JPS6262520A - Pattern forming method - Google Patents
Pattern forming methodInfo
- Publication number
- JPS6262520A JPS6262520A JP60201524A JP20152485A JPS6262520A JP S6262520 A JPS6262520 A JP S6262520A JP 60201524 A JP60201524 A JP 60201524A JP 20152485 A JP20152485 A JP 20152485A JP S6262520 A JPS6262520 A JP S6262520A
- Authority
- JP
- Japan
- Prior art keywords
- film
- resist
- pattern
- light
- perfluoroalkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は半導体素子、磁気バブル素子および超伝導素子
などの作製に用い得る微細加工法に係り、フォトリソグ
ラフィおよびX線リソグラフィにおけるパターン形成方
法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a microfabrication method that can be used for manufacturing semiconductor devices, magnetic bubble devices, superconducting devices, etc., and relates to a pattern forming method in photolithography and X-ray lithography.
半導体回路、磁気バブルメモリ回路等の集積度は年々向
上している。集積度を向上するためにパターンの微細化
が求められるとともにパターン寸法の高精度化、合わせ
精度向上が必要となっている。しかし光りソグラフイで
は光干渉の影響を受は寸法精度および合わせ精度が低下
するという問題があった。The degree of integration of semiconductor circuits, magnetic bubble memory circuits, etc. is improving year by year. In order to improve the degree of integration, miniaturization of patterns is required, as well as higher precision of pattern dimensions and higher precision of alignment. However, optical lithography has a problem in that dimensional accuracy and alignment accuracy are reduced due to the influence of optical interference.
最初に寸法精度低下について説明する。解像度が高く、
異物による欠陥発生率が低く、かつウェーハの歪をステ
ップアンドリピート機構により補正可能に縮小投影露光
法が微細パターン形成法の主流として用いられる。縮小
投影露光法ではレンズ・光学系の制約から単色光を用い
ており、レジスト内で光干渉が生じる。光干渉によりレ
ジストに吸収される実効的な光量が変動するためパター
ン寸法に変動が生じる。第2図に示すようにレジストの
膜厚が変化するとともにパターン線幅は周期的に変動し
、その変動量はSi基板の場合約0.3μmとなる。最
小の線幅は約1μmあるいはそれ以下が要求されており
、この寸法変動による寸法精度の低下は大きな間種とな
っている。First, the decrease in dimensional accuracy will be explained. High resolution;
The reduction projection exposure method is used as the mainstream method for forming fine patterns because it has a low defect occurrence rate due to foreign particles and can correct wafer distortion using a step-and-repeat mechanism. In the reduction projection exposure method, monochromatic light is used due to limitations of lenses and optical systems, and light interference occurs within the resist. Due to optical interference, the effective amount of light absorbed by the resist varies, resulting in variations in pattern dimensions. As shown in FIG. 2, as the film thickness of the resist changes, the pattern line width changes periodically, and the amount of change is about 0.3 μm in the case of a Si substrate. The minimum line width is required to be approximately 1 .mu.m or less, and a decrease in dimensional accuracy due to this dimensional variation is a major problem.
光干渉による寸法精度の低下を低減する方法として多層
レジスト法あるいはARC法などが提案されている。し
かし多層レジスト法はレジスト層を三層または二層形成
し、その後パターン転写を行ってマスクとなるレジスト
1パターンを形成するため工程数が多くスループットが
低いという問題がある。また中間層からの反射光により
寸法精度の向上は必ずしも十分ではない。ARC法はレ
ジスト下部に形成した反射防止膜を現像によりウェット
エツチングするためサイドエッチ量が多く、このことに
よる寸法精度の低下が大きいという問題がある。なお、
多層レジストに関しては特開昭第51−10775号な
どに記載されている。またARC法としては特開昭第5
9−93448号に開示されている。A multilayer resist method, an ARC method, and the like have been proposed as methods for reducing the decrease in dimensional accuracy due to optical interference. However, the multilayer resist method involves forming three or two resist layers and then performing pattern transfer to form one resist pattern that serves as a mask, so there is a problem in that the number of steps is large and the throughput is low. Furthermore, the improvement in dimensional accuracy is not necessarily sufficient due to the reflected light from the intermediate layer. In the ARC method, since the antireflection film formed under the resist is wet-etched by development, the amount of side etching is large, which causes a problem in that the dimensional accuracy is greatly reduced. In addition,
Multilayer resists are described in Japanese Patent Application Laid-Open No. 51-10775. Also, as an ARC method,
No. 9-93448.
次に合わせの問題を説明する。Next, I will explain the matching problem.
「単色光を利用した合わせ方式はTTL(Throug
hthe Lsnse)方式を用いることができ、スル
ープットおよびオフセット変動の点で有利になるため・
非対称ウェーハ歪を補正することができるチップごとの
合わせ(以後チップアライメントとよぶ)に有利である
。また同じく単色光を用い、その光干渉を利用したフレ
ネルゾーン合わせ方式の場合には焦点位置とパターン合
わせを同時に行うことができ非常に有効である。しかし
以下に示す問題があり、十分なバタ、−ン検出精度が得
られなかった。“The alignment method using monochromatic light is TTL (Through).
hthe Lsnse) method can be used, which is advantageous in terms of throughput and offset fluctuation.
This is advantageous for chip-by-chip alignment (hereinafter referred to as chip alignment) that can correct asymmetric wafer distortion. Similarly, in the case of a Fresnel zone alignment method that uses monochromatic light and utilizes its optical interference, the focus position and pattern alignment can be performed simultaneously, which is very effective. However, due to the following problems, sufficient butterfly detection accuracy could not be obtained.
基板上に形成された合わせターゲットパターンを単色光
あるいは準単色光を照射しそのターゲットパターンから
の反射光を使ってパターン検出する場合、従来のパター
ン検出方法では基板上に形成したレジストの表面で光が
反射するためパターン検出光がレジスト膜内で光干渉を
起こす。その結果反射光(検出光)もその影響を受け、
レジスト膜厚の変化とともに光強度および位相が変化す
る。このためパターン検出信号が乱され、合わせ精度が
低下する。例えばレジストがターゲットパターンに対し
て非対称な膜厚で塗布されるとターゲットの位置が実際
の位置からシフトした位置で検出される。つまり誤検出
する。またレジストの膜厚によってはターゲットパター
ン部とその他の部分との反射光強度がほとんど等しくな
り、ターゲットパターンのコントラストが著しく低下、
すなわちターゲットパターンの検出が極めて困雅になる
ことがある。このような問題が単色光を用いた合わせ方
式にあった。When detecting a pattern by irradiating monochromatic or quasi-monochromatic light onto a mating target pattern formed on a substrate and using the reflected light from the target pattern, conventional pattern detection methods detect light on the surface of a resist formed on a substrate. The pattern detection light causes optical interference within the resist film because it is reflected. As a result, the reflected light (detected light) is also affected,
The light intensity and phase change as the resist film thickness changes. For this reason, the pattern detection signal is disturbed and alignment accuracy is reduced. For example, if a resist is applied with a film thickness asymmetrical to the target pattern, the target position will be detected at a position shifted from the actual position. In other words, it is falsely detected. Also, depending on the thickness of the resist, the intensity of reflected light between the target pattern and other parts becomes almost equal, resulting in a marked reduction in the contrast of the target pattern.
In other words, detection of the target pattern may become extremely difficult. Such a problem existed in the alignment method using monochromatic light.
このため、例えばフレネルゾーンパターン検出方式にお
いてはニス・ピー・アイ・イー(SPIE)第470巻
、第122〜135頁(1984年)において論じられ
ているようにターゲットパターン形状の最適化が検討さ
れている。また特公昭第58−30736号の中で示さ
れているように二波長検出が検討されている。しかしい
ずれの場合も光干渉によるパターン検出信号の劣化の防
止は十分であり、改善が望まれている。For this reason, for example, in the Fresnel zone pattern detection method, optimization of the target pattern shape has been studied as discussed in SPIE, Vol. 470, pp. 122-135 (1984). ing. Further, dual wavelength detection is being studied as shown in Japanese Patent Publication No. 58-30736. However, in either case, it is sufficient to prevent deterioration of the pattern detection signal due to optical interference, and improvements are desired.
本発明の目的は上記従来の問題を解決し、簡便な方法で
微細かつ高精度なパターン、および合わせ精度の高いパ
ターンの形成方法を提供することにある。An object of the present invention is to solve the above-mentioned conventional problems and to provide a method for forming fine and highly accurate patterns and patterns with high alignment accuracy using a simple method.
上記目的を達成するため、本発明はフォトレジスト膜あ
るいはX線レジスト膜上にパーフルオロアルキルポリエ
ーテル膜あるいはパーフルオロアルキルアミン膜あるい
はその混合物膜(以下総称してパーフルオロアルキル化
合物膜と称すを形成するものである。パーフルオロアル
キル化合物膜は透明であり、また屈折率も約1.3 で
あることから上記レジストの反射防止膜となる。透明な
反射防止膜により入射光量の損失なしにレジスト表面で
の反射光を低減し、レジスト膜内での光多重干渉による
パターン寸法精度の低下を防止する。In order to achieve the above object, the present invention forms a perfluoroalkyl polyether film, a perfluoroalkylamine film, or a mixture film thereof (hereinafter collectively referred to as perfluoroalkyl compound film) on a photoresist film or an X-ray resist film. The perfluoroalkyl compound film is transparent and has a refractive index of approximately 1.3, so it serves as an anti-reflection film for the above resist.The transparent anti-reflection film allows it to coat the resist surface without loss of incident light. This reduces reflected light at the resist film and prevents deterioration in pattern dimensional accuracy due to optical multiple interference within the resist film.
またパターン検出信号の劣化を低減する。It also reduces deterioration of the pattern detection signal.
以下本発明の原理を詳細に説明する。The principle of the present invention will be explained in detail below.
最初に寸法精度向上の原理を説明する。First, the principle of improving dimensional accuracy will be explained.
基板から反射してくる光と入射光との干渉など逆方向に
進む光同士の干渉はレジスト膜厚方向の光強度分布を変
化させ、レジストの断面形状を波釘たせるゝ定在波“と
よばれる現象をひきおこすが、レジストに吸収される全
光量は変化せず寸法精度に与える影響は少ない。一方、
レジスト上面から反射してくる光と入射光など同方向に
進む光同士の場合を考えるとレジスト膜厚の変化に応じ
その光同士の位相差が変化するため、レジスト膜厚が変
化するとレジスト内でのこれらの光の干渉光の光強度は
増減する。つまりレジスト膜厚に応じてオーバー露光あ
るいはアンダー露光になり、その結果寸法精度が低下す
る。Interference between lights traveling in opposite directions, such as interference between light reflected from the substrate and incident light, changes the light intensity distribution in the resist film thickness direction, creating a "standing wave" that makes the cross-sectional shape of the resist ripple. However, the total amount of light absorbed by the resist does not change and the effect on dimensional accuracy is small.On the other hand,
Considering the case of light traveling in the same direction, such as the light reflected from the top surface of the resist and the incident light, the phase difference between the lights changes as the resist film thickness changes. The light intensity of the interference light of these lights increases and decreases. In other words, overexposure or underexposure occurs depending on the resist film thickness, resulting in a decrease in dimensional accuracy.
寸法精度を向上させるためには同方向に進行する反射光
を低減すればよい、つまりレジスト上面での反射光を低
減すれば十分である。露光光の減衰なしにレジスト上面
からの反射光を低減するため透明な、すなわち吸収係数
の小さな光干渉を利用した反射防止膜をレジスト上に形
成する。すなわち、第3図に示すように基板からレジス
ト表面へ向かう光31の反射防止11!l!/レジスト
界面32aからの反射光34と大気/反射防止膜界面3
2bからの反射光35を干渉させて反射光を十分小さく
する。なおこの場合、透過光36の光量は入射光31の
光量に近づき、無反射になったとき光量の損失なく完全
に透過する。In order to improve the dimensional accuracy, it is sufficient to reduce the reflected light traveling in the same direction, that is, it is sufficient to reduce the reflected light on the upper surface of the resist. In order to reduce the reflected light from the upper surface of the resist without attenuating the exposure light, a transparent anti-reflection film is formed on the resist, which uses light interference with a small absorption coefficient. That is, as shown in FIG. 3, reflection prevention 11 of light 31 directed from the substrate to the resist surface! l! /Reflected light 34 from the resist interface 32a and the atmosphere/antireflection film interface 3
The reflected light 35 from 2b is interfered with to make the reflected light sufficiently small. In this case, the amount of transmitted light 36 approaches the amount of incident light 31, and when no reflection occurs, the amount of transmitted light 36 is completely transmitted without loss of amount of light.
反射防止の原理からレジストの露光光に対する屈折率を
n、露光光の波長をλとすると反射防止膜の屈折率n′
を5、その膜厚をλ/4n′の奇数倍に近づけるほどこ
の反射防止の反射率(振幅比)は低減する。フェノール
ノボラック系のレジストの屈折率は約1.7などで反射
防止膜に求められる最適な屈折率は約1.30である。From the principle of anti-reflection, if the refractive index of the resist with respect to exposure light is n and the wavelength of the exposure light is λ, then the refractive index of the anti-reflection film is n'
5, the reflectance (amplitude ratio) of this antireflection decreases as the film thickness approaches an odd multiple of λ/4n'. The refractive index of a phenol novolak resist is about 1.7, and the optimum refractive index required for an antireflection film is about 1.30.
パーフルオロアルキルポリエーテルあるいはパーフルオ
ロアルキルアミンあるいはその混合物の屈折率は約1.
31であり、この膜を反射防止膜に用いるとレジスト上
面の反射率を大幅に低減することが可能となり、寸法精
度を向上することができる。The refractive index of perfluoroalkyl polyethers or perfluoroalkyl amines or mixtures thereof is approximately 1.
31, and when this film is used as an antireflection film, it becomes possible to significantly reduce the reflectance of the upper surface of the resist, and the dimensional accuracy can be improved.
次に合わせ精度向上の原理を説明する。Next, the principle of improving alignment accuracy will be explained.
レジスト膜内で光が多量に干渉すると基板から反射して
くる反射光もその影響を受は前述のようにパターン検出
精度が低下する。この問題を解決するために前述の反射
防止膜をレジスト上に形成して外気/レジスト界面の反
射光を低減し完全透過面化する。パーフルオロアルキル
ポリエーテルバーフルオロアルキルアミンおよびその混
合物は透明であり、その屈折率(約1.31)によりレ
ジスト上面をほぼ完全透明化することができる。パター
ン検出の際のパーフルオロアルキルポリエーテル膜の最
適な膜厚はパターン検出光の波長λ′の174 n ’
すなわち約λ’ 15.2である。また反射防止膜がパ
ーフルオロアルキルアミンあるいはパーフルオロアルキ
ルアミンとパーフルオロアルキルポリエーテルの混合物
からなるときも同様に最適な膜厚は約λ’ 15.2で
ある。If a large amount of light interferes within the resist film, the reflected light reflected from the substrate will also be affected, resulting in a decrease in pattern detection accuracy, as described above. In order to solve this problem, the above-mentioned antireflection film is formed on the resist to reduce the reflected light at the outside air/resist interface and create a completely transparent surface. Perfluoroalkyl polyether perfluoroalkyl amines and mixtures thereof are transparent, and their refractive index (approximately 1.31) allows the top surface of the resist to be almost completely transparent. The optimum thickness of the perfluoroalkyl polyether film for pattern detection is 174 n' of the wavelength λ' of the pattern detection light.
That is, approximately λ' 15.2. Similarly, when the antireflection film is made of perfluoroalkylamine or a mixture of perfluoroalkylamine and perfluoroalkyl polyether, the optimal film thickness is approximately λ' 15.2.
レジスト上へのパーフルオロアルキルポリエーテルある
いはパーフルオロアルキルアミンあるいはその混合物の
オーバーコートにより合わせ検出信号はレジスト膜内光
干渉によるノイズに乱されるここのない良好なものとな
り1合わせ精度が向上する。By overcoating the resist with perfluoroalkyl polyether, perfluoroalkyl amine, or a mixture thereof, the alignment detection signal becomes a good one without being disturbed by noise caused by optical interference within the resist film, and the alignment accuracy is improved.
以下、本発明を実施例を用いて説明する。 The present invention will be explained below using examples.
実施例1
第1図(a)に示すように段差のあるSi基板1上にレ
ジスト2をスピン塗布し、その後90℃、10分のベー
タを行い溶媒を揮発させてレジスト膜を形成した。Si
基板上のパターンは格子状パターン凹パターン、凸パタ
ーン等であり、そのパターンの高さは約0.1〜0.6
μmとした。レジストにはMP1300(シラプレー社
商品名)を用い、その膜厚は平坦面上で約1.0μmと
した。ただし十分に基板段差をカバーできる膜厚であれ
ば、レジス1への膜厚は1.0μmに限る必要はない。Example 1 As shown in FIG. 1(a), a resist 2 was spin-coated on a Si substrate 1 having a step, and then subjected to beta treatment at 90° C. for 10 minutes to volatilize the solvent and form a resist film. Si
The pattern on the substrate is a lattice pattern, concave pattern, convex pattern, etc., and the height of the pattern is about 0.1 to 0.6
It was set as μm. MP1300 (trade name, Silapray Co., Ltd.) was used as the resist, and its film thickness was about 1.0 μm on a flat surface. However, the film thickness on the resist 1 does not need to be limited to 1.0 μm as long as the film thickness can sufficiently cover the substrate level difference.
また段差も0.1〜0.6μmに限定する必要はない、
また前述以外の形状でも問題はない、Si基板に限る必
要もなく、例えばPSG (リンガラス)、SiO□、
W、Aα、ポリイミド、SiN。Also, it is not necessary to limit the level difference to 0.1 to 0.6 μm.
Also, there is no problem with shapes other than those mentioned above, and there is no need to limit it to Si substrates, such as PSG (phosphorus glass), SiO□,
W, Aα, polyimide, SiN.
G a A sなどでも問題ない。またレジストには0
FPR800,0NPR830,0FPR5000(以
上東京応化(株)社商品名) A Z1350J (マ
イクロポジット社商品名)、HPR204(Hunt社
商品名)などのフェノールノボラック系レジスト、RD
200ON、RUlooON (日立化成工業(株)製
商品名)、MP23(シップレイ−社商品名)などのポ
リビニルフェノール系レジスト、K T F R(ko
dak社商品名)CBR(日本合成ゴム(株)社商品名
)などの環化ゴム系レジストなどのいかなるフォトレジ
ストも用いることができる。しかる後第1図(b)に示
すようにレジスト2上にパーフルオロアルキルポリエー
テルを約65〜1100nの膜厚で塗布形成した。パー
フルオロアルキルポリエーテルとしては例えばモンテジ
ソン社(7)FOMBLIN 導デュポン社のKRyr
ox ’nなどがある。また塗布膜厚を制御するために
溶液を希釈したが、その希釈液には低分子量のパーフル
オロアルキルポリエーテルやフレオンR(デュポン社商
品名)などを用いた。なお、一般に、有機化合物の水素
をフッ素におきかえた化合物は、もとの有機化合物より
屈折率が低下することが知られている。従って、上記の
市販のパーフルオロアルキルポリエーテルに機らず、相
当数の水素をフッ素に置きかえたアルキルポリエーテル
も用いることかできる。There is no problem with G a A s etc. Also, the resist has 0
Phenol novolak resists such as FPR800, 0NPR830, 0FPR5000 (Tokyo Ohka Co., Ltd. product names) A Z1350J (Microposit Co., Ltd. product name), HPR204 (Hunt Co., Ltd. product name), RD
Polyvinylphenol resists such as 200ON, RUlooON (trade name manufactured by Hitachi Chemical Co., Ltd.), MP23 (trade name manufactured by Shipley Co., Ltd.), KTF
Any photoresist such as a cyclized rubber resist such as CBR (trade name, manufactured by Nippon Gosei Rubber Co., Ltd.) can be used. Thereafter, as shown in FIG. 1(b), perfluoroalkyl polyether was coated on the resist 2 to a thickness of about 65 to 1100 nm. Examples of perfluoroalkyl polyethers include Montageson (7) FOMBLIN and KRyr from DuPont.
There are such things as ox'n. In addition, the solution was diluted in order to control the coating film thickness, and low molecular weight perfluoroalkyl polyether, Freon R (trade name of DuPont), or the like was used as the diluted solution. It is generally known that a compound obtained by replacing hydrogen in an organic compound with fluorine has a lower refractive index than the original organic compound. Therefore, in addition to the commercially available perfluoroalkyl polyethers mentioned above, alkyl polyethers in which a considerable number of hydrogen atoms are replaced with fluorine may also be used.
このようにしてパーフルオロアルキルポリエーテルから
なる反射防止膜3をレジスト2上に形成した後、第1図
(c)に示すように波長436μmの光を用いて通常の
露光を行った。その後第1図(d)に示すようにフレオ
ン′αを用いて反射防止膜3を除去した。フレオン[有
]はレジストを溶かさず、変質も起こさなかった。反射
防止膜3の除去剤としてはフレオン■などの炭化水素の
フルオロロル置換体類の他に低分子量のパーフルオロア
ルキルポリエーテル、例えばGALDEN 9 (モン
テジソン社商品名)なども用いることができる。After the antireflection film 3 made of perfluoroalkyl polyether was formed on the resist 2 in this manner, normal exposure was performed using light having a wavelength of 436 μm, as shown in FIG. 1(c). Thereafter, as shown in FIG. 1(d), the antireflection film 3 was removed using Freon'α. Freon did not melt the resist or cause any deterioration. As a remover for the antireflection film 3, in addition to fluorol-substituted hydrocarbons such as Freon (2), low molecular weight perfluoroalkyl polyethers such as GALDEN 9 (trade name of Montegisson) can also be used.
その後第1図(e)に示すように現像を行ってSi基板
上にレジストパターン2′を形成した。Thereafter, as shown in FIG. 1(e), development was performed to form a resist pattern 2' on the Si substrate.
