens Aktiengesellschaft | Highly filled matrix-bonded anisotropic high-performance permanent magnets and method for their production |
WO2015003850A1 (en) | 2013-07-12 | 2015-01-15 | Siemens Aktiengesellschaft | Highly filled matrix-bonded anisotropic high-performance permanent magnets and method for the production thereof |
WO2018046571A1 (en) | 2016-09-08 | 2018-03-15 | Schaefer Kalk Gmbh & Co. Kg | Composite powder containing calcium carbonate and having microstructured particles having inhibiting calcium carbonate |
US11760874B2 (en) | 2016-09-08 | 2023-09-19 | Schaefer Kalk Gmbh & Co. Kg | Composite powder containing calcium carbonate and having microstructured particles having inhibiting calcium carbonate |
WO2018046574A1 (en) | 2016-09-08 | 2018-03-15 | Schaefer Kalk Gmbh & Co. Kg | Calcium-salt-containing composite powder having microstructured particles |
WO2018046269A1 (en) | 2016-09-08 | 2018-03-15 | Karl Leibinger Medizintechnik Gmbh & Co. Kg | Method for producing an implant using a calcium carbonate-containing composite powder comprising microstructured particles |
WO2018046276A1 (en) | 2016-09-08 | 2018-03-15 | Karl Leibinger Medizintechnik Gmbh & Co. Kg | Implant that contains inhibiting calcium carbonate |
WO2018046238A1 (en) | 2016-09-08 | 2018-03-15 | Karl Leibinger Medizintechnik Gmbh & Co. Kg | Implant comprising a calcium salt-containing composite powder having microstructred particles |
US11124654B2 (en) | 2016-09-08 | 2021-09-21 | Karl Leibinger Medizintechnik Gmbh & Co. Kg | Method for producing an implant comprising calcium carbonate-containing composite powder having microstructured particles having inhibiting calcium carbonate |
WO2018046274A1 (en) | 2016-09-08 | 2018-03-15 | Karl Leibinger Medizintechnik Gmbh & Co. Kg | Method for producing an implant comprising calcium carbonate-containing composite powder having microstructured particles having inhibiting calcium carbonate |
WO2018046572A1 (en) | 2016-09-08 | 2018-03-15 | Schaefer Kalk Gmbh & Co. Kg | Composite powder containing calcium carbonate and having microstructured particles |
WO2018046127A1 (en) | 2016-09-08 | 2018-03-15 | Schaefer Kalk Gmbh & Co. Kg | Inhibiting calcium carbonate additive |
JP2019528870A (en) * | 2016-09-08 | 2019-10-17 | カール ライビンガー メディツィンテヒニーク ゲーエムベーハー ウント コーカーゲーKarl Leibinger Medizintechnik Gmbh & Co. Kg | Method for producing an implant using a calcium carbonate-containing composite powder having finely structured particles |
JP2019528850A (en) * | 2016-09-08 | 2019-10-17 | カール ライビンガー メディツィンテクニック ゲーエムベーハー ウント コー. カーゲーKarl Leibinger Medizintechnik GmbH & Co. KG | Implant comprising a composite powder containing calcium salt with microstructured particles |
JP2019530791A (en) * | 2016-09-08 | 2019-10-24 | シェーファー・カーク・ゲーエムベーハー・ウント・コンパニー・カーゲーSchaefer Kalk Gmbh & Co. Kg | Calcium salt-containing composite powder with finely structured particles |
US11548998B2 (en) | 2016-09-08 | 2023-01-10 | Schaefer Kalk Gmbh & Co. Kg | Inhibiting calcium carbonate additive |
US11441008B2 (en) | 2016-09-08 | 2022-09-13 | Schaefer Kalk Gmbh & Co. Kg | Composite powder containing calcium carbonate and having microstructured particles |
US11352491B2 (en) | 2016-09-08 | 2022-06-07 | Schaefer Kalk Gmbh & Co. Kg | Calcium-salt-containing composite powder having microstructured particles |
US11318229B2 (en) | 2016-09-08 | 2022-05-03 | Karl Leibinger Medizintechnik Gmbh & Co. Kg | Method for producing an implant using a calcium carbonate-containing composite powder comprising microstructured particles |
WO2018211626A1 (en) * | 2017-05-17 | 2018-11-22 | 株式会社アドマテックス | Composite particle material, and production method therefor |
US10619013B2 (en) | 2017-05-17 | 2020-04-14 | Admatechs Co., Ltd. | Composite particulate material and production process for the same, composite-particulate-material slurry, and resinous composition |
TWI687295B (en) * | 2017-05-17 | 2020-03-11 | 日商亞都瑪科技股份有限公司 | Composite particle material and manufacturing method thereof, composite particle material slurry, and resin composition |
JPWO2018212279A1 (en) * | 2017-05-17 | 2019-11-07 | 株式会社アドマテックス | Composite particle material and method for producing the same, composite particle material slurry, resin composition |
KR20190124808A (en) * | 2017-05-17 | 2019-11-05 | 가부시키가이샤 아도마텍쿠스 | Composite particle material and its manufacturing method, composite particle material slurry, resin composition |
WO2018212279A1 (en) * | 2017-05-17 | 2018-11-22 | 株式会社アドマテックス | Composite particle material, production method therefor, composite particle material slurry, and resin composition |
Also Published As
Publication number | Publication date |
---|---|
JPH032009B2 (en) | 1991-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6283029A (en) | Method and apparatus for surface modification of solid particle | |
US4915987A (en) | Method of improving quality of surface of solid particles and apparatus thereof | |
EP0241930B1 (en) | Particulate material treating apparatus | |
US6156114A (en) | Treatment of deagglomerated particles with plasma-activated species | |
US6383301B1 (en) | Treatment of deagglomerated particles with plasma-activated species | |
JPS62250942A (en) | Method for spreading and fixing metal to surface of solid particle | |
JPH08503721A (en) | Manufacturing method of coating material | |
EP0555947A1 (en) | Method for surface treatment of solid Particles and apparatus therefor | |
JPS62140636A (en) | Method and device for reforming surface of solid grain | |
JP2941081B2 (en) | Method for suppressing increase in amorphous ratio of crystalline organic compound and recrystallization | |
JPS62262737A (en) | Method for reforming surface of solid particle and its apparatus | |
JPS62298443A (en) | Method for reforming surface of solid particle | |
JPS62221434A (en) | Treatment of making micro-solid particle globular and device therefor | |
JPH0816795B2 (en) | Toner manufacturing method and apparatus | |
KR900001366B1 (en) | Surface treating method of the solid particles and apparatus there for | |
JPH05168895A (en) | Method for modifying surface of solid grain | |
KR100665042B1 (en) | Polymer macroparticle of which surface is modified by mesoparticle and nanoparticle, nanoparticle-polymer composite using the same, and preparation thereof | |
RU2047362C1 (en) | Method and device for treating solid particle surface | |
WO2000050174A1 (en) | Particle-shaped material treatment device | |
JPH0463124A (en) | Method for binding solid grains with each other | |
JPH0275336A (en) | Composite heat sensitive powder | |
JP2004202305A (en) | Method and machine for crushing resin | |
EP0880404A1 (en) | Process for producing fused particle agglomerates | |
JPH08131818A (en) | Powder treating device | |
JP2005119930A (en) | Method for hydrophilizing carbon nanotube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |