Nothing Special   »   [go: up one dir, main page]

JPS6281518A - Method for removing set error in measurement of shape - Google Patents

Method for removing set error in measurement of shape

Info

Publication number
JPS6281518A
JPS6281518A JP22144285A JP22144285A JPS6281518A JP S6281518 A JPS6281518 A JP S6281518A JP 22144285 A JP22144285 A JP 22144285A JP 22144285 A JP22144285 A JP 22144285A JP S6281518 A JPS6281518 A JP S6281518A
Authority
JP
Japan
Prior art keywords
measurement
rotation
workpiece
component
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22144285A
Other languages
Japanese (ja)
Other versions
JPH0797027B2 (en
Inventor
Masahiko Kato
正彦 加藤
Shuri Sekiguchi
修利 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP22144285A priority Critical patent/JPH0797027B2/en
Publication of JPS6281518A publication Critical patent/JPS6281518A/en
Publication of JPH0797027B2 publication Critical patent/JPH0797027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To make it possible to measure a shape with high accuracy, by calculating the axial shift of a measuring system and a component of symmetry of rotation unrelated to the azimuth of the mount error of a work and further calculating a component of asymmetry of rotation relating to the azimuth. CONSTITUTION:In measuring the shape of a work 2 having a surface 3 to be inspected, the measuring points on four arbitrary azimuths crossing at right angles to each other from a measuring part, that is, black round spot rows at the intersecting points of the straight lines with curves in a drawing are selected and the arithmetic mean of the measured values in four azimuths on each annulus 4 is calculated. From the mean value, the shift of the rotary axis of a measuring system and the component of symmetry of rotation unrelated to an azimuth in the mount error of the work are calculated by a method of least squares to perform the correction of the measured value and, next, the component of asymmetry of rotation relating to the azimuth in the mount error of the work is calculated using the corrected measured value to perform the correction of the measured value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は形状測定における設定誤差を除去する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for eliminating setting errors in shape measurement.

〔従来の技術〕[Conventional technology]

形状測定ではワークの取付誤差や測定系の軸合せの不良
が測定値の系統的誤差の要因となシ、形状について誤っ
た情報を与えるが、特に非球面レンズや金型などの表面
形状の測定では高精度の測定が要求されるため重要な課
題となる。
In shape measurement, errors in mounting the workpiece and poor alignment of the measurement system can cause systematic errors in measured values and give incorrect information about the shape, but this is especially true when measuring the surface shape of aspherical lenses, molds, etc. This is an important issue because highly accurate measurements are required.

これらのうち簡単なもの、たとえばワークを固定して三
次元測定器で形状を計る場合とか、ワークの断面のみを
測定する場合などにみられる例では、例えば第7図の1
で示す測定値が得られる。第7図においてX、Y軸は測
定系の座標軸で、測定結果はワークが傾いて取付けられ
ているととを示し、簡単な演算によシ新らしい座標系x
l 、Y/を定めることができる。あるいは真円度測定
器などにみられる例では測定値にフーリエ分析を施して
偏心量を求め測定値から偏心の影響を除去することがで
きる。このように簡単な例ではワークの取付誤差の除去
方法は公知であるが、被検面全面を走査する一般の場合
については従来明らかにされていない。
Simple examples of these, such as those seen when fixing a workpiece and measuring its shape with a three-dimensional measuring device, or when measuring only the cross section of a workpiece, are shown in Figure 7.
The measured value shown is obtained. In Fig. 7, the X and Y axes are the coordinate axes of the measurement system, and the measurement result shows that the workpiece is installed at an angle.
l, Y/ can be determined. Alternatively, in the case of a roundness measuring device, it is possible to perform Fourier analysis on the measured value to determine the amount of eccentricity and remove the influence of eccentricity from the measured value. In such a simple example, a method for eliminating workpiece mounting errors is known, but a general case in which the entire surface to be inspected is scanned has not been clarified.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

被検面全体を走査して、全面の情報を得る測定に於て、
たとえば2種類の回転を組合わせて走査する方式を採用
した場合、測定時に不可避的に生ずる2種の回転軸間の
軸ずれやワークの取付誤差を測定値から自動的に検出し
、該取付誤差による影響を補正する手段については従来
知られていない。このためワーク取付作業や機械の調整
に多大な労力を要した。
In measurements that scan the entire surface to be tested and obtain information on the entire surface,
For example, if a scanning method is adopted that combines two types of rotation, the axis misalignment between the two types of rotation axes and workpiece installation errors that inevitably occur during measurement are automatically detected from the measured values, and the installation errors are automatically detected. Conventionally, there is no known means for correcting the influence of For this reason, a great deal of effort was required to attach the workpiece and adjust the machine.

そこで本発明は上記手段を得ることによシ。Therefore, the present invention is achieved by obtaining the above means.

ワーク取付けの作業を容易化でき、作業者の負担を軽減
し得ると共に、高精度な形状測定を可能にすることを目
的とする。
The object of the present invention is to facilitate the work of mounting a workpiece, reduce the burden on the worker, and enable highly accurate shape measurement.

〔問題点を解決するための手段および作用〕被検面全面
を走査する方法としては直交する2方向での直線走査の
組合せによる場合と2種類の回転を組合せる場合とに大
きく分けられるが、本発明は後者の場合に摘要される。
[Means and actions for solving the problem] Methods for scanning the entire surface to be inspected can be roughly divided into two methods: a combination of linear scanning in two orthogonal directions, and a combination of two types of rotation. The invention is summarized in the latter case.

本発明の詳細な説明するだめの概念図を第1図(龜バb
)に示す。同図(、)に示す平凸状のワーク2の凸面の
形状、いいかえると被検面3を測定する場合を考える。
A conceptual diagram for explaining the present invention in detail is shown in FIG.
). Consider the case where the shape of the convex surface of the plano-convex workpiece 2 shown in FIG.

同図(b)は同図(、)を矢印の方向から見た場合の測
定点の輪帯状軌跡4を示す。これらの軌跡の最外側のも
のはワーク外形5の近傍に達しておシ、ワーク有効径ま
での測定を可能としていることを示す。これらの測定点
から任意のの直交する4方位上の測定点、いいかえると
第1図6)の直線と曲線との交点の黒丸の点列を選び出
し、これらの各輪帯上の4方位の測定値の相加平均を求
める。これらの平均値から最小自乗法によシ測定系の回
転軸間のずれ、およびワークの取付誤差の内、方位によ
らない回転対称な成分を求めて測定値の補正を行ない、
次に補正された測定値を用いてワーク取付誤差の内、方
位に関係する回転非対称な成分を求め、測定値の補正を
行なう。このように、測定系の軸間のずれとワークの取
付誤差の方位によらない回転対称な成分とを組合わせる
ことは最小自乗法を摘要する際に未知数が互いに直交す
る関係にあることが解が収束するために必要であるため
である。
Figure (b) shows the annular locus 4 of the measurement points when the figure (,) is viewed from the direction of the arrow. The outermost one of these trajectories reaches the vicinity of the workpiece outline 5, indicating that it is possible to measure up to the effective diameter of the workpiece. From these measurement points, select measurement points in four orthogonal directions, in other words, select the black circle points at the intersections of the straight lines and curves in Figure 1 6), and measure the four directions on each of these annular zones. Find the arithmetic mean of the values. From these average values, the deviation between the rotation axes of the measurement system and the installation error of the workpiece are determined by the least squares method to find rotationally symmetrical components that are independent of orientation, and the measured values are corrected.
Next, using the corrected measured values, a rotationally asymmetrical component related to the orientation of the workpiece mounting error is determined, and the measured values are corrected. In this way, by combining the misalignment between the axes of the measurement system and the rotationally symmetrical component of the workpiece installation error, which is independent of orientation, it can be solved that the unknowns are orthogonal to each other when calculating the least squares method. This is because it is necessary for convergence.

本発明は、上述のように、被検面3上の測定点列から任
意の直交する4方位上の測定点を選び、これらの各輪帯
状の4方位の測定値の相加平均を求め、該平均値から測
定系の回転軸間の軸ずれおよびワークの取付誤差の内、
方位によらない回転対称な成分とを求めて測定値の第1
次補正を行ない、次に補正された測定値を求めてワーク
取付誤差の内、方位に関係する回転非対称な成分を求め
第2次の測定値の補正を行なうことを特徴とする。
As described above, the present invention selects measurement points in four arbitrary orthogonal directions from the measurement point sequence on the test surface 3, calculates the arithmetic average of the measured values in each of these four annular directions, From this average value, the deviation between the rotating axes of the measurement system and the installation error of the workpiece,
The first component of the measured value is
The present invention is characterized in that a second correction is performed, and then a corrected measured value is obtained, and a rotationally asymmetric component related to the orientation of the workpiece mounting error is obtained, and the second measured value is corrected.

〔実施例〕〔Example〕

第2図は本発明の一実施例の測定系を示す図である。回
転を組合せて被検面3を走査するとき、干渉計を固定し
て被検面をその対称軸を回転軸として回転させ乍ら、さ
らにその近似曲率中心を軸として回転する場合と、回転
する被検面に対して干渉計を該近似曲率中心を中心とし
て回転させる場合とがある。第2図は後者の例を示す。
FIG. 2 is a diagram showing a measurement system according to an embodiment of the present invention. When scanning the test surface 3 by combining rotations, there are cases in which the interferometer is fixed and the test surface is rotated around its axis of symmetry as the rotation axis, and then further rotated around its approximate center of curvature, and when the interferometer is rotated. In some cases, the interferometer is rotated about the approximate center of curvature with respect to the surface to be inspected. FIG. 2 shows an example of the latter.

ワーク2は回転軸受8に取付げられワーク回転軸9のま
わ、DK回転できるようになっている。干渉計6はたと
えば非接触の光プローブ2を有し、−軸スライドテーブ
ル10を介してロータリテーブル11に保持されている
。該ロータリテーブル11はN’Cテーブル13に固定
されている。ロータリーテーブル回転軸12は被検面3
の近似曲率中心の極く近傍を通るように予備設定される
。−軸スライドテーブル10は被検面3と光プローブ7
との位置関係を調整する役割をなす。回転軸受8は図示
されていない測定機の主柱に固定されている。
The workpiece 2 is attached to a rotation bearing 8 and can be rotated DK around a workpiece rotation shaft 9. The interferometer 6 has, for example, a non-contact optical probe 2, and is held on a rotary table 11 via a -axis slide table 10. The rotary table 11 is fixed to an N'C table 13. The rotary table rotation axis 12 is the surface to be inspected 3
is preset so that it passes very close to the approximate center of curvature. - The axis slide table 10 is connected to the test surface 3 and the optical probe 7.
It plays the role of adjusting the positional relationship with the The rotation bearing 8 is fixed to a main column of a measuring machine (not shown).

第3図は上記第2図の測定系による測定の概念を示す図
である。第3図は第2図を上かちみた場合に相当する図
である。被検面3はワーク回転軸9のまわシに回転可能
となっている◇ロータリテーブルの回転軸12は図の0
1点を通シ紙面に垂直になりている。点0は被検面3の
近似曲率中心でワークの取付誤差のため一般にワーク回
転軸9上にはない。またO′も軸ずれのためワーク回転
軸9上にはない。図示されていない干渉計は光プローブ
1を有し、ロータリテーブル回転軸12のまわシに回転
できるようになっている。たとえば光プローブ7は図の
実線の位置から点線の位置までθだけ矢印で示されたよ
うに回転する。この位置でロータリテープ々を停止して
被検面3を回転させると第1図(b)に示した測定点の
輪帯状軌跡4がえられる。この操作を有効径いっばいま
で繰シ返して一般に測定は完了する。図は説明の便宜上
誇張されて描かれているが、実際は点0,0′はロータ
リテーブル回転軸12の極く近傍にあシ、通常数ミクロ
ン以内に収められている。
FIG. 3 is a diagram showing the concept of measurement using the measurement system shown in FIG. 2 above. FIG. 3 is a diagram corresponding to the top view of FIG. 2. The surface to be inspected 3 can be rotated around the work rotation axis 9 ◇The rotation axis 12 of the rotary table is at 0 in the figure.
One point is perpendicular to the plane of the paper. Point 0 is the approximate center of curvature of the surface to be inspected 3 and generally does not lie on the workpiece rotation axis 9 due to workpiece installation errors. Further, O' is also not on the work rotation axis 9 due to axis misalignment. An interferometer (not shown) has an optical probe 1 and is rotatable about a rotary table rotation axis 12. For example, the optical probe 7 rotates by θ from the position indicated by the solid line in the figure to the position indicated by the dotted line as indicated by the arrow. When the rotary tapes are stopped at this position and the surface to be tested 3 is rotated, a ring-like locus 4 of measurement points as shown in FIG. 1(b) is obtained. This operation is repeated until the effective diameter is reached, and the measurement is generally completed. Although the figures are exaggerated for convenience of explanation, in reality, points 0 and 0' are located very close to the rotary table rotation axis 12, usually within a few microns.