パーフルオロアルキルポリエーテルからなる反射防止膜
3のない場合のパターン寸法精度は釣上0.15μmで
あったが、以上の工程により寸法の変動量が約士0.0
5μm以下の高精度なレジストパターン2′ をSi基
板に形成することができた。The pattern dimensional accuracy without the antireflection film 3 made of perfluoroalkyl polyether was approximately 0.15 μm, but due to the above process, the amount of dimensional variation was approximately 0.0 μm.
A highly accurate resist pattern 2' of 5 μm or less could be formed on the Si substrate.
なお、上記実施例では波長436nmの露光光を用いた
場合を示したが、波長が405nmの露光光の場合には
パーフルオロアルキルポリエーテル反射防止膜3の膜厚
を約60〜85nm+波長が365nmの場合には膜厚
を約55〜85nmにすることにより上記実施例と同様
に寸法の変動量を±0.05μm以下することができた
。In addition, although the above example shows the case where exposure light with a wavelength of 436 nm is used, in the case of exposure light with a wavelength of 405 nm, the film thickness of the perfluoroalkyl polyether antireflection film 3 is approximately 60 to 85 nm + the wavelength is 365 nm. In this case, by setting the film thickness to about 55 to 85 nm, it was possible to reduce the dimensional variation to ±0.05 μm or less, as in the above embodiment.
実施例2
実施例1において露光光と同じ波長の光を用いてマスク
合わせを行った。このときの基板上のターゲットパター
ンには凹パターン、凸パターンダブルスリットパターン
、格子状パターン、ドツトパターン、孔パターンを用い
、おのおのについてパターン検出信号を観察し、また合
わせ精度を評価した。その結果、レジスト塗布ムラによ
る信号波形の非対称性、光干渉による信号強度の低下コ
ントラストの低下を低減することができ、合わせ精度が
向上した。Example 2 In Example 1, mask alignment was performed using light of the same wavelength as the exposure light. At this time, a concave pattern, a convex pattern, a double slit pattern, a lattice pattern, a dot pattern, and a hole pattern were used as target patterns on the substrate, and pattern detection signals were observed for each pattern, and alignment accuracy was evaluated. As a result, it was possible to reduce the asymmetry of the signal waveform due to uneven resist coating, the decrease in signal strength and the decrease in contrast due to optical interference, and the alignment accuracy was improved.
実施例3
平坦なSiウェーハ上に1ノジストを約1.0μm塗布
した。レジストの膜厚のバラツキは約±0.05μmで
あった。ウェーハはSiに限らずGaAsでも問題ない
し、基板表面もSiのみならず5jOa、SiNポリミ
ド、A Q 、 W、 WS i2、M o S i
。Example 3 Nodist was applied to a thickness of about 1.0 μm on a flat Si wafer. The variation in resist film thickness was approximately ±0.05 μm. The wafer is not limited to Si but can also be GaAs, and the substrate surface is not only Si but also 5jOa, SiN polymide, A Q , W, WS i2, Mo Si
.
などでも問題ない。その後1枚の基板はそのまま露光し
、他の基板にはレジスト上にパーフルオロアルキルポリ
エーテル膜を形成し、その後露光した。、露光波長は”
436nmであり、パーフルオロアルキルポリエーテル
膜の膜厚は基板ごとにO〜160nmまで変化させた。There is no problem with that. Thereafter, one substrate was exposed as it was, and a perfluoroalkyl polyether film was formed on the resist for the other substrates, and then exposed. , the exposure wavelength is “
The film thickness of the perfluoroalkyl polyether film was varied from 0 to 160 nm for each substrate.
露光後パーフルオロアルキルポリエーテル膜を除去し、
その後現像を行なってパターンを形成した。その結果、
通常の方法では約±0.16μmあった寸法バラツキが
図4に示すように低減した。特にパーフルオロアルキル
ポリエーテル膜の膜厚が436nm15.2である約8
4nmのとき寸法バラツキは最小となり、約±0.01
5μmまで低減することができた。なお、本実施例では
レジスト膜厚が1.0μmの場合を示したがこの膜厚に
限らない、また露光波長も436nmに限らない1例え
ば405nmや365nmも用いることができ、また多
波長でもよい。After exposure, remove the perfluoroalkyl polyether film,
Thereafter, development was performed to form a pattern. the result,
The dimensional variation, which was approximately ±0.16 μm in the conventional method, was reduced as shown in FIG. 4. In particular, the film thickness of the perfluoroalkyl polyether film is 436 nm and 15.2 cm.
At 4 nm, the dimensional variation is minimum, approximately ±0.01
It was possible to reduce the thickness to 5 μm. Although this example shows a case where the resist film thickness is 1.0 μm, the film thickness is not limited to this, and the exposure wavelength is not limited to 436 nm. For example, 405 nm or 365 nm can also be used, or multiple wavelengths may be used. .
実施例4
第5図(a)に示すように段差のあるSi基板51上に
レジストをスピン塗布し、その後約200℃30分のベ
ークを行い三層レジストの下層レジスト52を形成した
。Si基板上のパターンは格子状パターン、凹パターン
、凸パターン、などであり、最大約1.5μmの段差ま
で各種段差を形成しておいた。レジストにはMP130
0(シラプレー社商品名)を用い、その膜厚は平坦面上
で約2.0μmとした。200℃30分の熱処理により
下層レジスト52の表面の段差は緩和された。なお、下
層レジスト52の材料および膜厚は上記例レニ限らず、
一般に下層レジストに用いられるものは問題なく用いる
ことができる。基板段差も上記例に限らない。基板には
Aαなどの金属膜、SjO,などの絶縁膜、ポリイミド
などの有機膜、Goなどの半導体膜が被着されていても
問題はない。Example 4 As shown in FIG. 5(a), a resist was spin-coated on a Si substrate 51 having a step, and then baked at about 200° C. for 30 minutes to form a lower resist 52 of a three-layer resist. The patterns on the Si substrate were a lattice pattern, a concave pattern, a convex pattern, etc., and various steps were formed up to a maximum of about 1.5 μm. MP130 for resist
0 (trade name, Silapray Co., Ltd.) was used, and the film thickness was about 2.0 μm on a flat surface. By heat treatment at 200° C. for 30 minutes, the level difference on the surface of the lower resist 52 was alleviated. Note that the material and film thickness of the lower resist 52 are not limited to the above example.
Those generally used for lower layer resists can be used without any problem. The substrate level difference is also not limited to the above example. There is no problem even if a metal film such as Aα, an insulating film such as SjO, an organic film such as polyimide, or a semiconductor film such as Go is deposited on the substrate.
そ)後三層レジストの中間層53として5OG(旦pi
nεn Glass)を約0.18μmの膜厚で形成し
た。SOGには東京応化(株)の○CDを用いた。Then, as the middle layer 53 of the three-layer resist, 5OG (danpi
nεn Glass) was formed with a film thickness of about 0.18 μm. ○CD manufactured by Tokyo Ohka Co., Ltd. was used as the SOG.
中間層53の材料は上記例に限らず、一般に中間層に用
いられている材料、例えばSiO2,3iNなどの絶縁
膜、有機Tiなどの金属化合物、Wなどの金属、Siな
どの半導体も用いることができる。膜厚も0.18μm
に限らない。The material of the intermediate layer 53 is not limited to the above-mentioned examples, but also materials commonly used for intermediate layers, such as insulating films such as SiO2 and 3iN, metal compounds such as organic Ti, metals such as W, and semiconductors such as Si. I can do it. Film thickness is also 0.18μm
Not limited to.
その後パターン形成用としてレジスト層54を形成した
。レジストにはM P 1300を用いたが、実施例1
と同様にすべてのレジス1−を用いることができる。Thereafter, a resist layer 54 was formed for pattern formation. M P 1300 was used as a resist, but Example 1
Similarly, all registers 1- can be used.
次に第5図(b)に示すように、パーフルオロアルキル
ポリエーテルからなる反射防止膜55をレジスト層54
上に形成した。その膜厚は約7゜n、 mである。Next, as shown in FIG. 5(b), an antireflection film 55 made of perfluoroalkyl polyether is applied to the resist layer 54.
formed on top. The film thickness is approximately 7 nm, m.
その後、波長365nmの光を用いてパターニングを行
い、その後、パーフルオロアルキルポリエーテル膜を除
去した。しかる後現像を行い第5図(C)に示すように
レジスト層にパターン54′を形成した。その後、第5
図(d)に示すようにドライエツチングによりパターン
54′を中間層53に転写し、中間層に転写パターン5
3′を形成した。しかる後、第5図(e)に示すように
パターン53′をマスクにして下層レジストにパターン
転写してパターン52′を形成、つまり三層レジストの
パターンを形成した。Thereafter, patterning was performed using light with a wavelength of 365 nm, and then the perfluoroalkyl polyether film was removed. Thereafter, development was carried out to form a pattern 54' in the resist layer as shown in FIG. 5(C). Then the fifth
As shown in Figure (d), the pattern 54' is transferred to the intermediate layer 53 by dry etching, and the transferred pattern 5 is transferred to the intermediate layer.
3' was formed. Thereafter, as shown in FIG. 5(e), pattern 53' was used as a mask to transfer the pattern to the lower resist layer to form pattern 52', that is, a three-layer resist pattern was formed.
その結果、パーフルオロアルキルポリエーテル反射・′
vj止膜のない通常の三層レジストでは杓子0.04μ
mあった寸法バラツキが、反射防止膜を形成することに
より杓子0.01μm以下に低減した。As a result, perfluoroalkyl polyether reflection
For normal three-layer resist without VJ stopper film, the ladle is 0.04μ.
By forming the anti-reflection film, the dimensional variation, which was 1.5 m, was reduced to 0.01 μm or less.
なお、上記実施例は波長が365nmの場合であるが、
この波長に限らない。また三層レジストの場合を示した
が二層レジストの場合も同様に効果があった。In addition, although the above example is a case where the wavelength is 365 nm,
It is not limited to this wavelength. Furthermore, although the case of a three-layer resist is shown, the same effect was obtained in the case of a two-layer resist.
実施例5
実施例2において露光光と波長の異なる水銀のe線(5
46nm)d線(577n m) 、 HeNeレーザ
ー光(633n m)などを用いてマスクアライメシト
を行った。パターン検出信号は反射防止膜のない場合に
比べ良好となり、合わせ精度も向上した。特にパーフル
オロアルキルポリエーテル反射防止膜の膜厚をパターン
検出光の波長λ′の115.2、すなわち、e線、d線
、HeNe光をそれぞれに対し約1105n、110n
m、120nmに設定したとき合わせ検出信号は最も良
好となり、合わせ精度が向上した。Example 5 In Example 2, mercury e-line (5
Mask alignment was performed using d-line (577 nm), HeNe laser light (633 nm), etc. The pattern detection signal was better than that without the antireflection film, and the alignment accuracy was also improved. In particular, the film thickness of the perfluoroalkyl polyether antireflection film is set to 115.2 of the wavelength λ' of the pattern detection light, that is, approximately 1105 nm and 110 nm for e-line, d-line, and HeNe light, respectively.
The alignment detection signal was the best when the wavelength was set to m and 120 nm, and the alignment accuracy was improved.
なお、実施例においてはe線、d線、!1aNe光を用
いたが他の単色光あるいは多色光でも同様に効果があっ
た。なお、マスクアライメントに聞してはRE−500
0P (日立化成(株)商品名)のようなX線に感度を
もつレジストも用いることができる。In addition, in the example, e-line, d-line, ! Although 1aNe light was used, other monochromatic light or polychromatic light had similar effects. In addition, when it comes to mask alignment, RE-500
A resist sensitive to X-rays such as 0P (trade name, manufactured by Hitachi Chemical Co., Ltd.) can also be used.
実施例6
実施例4において水銀のe線、d線、HeNe光を用い
てマスクアライメントを行った。ターゲットパターンは
実施例2と同じく凹パターン、凸パターン、ダブルスリ
ットパターン、格子状パターン、ドツトパターン、孔パ
ターンを用い、おのおのの場合について検討した。多層
レジストにおいても露光光と異波長の光を用いてパター
ン検出を行うことによりパターン検出光強度は十分であ
り、反射防止膜によりパターン検出信号の非対称性、コ
ントラストの低下を低減することができた。特に多層レ
ジストの場合はレジスト上面の平坦度が高いため反射防
止膜の膜厚が均一となり、その結果単層レジストに比べ
低減効果が大であった。さらにパーフルオロアルキルポ
リエーテル膜の膜厚をパターン検出光の波長λ′の11
5.2、すなわちa4@、d線、He N e光それぞ
れに対し約1105n、110nnm、120nmにし
たときパターン検出信号波形は直接基板を検出した場合
(レジスごレス)とほぼ同等な良好なものとなり、レジ
ストによる光干渉の影響を排除することができた。その
結果、合わせ精度は従来の約0.3μmから約0.2μ
mへ向上し、はぼ装置起因の合わせ精度上で合わせ精度
を向上することができた。Example 6 In Example 4, mask alignment was performed using mercury e-line, d-line, and HeNe light. The target patterns used were a concave pattern, a convex pattern, a double slit pattern, a lattice pattern, a dot pattern, and a hole pattern as in Example 2, and each case was examined. Even in multilayer resists, the pattern detection light intensity was sufficient by performing pattern detection using light of a different wavelength from the exposure light, and the anti-reflection coating was able to reduce asymmetry of the pattern detection signal and decrease in contrast. . In particular, in the case of a multilayer resist, the flatness of the upper surface of the resist is high, so the thickness of the antireflection film is uniform, and as a result, the reduction effect is greater than that of a single layer resist. Furthermore, the film thickness of the perfluoroalkyl polyether film was increased to 11% of the wavelength λ' of the pattern detection light.
5.2, that is, when the wavelengths are set to approximately 1105n, 110nm, and 120nm for A4@, d-line, and HeNe light, respectively, the pattern detection signal waveform is almost the same as that when directly detecting the board (without register). This made it possible to eliminate the influence of optical interference caused by the resist. As a result, the alignment accuracy has improved from about 0.3μm to about 0.2μm.
m, and was able to improve the alignment accuracy on top of the alignment accuracy caused by the Habo device.
なお実施例においてはe線、d線、HeNe光を用いた
が、下層レジストを透過する光であれば他の波長め光で
も同様に効果がある。Note that although e-line, d-line, and HeNe light were used in the embodiment, light of other wavelengths can be similarly effective as long as the light passes through the underlying resist.