軸ずれが存在する時に生ずる測定誤差のようすを第4図
に示す。説明の便宜上、被検面3の近似曲率中心Oはワ
ーク回転軸上にあるものとする。ロータリテーブル回転
軸12はO′を通シ、紙面に垂直になっているが、一般
にワーク回転軸9上にはない。0とO′のずれ量を直交
する2方向に分け、図のようにEP、δとする。被検面
3上の一点をPとするとEP、δのため0′PはOPと
等しくない。このため測定値に手続的誤差を生じ、形状
の認識に誤った情報を与える。
Figure 4 shows the measurement error that occurs when axis misalignment exists. For convenience of explanation, it is assumed that the approximate center of curvature O of the surface to be inspected 3 is on the work rotation axis. The rotary table rotation axis 12 passes through O' and is perpendicular to the plane of the paper, but generally does not lie on the workpiece rotation axis 9. The amount of deviation between 0 and O' is divided into two orthogonal directions, and they are defined as EP and δ as shown in the figure. If one point on the surface 3 to be inspected is P, 0'P is not equal to OP because EP and δ. This causes procedural errors in the measured values, giving incorrect information to shape recognition.

第5図に回転非対称な取付誤差がある場合の測定誤差の
ようすを示す。簡単のためKO’はワーク回転軸9上に
ある場合、いいかえるとEP;0の場合を示す。被検面
3の近似曲率中心0がワーク回転軸9から一定ticY
45目]肩5i−だけ横ずれしている場合を考える。被
検面3を半回転させると、OはOI′に移動し、被検面
3は実線の位置から点線の位置に移動する。被検面上の
一点をPとすると半回転後はPはP′に移動する。
Figure 5 shows the measurement error when there is a rotationally asymmetric installation error. For the sake of simplicity, the case where KO' is on the work rotation axis 9, or in other words, the case where EP; 0, is shown. Approximate curvature center 0 of test surface 3 is constant ticY from work rotation axis 9
45th] Consider a case where shoulder 5i- is laterally displaced. When the test surface 3 is rotated by half a rotation, O moves to OI', and the test surface 3 moves from the position of the solid line to the position of the dotted line. Let P be a point on the surface to be inspected, and after half a rotation, P moves to P'.

このため測定値は被検面30回転と共に最大pp’だけ
変化し、測定値に系統的誤差を生ずる。
Therefore, the measured value changes by a maximum of pp' as the surface to be inspected rotates 30 times, causing a systematic error in the measured value.

次に本発明の設定誤差除去方法の具体的手段を示す。測
定値を A(J、I)、  J:方位、l:輪帯番号(θの関数
)とする。軸ずれEP、δが小さい時は近似的に次式が
成立する。
Next, specific means of the setting error removal method of the present invention will be described. Let the measured value be A(J, I), J: direction, l: ring number (function of θ). When the axis deviation EP, δ is small, the following equation approximately holds true.