実施例7
フレネルゾーンパターンが形成されているSi基板上に
レジストを塗布・形成し、その後パーフルオロアルキル
ポリエーテル膜をレジスト上に形成した。その膜厚は約
120nmである。その後He N eレーザ光を用い
てパターン位置検出および合焦点位置検出を行った。パ
ーフルオロアルキルポリエーテルよりなる反射防止膜を
形成することによりパターン位置検出および合焦点位置
検出信号はシャープになり、検出精度が向上した。Example 7 A resist was applied and formed on a Si substrate on which a Fresnel zone pattern was formed, and then a perfluoroalkyl polyether film was formed on the resist. The film thickness is about 120 nm. Thereafter, a pattern position and a focal point position were detected using a HeNe laser beam. By forming an antireflection film made of perfluoroalkyl polyether, pattern position detection and focused point position detection signals became sharper, improving detection accuracy.
なお検出光はHe N eレーザ光に限らず他の単色光
を用いることができる。また単層レジストの代わりに多
層レジストを用いることもできる。またフレネルゾーン
パターンに限らず、回折格子パターンのように干渉ある
いは回折を利用した合わせターゲットパターンを用いて
実験した結果、パーフルオロアルキルポリエーテル膜を
レジスト上にオーバーコートする本方法は極めて有効で
あった。Note that the detection light is not limited to HeNe laser light, but other monochromatic light can be used. Moreover, a multilayer resist can also be used instead of a single layer resist. Furthermore, as a result of experiments using not only Fresnel zone patterns but also alignment target patterns that utilize interference or diffraction, such as diffraction grating patterns, we found that this method of overcoating a perfluoroalkyl polyether film on a resist is extremely effective. Ta.
実施例8
上記実施例1〜7においてパーフルオロアルキルポリエ
ーテル膜をレジスト上に形成した後、約90℃10分の
熱処理を行った。熱処理によりパーフルオロアルキルポ
リエーテル膜の膜厚の経時変化が低減し、パーフルオロ
アルキルポリエーテル膜形成後の処理の放置時間裕度が
増した。なお熱処理条件は上記例に限らず、レジストの
感光特性および現像特性を劣化させない筒囲であればよ
1、NIl
以上実施例コ〜8においては反射防止膜がパーフルオロ
アルキルポリエーテル膜からなる場合を説明したが、パ
ーフルオロアルキルポリエーテルの代オ〕りにパーフル
オロアルキルアミンあるいはパーフルオロアルキルアミ
ンとパーフルオロアルキルポリエーテルなどパーフルオ
ロアルキル化合物を用いて同様に効果があった。パーフ
ルオロアルキルアミンとしては例えばフロリナート(住
人スリーエム社商品名)などがある。Example 8 After forming the perfluoroalkyl polyether film on the resist in Examples 1 to 7 above, heat treatment was performed at about 90° C. for 10 minutes. The heat treatment reduced the change in film thickness of the perfluoroalkyl polyether film over time, and increased the latitude for leaving time for the treatment after forming the perfluoroalkyl polyether film. Note that the heat treatment conditions are not limited to the above examples, and any tube circumference that does not deteriorate the photosensitive characteristics and development characteristics of the resist may be used. However, similar effects were obtained by using a perfluoroalkyl compound such as perfluoroalkylamine or perfluoroalkylamine and perfluoroalkyl polyether instead of perfluoroalkyl polyether. Examples of perfluoroalkyl amines include Fluorinert (trade name, manufactured by Jujutsu 3M Co., Ltd.).
」二1記のように本発明によれば簡便な方法で寸法精度
の高いパターンを形成することができる。また精度の高
い合わせパターン検出を行うことができるので合わせ精
度が向上する。21, according to the present invention, a pattern with high dimensional accuracy can be formed by a simple method. Furthermore, since highly accurate alignment pattern detection can be performed, alignment accuracy is improved.
寸法精度および合わt)精度を向上することができるの
で、回路の高集積化、チップ面積の縮小化を行うことが
でき、また電気特性の安定した高品質な素子を高い歩留
まりで得ることができる。Since dimensional accuracy and precision can be improved, it is possible to increase circuit integration and reduce chip area, and it is also possible to obtain high-quality elements with stable electrical characteristics at a high yield. .
第1図は本発明の一実施例を示す工程図である。
第2図は従来法の問題点を説明する図である。第3図は
本発明の詳細な説明するための図である。
第4図は本発明の効果を示す曲線図である。第5図は本
発明の一実施例を示す工程図である。
1・・・Si基板、2・・・レジスト、3・・・反射防
止膜、4・・・マスク、5・・・UV光、2′・・・レ
ジストパターン、31・・・基板、32・・・レジスト
、33・・反射防止膜、33a・・・反射防止膜とレジ
ストどの界面、33b・・・外気と反射防止膜との界面
、34・・・基板から反射防止膜へ向かう光、35・・
・反射防止膜/レジスト界面から基板へ向かう反射光、
36・・・外気/反射防止膜界面から基板へ向かう反射
光、37・・・外気へ向かう透過光、51・・・Si基
板、52・・・下層レジスト、52′・・・下層レジス
トに転写されたパターン、53・・・中間層、53′・
・・中間層に転写されたパターン、54・・・レジスト
、54′・・・レジストパターン、55・・・パーフル
オロ茅 1 図
(a−少
(シン
(d)
(Q)
7izに
しシスト櫃厚 〔P−〕
竿30
茅 4 目
ハ0−フルオロアル代ルボ°ルゴル反蛸n止d#4倣L
)イ S 図
(a−)
(C)
(d−)
(e)FIG. 1 is a process diagram showing an embodiment of the present invention. FIG. 2 is a diagram explaining the problems of the conventional method. FIG. 3 is a diagram for explaining the present invention in detail. FIG. 4 is a curve diagram showing the effect of the present invention. FIG. 5 is a process diagram showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Si substrate, 2... Resist, 3... Antireflection film, 4... Mask, 5... UV light, 2'... Resist pattern, 31... Substrate, 32... ...Resist, 33...Anti-reflective film, 33a...Interface between anti-reflective film and resist, 33b...Interface between outside air and anti-reflective film, 34...Light traveling from substrate to anti-reflective film, 35・・・
・Reflected light from the anti-reflection film/resist interface toward the substrate,
36... Reflected light heading from outside air/anti-reflection film interface to substrate, 37... Transmitted light heading towards outside air, 51... Si substrate, 52... Lower layer resist, 52'... Transferred to lower layer resist pattern, 53...middle layer, 53'.
...Pattern transferred to intermediate layer, 54...Resist, 54'...Resist pattern, 55...Perfluoro grass 1 Figure (a-small (thin (d) (Q) 7iz cyst thickness [P-] Rod 30 Kaya 4 eyes 0-Fluoroalyl base Lugol anti-octopus n stop d#4 imitation L
)B S Figure (a-) (C) (d-) (e)
Claims (1)
膜に所定パターンを露光する工程と、前記露光後前記レ
ジストを現像する工程を含むパターン形成方法において
、前記露光前に前記レジスト上にパーフルオロアルキル
ポリエーテル膜あるいはパーフルオロアルキルアミン膜
あるいはその混合物膜(以下総称してパーフルオロアル
キル化合物と称す)を形成し、露光後に前記パーフルオ
ロアルキル化合物膜を除去する工程を含むことを特徴と
するパターン形成方法。 2、特許請求の範囲第1項記載のパターン形成方法にお
いて基板上に位置合わせ用のパターンが形成されており
、前記位置合わせ用のパターンを検出するための光を上
記基板に照射して反射光を検出し、所望パターンの合わ
せを行う工程を含むパターン形成方法において、前記パ
ターン検出の前に前記レジスト上にパーフルオロアルキ
ル化合物膜を形成することを特徴とするパターン形成方
法。 3、特許請求の範囲第1項記載のパターン形成方法にお
いて上記露光光の波長をλとしたとき、前記パーフルオ
ロアルキル化合物膜の膜厚がほぼλ/5.2の奇数倍で
あることを特徴とするパターン形成方法。 4、特許請求の範囲第2項記載のパターン形成方法にお
いて上記パターン検出光の波長をλ′としたとき、前記
パーフルオロアルキル化合物膜の膜厚がほぼλ′/5.