ただし右辺第1項は4方位の相加平均をとることを表わ
し、AS(I)は0′と0が一致した際の被検面3の設
計値から定まるOP力方向非球面量に相当する。左辺は
測定開始時(θ=0)てカウンタ値をOにリセットする
場合を示す。輪帯番号工はθの関数であるから(1)式
は種々の0について等式が成立し未知数はEPとδの二
つであるから最小自乗法によシこれらを求めることがで
きる。この時、EPとδとは軸ずれの直交す右2成分で
あるため、解の収束性はよい。(1)式の根拠は各輪帯
につき4万位の平均をとるとワークの取付誤差の方位に
関係した部分がitはキャンセルされることによる。
However, the first term on the right side represents taking the arithmetic average of the four directions, and AS(I) corresponds to the aspheric amount in the OP force direction determined from the design value of the test surface 3 when 0' and 0 match. . The left side shows the case where the counter value is reset to O at the start of measurement (θ=0). Since the ring number is a function of θ, equation (1) holds true for various 0s, and since there are two unknowns, EP and δ, these can be found by the method of least squares. At this time, since EP and δ are two orthogonal right components of axis deviation, the convergence of the solution is good. The basis for equation (1) is that when an average of about 40,000 points is taken for each ring zone, the part of the workpiece installation error related to the orientation is canceled out.

軸ずれEP、δが求められると(1)式を利用して全測
定値の補正をすることができる。補正された測定値をA
’(J、I)とすると、これらを用いて次に方位に関係
した取付誤差を求めることができる。以下の手法は誤差
論に於て測定される量が未知量の線型関数でない一般の
場合の最小自乗法として公知の手法である。方位に関係
し。
Once the axis deviation EP, δ is determined, all measured values can be corrected using equation (1). The corrected measurement value is A
'(J, I), then using these, the mounting error related to the orientation can be determined. The following method is known as the method of least squares in general cases where the measured quantity is not a linear function of an unknown quantity in error theory. related to direction.

た取付誤差は非球面レンズのように頂点が明確に定義さ
れるものでは、頂点の位置ずれを定め1  ’: /”
l /rX  αh 伽 b    1山如ト而n)つ
→壬Qル市〃)士d1 ゴー ζミ シζる三つの角度
があれば全て定められる。前者のひとつはδと概念が重
複するため省略でき、後者の一つは被検面3をワーク回
転軸のまわりに回転して測定するため省略することがで
きる。
For lenses with clearly defined apexes, such as aspherical lenses, the mounting error is determined by determining the positional deviation of the apex.
l / r The former one can be omitted because the concept overlaps with δ, and the latter one can be omitted because the test surface 3 is rotated around the workpiece rotation axis for measurement.

このため前者についてはEX 、 EY、後者について
はα、γのそれぞれ二つずつあればよいことがわかる。
Therefore, it can be seen that it is sufficient to have two each of EX and EY for the former, and two each of α and γ for the latter.

ここにEX、EYはワークの回転対称軸を2軸とした時
、これに垂直なXY面内でのワークの頂点の横ずれ量の
X、Y成分、α、γは、被検面3の回転対称軸の傾きを
表わすもので、αはX軸のまわシの回転、γはY軸のま
わ)の回転に対応する。
Here, EX and EY are the X and Y components of the amount of lateral deviation of the apex of the workpiece in the XY plane perpendicular to the two axes of rotational symmetry of the workpiece, and α and γ are the rotation of the test surface 3. It represents the inclination of the axis of symmetry, where α corresponds to the rotation around the X axis and γ corresponds to the rotation around the Y axis.

Lを被検面3の設計値とワークの取付誤差が知られてい
る時、計算によシ求められる測定値の期待値とすれば、 (2) L(JtItδ’ 、EX、EY、α、γ)−
A’(J、I)。
If L is the expected value of the measured value obtained by calculation when the design value of the test surface 3 and the mounting error of the workpiece are known, then (2) L(JtItδ', EX, EY, α, γ)−
A' (J, I).