2の奇数倍であることを特徴とするパターン形成方法。 5、特許請求の範囲第1項もしくは第2項記載のパター
ン形成方法において前記パーフルオロアルキル化合物膜
の形成後熱処理を加えることを特徴とするパターン形成
方法。[Scope of Claims] 1. A pattern forming method including a step of forming a resist film on a substrate, a step of exposing the resist film with a predetermined pattern, and a step of developing the resist after the exposure, a step of forming a perfluoroalkyl polyether film, a perfluoroalkyl amine film, or a mixture film thereof (hereinafter collectively referred to as perfluoroalkyl compound) on the resist, and removing the perfluoroalkyl compound film after exposure. A pattern forming method characterized by comprising: 2. In the pattern forming method according to claim 1, an alignment pattern is formed on the substrate, and the substrate is irradiated with light for detecting the alignment pattern, and the reflected light is emitted from the substrate. 1. A pattern forming method comprising a step of detecting a pattern and aligning a desired pattern, the method comprising forming a perfluoroalkyl compound film on the resist before detecting the pattern. 3. In the pattern forming method according to claim 1, where the wavelength of the exposure light is λ, the thickness of the perfluoroalkyl compound film is approximately an odd multiple of λ/5.2. A pattern forming method. 4. In the pattern forming method according to claim 2, when the wavelength of the pattern detection light is λ', the thickness of the perfluoroalkyl compound film is approximately λ'/5.
A pattern forming method characterized in that the pattern is an odd multiple of 2. 5. A pattern forming method according to claim 1 or 2, characterized in that a heat treatment is applied after the perfluoroalkyl compound film is formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60201524A JPS6262520A (en) | 1985-09-13 | 1985-09-13 | Pattern forming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60201524A JPS6262520A (en) | 1985-09-13 | 1985-09-13 | Pattern forming method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6262520A true JPS6262520A (en) | 1987-03-19 |
Family
ID=16442471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60201524A Pending JPS6262520A (en) | 1985-09-13 | 1985-09-13 | Pattern forming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6262520A (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05188598A (en) * | 1991-06-28 | 1993-07-30 | Internatl Business Mach Corp <Ibm> | Coating film for preventing surface reflection |
WO1993024860A1 (en) * | 1992-06-02 | 1993-12-09 | Mitsubishi Kasei Corporation | Composition for forming anti-reflection film on resist and pattern formation method |
JPH0844066A (en) * | 1994-08-01 | 1996-02-16 | Mitsubishi Chem Corp | Surface antireflection coating composition |
JPH08503983A (en) * | 1992-11-25 | 1996-04-30 | ヘキスト、セラニーズ、コーポレーション | Reduction of metal ions in bottom antireflective coatings for photoresists |
US5631314A (en) * | 1994-04-27 | 1997-05-20 | Tokyo Ohka Kogyo Co., Ltd. | Liquid coating composition for use in forming photoresist coating films and photoresist material using said composition |
US5728508A (en) * | 1994-03-14 | 1998-03-17 | Shin-Etsu Chemical Co., Ltd. | Method of forming resist pattern utilizing fluorinated resin antireflective film layer |
US5814694A (en) * | 1996-04-15 | 1998-09-29 | Shin-Etsu Chemical Co., Ltd. | Anti-reflective coating composition |
US5830623A (en) * | 1995-09-12 | 1998-11-03 | Kabushiki Kaisha Toshiba | Pattern lithography method |
US6136505A (en) * | 1998-06-12 | 2000-10-24 | Tokyo Ohka Kogyo Co., Ltd. | Liquid coating composition for use in forming antireflective film and photoresist material using said antireflective film |
US7354693B2 (en) | 2004-08-05 | 2008-04-08 | Shin-Etsu Chemical Co., Ltd. | Polymer, resist protective coating material, and patterning process |
US7365115B2 (en) | 2002-07-04 | 2008-04-29 | Az Electronic Materials Usa Corp. | Composition for antireflection coating and method for forming pattern |
US7455952B2 (en) | 2004-04-16 | 2008-11-25 | Shin-Etsu Chemical Co., Ltd. | Patterning process and resist overcoat material |
US7569323B2 (en) | 2005-07-27 | 2009-08-04 | Shin-Etsu Chemical Co., Ltd. | Resist protective coating material and patterning process |
EP2090598A1 (en) | 2008-02-14 | 2009-08-19 | Shin-Etsu Chemical Co., Ltd. | Polymer, resist composition, and patterning process |
US7642034B2 (en) | 2006-01-31 | 2010-01-05 | Shin-Etsu Chemical Co., Ltd. | Polymer, resist protective coating material, and patterning process |
US7666572B2 (en) | 2006-06-27 | 2010-02-23 | Shin-Etsu Chemical Co., Ltd. | Resist top coat composition and patterning process |
US7670750B2 (en) | 2006-10-04 | 2010-03-02 | Shin-Etsu Chemical Co., Ltd. | Polymer, resist protective coating material, and patterning process |
US7759047B2 (en) | 2006-05-26 | 2010-07-20 | Shin-Etsu Chemical Co., Ltd. | Resist protective film composition and patterning process |
US7771913B2 (en) | 2006-04-04 | 2010-08-10 | Shin-Etsu Chemical Co., Ltd. | Resist composition and patterning process using the same |
US8057981B2 (en) | 2008-02-14 | 2011-11-15 | Shin-Etsu Chemical Co., Ltd. | Resist composition, resist protective coating composition, and patterning process |
US8088537B2 (en) | 2008-01-31 | 2012-01-03 | Shin-Etsu Chemical Co., Ltd. | Resist top coat composition and patterning process |
US8101335B2 (en) | 2008-05-12 | 2012-01-24 | Shin-Etsu Chemical Co., Ltd. | Resist composition and patterning process |
US8158330B2 (en) | 2008-05-12 | 2012-04-17 | Shin-Etsu Chemical Co., Ltd. | Resist protective coating composition and patterning process |
US8268528B2 (en) | 2008-12-02 | 2012-09-18 | Shin-Etsu Chemical Co., Ltd. | Resist composition and patterning process |
US8313886B2 (en) | 2009-04-16 | 2012-11-20 | Shin-Etsu Chemical Co., Ltd. | Resist composition and patterning process |
US8323872B2 (en) | 2005-06-15 | 2012-12-04 | Shin-Etsu Chemical Co., Ltd. | Resist protective coating material and patterning process |
US8361703B2 (en) | 2008-12-02 | 2013-01-29 | Shin-Etsu Chemical Co., Ltd. | Resist protective coating composition and patterning process |
JP2013022940A (en) * | 2011-07-26 | 2013-02-04 | Canon Inc | Method of manufacturing liquid ejection head |
US8431323B2 (en) | 2008-10-30 | 2013-04-30 | Shin-Etsu Chemical Co., Ltd. | Fluorinated monomer of cyclic acetal structure, polymer, resist protective coating composition, resist composition, and patterning process |
WO2016190221A1 (en) * | 2015-05-28 | 2016-12-01 | 旭硝子株式会社 | Coating composition and process for producing layered photoresist object |
-
1985
- 1985-09-13 JP JP60201524A patent/JPS6262520A/en active Pending
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05188598A (en) * | 1991-06-28 | 1993-07-30 | Internatl Business Mach Corp <Ibm> | Coating film for preventing surface reflection |
US5744537A (en) * | 1991-06-28 | 1998-04-28 | International Business Machines Corporation | Antireflective coating films |
WO1993024860A1 (en) * | 1992-06-02 | 1993-12-09 | Mitsubishi Kasei Corporation | Composition for forming anti-reflection film on resist and pattern formation method |
US5514526A (en) * | 1992-06-02 | 1996-05-07 | Mitsubishi Chemical Corporation | Fluorine-containing composition for forming anti-reflection film on resist surface and pattern formation method |
JPH08503983A (en) * | 1992-11-25 | 1996-04-30 | ヘキスト、セラニーズ、コーポレーション | Reduction of metal ions in bottom antireflective coatings for photoresists |
US5728508A (en) * | 1994-03-14 | 1998-03-17 | Shin-Etsu Chemical Co., Ltd. | Method of forming resist pattern utilizing fluorinated resin antireflective film layer |
US5631314A (en) * | 1994-04-27 | 1997-05-20 | Tokyo Ohka Kogyo Co., Ltd. | Liquid coating composition for use in forming photoresist coating films and photoresist material using said composition |
US5783362A (en) * | 1994-04-27 | 1998-07-21 | Tokyo Ohka Kogyo Co., Ltd. | Liquid coating composition for use in forming photoresist coating films and a photoresist material using said composition |
JPH0844066A (en) * | 1994-08-01 | 1996-02-16 | Mitsubishi Chem Corp | Surface antireflection coating composition |
US5830623A (en) * | 1995-09-12 | 1998-11-03 | Kabushiki Kaisha Toshiba | Pattern lithography method |
US5814694A (en) * | 1996-04-15 | 1998-09-29 | Shin-Etsu Chemical Co., Ltd. | Anti-reflective coating composition |
US6136505A (en) * | 1998-06-12 | 2000-10-24 | Tokyo Ohka Kogyo Co., Ltd. | Liquid coating composition for use in forming antireflective film and photoresist material using said antireflective film |
US7365115B2 (en) | 2002-07-04 | 2008-04-29 | Az Electronic Materials Usa Corp. | Composition for antireflection coating and method for forming pattern |
US7455952B2 (en) | 2004-04-16 | 2008-11-25 | Shin-Etsu Chemical Co., Ltd. | Patterning process and resist overcoat material |
US7354693B2 (en) | 2004-08-05 | 2008-04-08 | Shin-Etsu Chemical Co., Ltd. | Polymer, resist protective coating material, and patterning process |
US8323872B2 (en) | 2005-06-15 | 2012-12-04 | Shin-Etsu Chemical Co., Ltd. | Resist protective coating material and patterning process |
US7569323B2 (en) | 2005-07-27 | 2009-08-04 | Shin-Etsu Chemical Co., Ltd. | Resist protective coating material and patterning process |
US7642034B2 (en) | 2006-01-31 | 2010-01-05 | Shin-Etsu Chemical Co., Ltd. | Polymer, resist protective coating material, and patterning process |
US7771913B2 (en) | 2006-04-04 | 2010-08-10 | Shin-Etsu Chemical Co., Ltd. | Resist composition and patterning process using the same |
US7759047B2 (en) | 2006-05-26 | 2010-07-20 | Shin-Etsu Chemical Co., Ltd. | Resist protective film composition and patterning process |
US7666572B2 (en) | 2006-06-27 | 2010-02-23 | Shin-Etsu Chemical Co., Ltd. | Resist top coat composition and patterning process |
US7670750B2 (en) | 2006-10-04 | 2010-03-02 | Shin-Etsu Chemical Co., Ltd. | Polymer, resist protective coating material, and patterning process |
US8088537B2 (en) | 2008-01-31 | 2012-01-03 | Shin-Etsu Chemical Co., Ltd. | Resist top coat composition and patterning process |
EP2090598A1 (en) | 2008-02-14 | 2009-08-19 | Shin-Etsu Chemical Co., Ltd. | Polymer, resist composition, and patterning process |
US8252504B2 (en) | 2008-02-14 | 2012-08-28 | Shin-Etsu Chemical Co., Ltd. | Polymer, resist composition, and patterning process |
US8057981B2 (en) | 2008-02-14 | 2011-11-15 | Shin-Etsu Chemical Co., Ltd. | Resist composition, resist protective coating composition, and patterning process |
US8101335B2 (en) | 2008-05-12 | 2012-01-24 | Shin-Etsu Chemical Co., Ltd. | Resist composition and patterning process |
US8158330B2 (en) | 2008-05-12 | 2012-04-17 | Shin-Etsu Chemical Co., Ltd. | Resist protective coating composition and patterning process |
US8431323B2 (en) | 2008-10-30 | 2013-04-30 | Shin-Etsu Chemical Co., Ltd. | Fluorinated monomer of cyclic acetal structure, polymer, resist protective coating composition, resist composition, and patterning process |
US8933251B2 (en) | 2008-10-30 | 2015-01-13 | Shin-Etsu Chemical Co., Ltd. | Fluorinated monomer of cyclic acetal structure, polymer, resist protective coating composition, resist composition, and patterning process |
US8268528B2 (en) | 2008-12-02 | 2012-09-18 | Shin-Etsu Chemical Co., Ltd. | Resist composition and patterning process |
US8361703B2 (en) | 2008-12-02 | 2013-01-29 | Shin-Etsu Chemical Co., Ltd. | Resist protective coating composition and patterning process |
US8313886B2 (en) | 2009-04-16 | 2012-11-20 | Shin-Etsu Chemical Co., Ltd. | Resist composition and patterning process |
JP2013022940A (en) * | 2011-07-26 | 2013-02-04 | Canon Inc | Method of manufacturing liquid ejection head |
WO2016190221A1 (en) * | 2015-05-28 | 2016-12-01 | 旭硝子株式会社 | Coating composition and process for producing layered photoresist object |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6262520A (en) | Pattern forming method | |
JPS6262521A (en) | Pattern forming method | |
KR100749077B1 (en) | An electron device manufacturing method, a pattern forming method and a photomask used for those mothods | |
US20080118866A1 (en) | Method for forming a tunable deep-ultrviolet dielectric antireflection layer for image transfer processing | |
KR20140099163A (en) | An extreme ultraviolet lithography process | |
US9733562B2 (en) | Extreme ultraviolet lithography process and mask | |
US5262257A (en) | Mask for lithography | |
KR100675782B1 (en) | Non absorbing reticle and method of making same | |
US4621042A (en) | Absorptive planarizing layer for optical lithography | |
US9244366B2 (en) | Extreme ultraviolet lithography process and mask | |
US9448491B2 (en) | Extreme ultraviolet lithography process and mask | |
KR100249891B1 (en) | Photomask for use in manufacturing semiconductor and method of forming resist pattern | |
JPH10254122A (en) | Photomask for exposure | |
KR0184277B1 (en) | Mask having a phase shifter and method of manufacturing the same | |
JPS59178729A (en) | Controlling method of photoresist process | |
JPH05142745A (en) | Phase shift