δ/:δの残渣 りは一般には取付誤差の複雑な関数であるが取付誤差の
近似値がわかっている場合はそのまわりでテーラ−展開
で知 ただし、Elは各取付誤差を略記したものでEioはそ
れぞれの近似値を表わし、 ΔElは近似値からのずれ量、 係数の近似値における値を示す (2) t (3)式から簡単な変形でただし a(J、I) =A’ (J、I)−LO(J、I)L
o(JeI):(3)式右辺第1項 (4)式に於てΔEi以外の他の量は被検面の設計値が
知られている場合には計算によシ求めることができるの
で各J、Iに於ける測定値を用いて最小自乗法的に求め
ることができる。輪帯数Iとしては未知の取付誤差以上
の個数があればよいが通常10個位が選ばれる。また実
際にはδ′EX、iの組とa’ 、 EY 、αの組と
に分けて最小自乗法を摘要する。この理由は第6図に示
されるように測定系の座標軸をx、y、zとした時、γ
は2軸のまわシの回転であるから便宜上図のようにrの
ベクトルを定義するならばδ’、EX。
δ/: The residue of δ is generally a complex function of the installation error, but if the approximate value of the installation error is known, it can be found by Taylor expansion around it. However, El is an abbreviation of each installation error. Eio represents each approximate value, ΔEl represents the amount of deviation from the approximate value, and represents the value of the approximate value of the coefficient (2) t With a simple modification from equation (3), a (J, I) = A' ( J,I)-LO(J,I)L
o(JeI): The first term on the right side of equation (3) In equation (4), other quantities other than ΔEi can be calculated by calculation if the design value of the test surface is known. It can be determined using the least squares method using the measured values at each J and I. The number I of rings should be greater than the unknown installation error, but usually about 10 rings are selected. In fact, the least squares method is divided into a set of δ'EX, i and a set of a', EY, α. The reason for this is that, as shown in Figure 6, when the coordinate axes of the measurement system are x, y, and z, γ
is the rotation of two axes, so for convenience, if we define the vector of r as shown in the figure, then δ', EX.

rは互いに直交する関係にあシ、最小自乗法を摘要する
時収束性がよい。δ’、EY、αについても同様である
。さらに取付誤差の近似値は知られていないのが一般で
あるから、各近似値の初期値としてOが選ばれ、逐次近
似的に求めていく。
The r values are orthogonal to each other, and convergence is good when using the least squares method. The same applies to δ', EY, and α. Further, since the approximate value of the mounting error is generally not known, O is selected as the initial value of each approximate value, and the values are determined by successive approximations.

本発明は上述のように被検面上の測定点列から、任意の
直交する4方位上の測定点を選び、これらの各輪帯上の
4方位の測定値の相加平均値を求め、これらから測定系
の軸ずれEPおよびワークの取付誤差の内の方位によら
ない回転対称な成分δを最初に求めて測定値の第1次補
正を行ない、この補正された測定値を用いて、ワーク取
付誤差の内、方位による回転非対称成分を求め、測定値
の第2次補正を行なうことを特徴とする。この方式の特
徴は最小自乗法を摘要する際に、各々未知のパラメータ
が直交する成分に分けられているため、収束が速く精度
の高い解かえられることにある。
As described above, the present invention selects measurement points in four arbitrary orthogonal directions from a series of measurement points on the surface to be inspected, and calculates the arithmetic average value of the measured values in the four directions on each of these annular zones. From these, the axis deviation EP of the measurement system and the rotationally symmetrical component δ of the workpiece mounting error, which is independent of orientation, are first determined, and the first correction of the measured value is performed, and using this corrected measured value, The method is characterized in that a rotational asymmetric component due to the orientation is determined in the workpiece mounting error, and a second correction of the measured value is performed. The feature of this method is that when calculating the least squares method, each unknown parameter is divided into orthogonal components, so convergence is fast and highly accurate solutions can be obtained.

軸ずれ成分EPが生ずる原因は測定系の初期設定の不良
以外に温度変動などによる機械的変形や種々の曲率半径
のワークを測定する際にNCテーブルによシロータリテ
ーブルの回転軸の移動を行なうが、この際のEPの変動
などがある。このため測定値から軸ずれ成分やワークの
取付誤差を算出し補正する手法は、形状測定に不可欠の
手段となっている。
The causes of the axis deviation component EP are not only poor initial settings of the measurement system, but also mechanical deformation due to temperature fluctuations, and movement of the rotating axis of the rotary table using an NC table when measuring workpieces with various radii of curvature. However, there are changes in EP at this time. For this reason, a method of calculating and correcting axis deviation components and workpiece mounting errors from measured values has become an indispensable means for shape measurement.

説明の便宜上2種類の回転を組合わせて被検面を走査す
る方式について例示したが、たとえば一方の回転を2次
元的直線運動の組合せで近似したシする種々の変形が考
えられるが、これらについても本発明が摘要されること
はいうまでもない。
For convenience of explanation, we have given an example of a method in which the surface to be inspected is scanned by combining two types of rotation, but there are various variations that can be considered, for example, in which one rotation is approximated by a combination of two-dimensional linear motion. It goes without saying that the present invention is also summarized.

r全8f3のなI要] 本発明を摘要することによシ、非球面や金型の測定など
の高精度な形状測定を行う時、ワークの取付作業を著る
しく容易にし、測定系の調整を容易にし、測定系の仕様
を緩和し、測定機の環境条件を緩和する効果をもち高精
度の測定が可能となる。
[R whole 8f3] By summarizing the present invention, when performing high-precision shape measurement such as measuring aspherical surfaces and molds, workpiece installation work is significantly facilitated, and the measurement system is improved. It facilitates adjustment, eases the specifications of the measurement system, and eases the environmental conditions of the measuring machine, making it possible to perform highly accurate measurements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) (b)は本発明方法の概念図、第2図は
本発明の一実施例の測定系の構成を示す正面図、第3図
は上記測定系による測定の概念を示す図、第4図および
第5図は同実施例における作用を説明するための図で測
定誤差のようすを示す図、第6図は同じく作用を説明す
るための図である。 第7図は従来技術の説明図である。 2・・・ワーク、3・・・被検面、4・・・輪帯状軌跡
、5・・・ワーク外形、6・・・干渉計、7・・・光プ
ローブ、8・・・回転軸受、9・・・ワーク回転軸、1
0・・・軸スライドテーブル、11・・・ロータリテー
ブル、12・・・ロータリテーブルの回転軸、1B−・
・NCテーブル。 (a)                (b)第1図 第2図 第4図       第5図 第6図 11訂庁長官  宇γ1 活部 殿 1、串イ41の表示 121願昭60−221442翼 2、発明の名称 形状測定における3ff定誤差除去、方法3、ン山正を
づる者 事イ′lとの関係 15訂出願人 (037) ]リンバス光学工業株式会社4、代理人 東卓都港区虎ノ門1丁目26番5月第17森ビル〒 1
05電話 03(502)3181  (大代表)6、
補正の対象 明細用全文 7.7山正の内容
Figures 1 (a) and (b) are conceptual diagrams of the method of the present invention, Figure 2 is a front view showing the configuration of a measurement system according to an embodiment of the present invention, and Figure 3 is a conceptual diagram of the measurement using the above measurement system. FIG. 4 and FIG. 5 are diagrams for explaining the operation of the same embodiment, and are diagrams showing the state of measurement errors, and FIG. 6 is a diagram for explaining the operation as well. FIG. 7 is an explanatory diagram of the prior art. 2... Workpiece, 3... Test surface, 4... Annular trajectory, 5... Workpiece outline, 6... Interferometer, 7... Optical probe, 8... Rotating bearing, 9...Work rotation axis, 1
0...Axis slide table, 11...Rotary table, 12...Rotary table rotation axis, 1B-...
・NC table. (a) (b) Fig. 1 Fig. 2 Fig. 4 Fig. 5 Fig. 6 Fig. 11 Director-General of the Agency Uγ1 Katsubu Tono 1, Display of Kushii 41 121 Application 1986-221442 Wing 2, Name shape of the invention Removal of 3ff constant errors in measurement, method 3, relationship with the person responsible for determining Nyama Tadashi 15th edition Applicant (037)] Rimbus Optical Industry Co., Ltd. 4, Agent Totaku 1-26 Toranomon, Minato-ku, Tokyo May 17th Mori Building 1
05 Telephone 03 (502) 3181 (main representative) 6.
Full text for details subject to amendment 7.7 Contents of Yamasho

Claims (1)

【特許請求の範囲】[Claims] ほぼ回転対称な被検面の形状測定に於て被検面上の測定
点列から任意の直交する4方位上の測定点を選び、これ
らの各輪帯上の4方位の測定値から測定系の軸ずれEP
およびワークの取付誤差の内、回転対称の成分δを求め
て測定値の第1次補正を行ない、この補正された測定値
からワーク取付誤差の内、回転非対称な成分を求めて測
定値の第2次補正を行なうことを特徴とする形状測定に
おける設定誤差除去方法。
When measuring the shape of a nearly rotationally symmetrical test surface, select measurement points in four arbitrary orthogonal directions from a series of measurement points on the test surface, and create a measurement system from the measured values in the four directions on each of these annular zones. axis deviation EP
Then, the rotationally symmetrical component δ of the workpiece mounting error is determined, and the first correction of the measured value is performed. From this corrected measurement value, the rotationally asymmetrical component of the workpiece mounting error is determined, and the rotationally asymmetrical component δ of the workpiece mounting error is determined. A method for removing setting errors in shape measurement, characterized by performing secondary correction.
JP22144285A 1985-10-04 1985-10-04 Method for eliminating setting error in shape measurement Expired - Fee Related JPH0797027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22144285A JPH0797027B2 (en) 1985-10-04 1985-10-04 Method for eliminating setting error in shape measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22144285A JPH0797027B2 (en) 1985-10-04 1985-10-04 Method for eliminating setting error in shape measurement

Publications (2)

Publication Number Publication Date
JPS6281518A true JPS6281518A (en) 1987-04-15
JPH0797027B2 JPH0797027B2 (en) 1995-10-18

Family

ID=16766799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22144285A Expired - Fee Related JPH0797027B2 (en) 1985-10-04 1985-10-04 Method for eliminating setting error in shape measurement

Country Status (1)

Country Link
JP (1) JPH0797027B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0507630A2 (en) * 1991-04-05 1992-10-07 Peter R. Berwick Apparatus and method for measuring surfaces and lenses
JP2007229840A (en) * 2006-02-28 2007-09-13 Mitsubishi Heavy Ind Ltd Spline broach

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0507630A2 (en) * 1991-04-05 1992-10-07 Peter R. Berwick Apparatus and method for measuring surfaces and lenses
US5317811A (en) * 1991-04-05 1994-06-07 Berwick Peter R Apparatus and method for measuring surfaces and lenses
JP2007229840A (en) * 2006-02-28 2007-09-13 Mitsubishi Heavy Ind Ltd Spline broach

Also Published As

Publication number Publication date
JPH0797027B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
EP2253931B1 (en) Form measuring instrument, form measuring method, and program
CN109974628B (en) Circular grating sensor angle measurement error correction method based on error source analysis
US6964102B2 (en) Device and method for detecting the rotational movement of an element rotatably mounted about an axis
RU186481U9 (en) INTERFEROMETRIC DEVICE FOR CENTERING OPTICAL ELEMENTS WITH ASPHERIC SURFACES IN FRAMES
JP2001141444A (en) Method and instrument for measuring shape of v-groove
CN114253217A (en) Five-axis machine tool RTCP automatic calibration method with self-correction function
CN112985299B (en) Optical probe online detection method based on path planning
JP3880030B2 (en) V-groove shape measuring method and apparatus
JPS6281518A (en) Method for removing set error in measurement of shape
JPH05272958A (en) Automatic detection method and detector for rotation center position by flat substrate and three sensors
JPS6073413A (en) Measuring method of roundness
US20240159528A1 (en) Method for measuring orthogonality of orthogonal axis system
Jemielniak et al. Spindle error movements measurement algorithm and a new method of results analysis
JPH0265150A (en) Automatic alignment method for probe card
JPH08233506A (en) Method and apparatus for measuring aspherical shape and method for evaluating aspherical surface
JPS6130681B2 (en)
JPH03249516A (en) Flatness measuring instrument
JP4309727B2 (en) Measuring jig and three-dimensional shape measuring method using the same
JP3309138B2 (en) Measuring method of rotation center position of rotating body by measuring displacement of three points and measuring device therefor
JP2005326344A (en) Three-dimensional shape measuring method
JPH05215636A (en) Method for measuring eccentricity of aspherical lens
KR930002097B1 (en) Diameter measuring apparatus for material
JPS60239602A (en) Correction of deviation of stylus point center of touch sensor from main spindle center
CN113188491A (en) Rotary table rotating shaft error measuring and correcting method based on displacement sensor
JP2001133243A (en) Measuring method for shape of object

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees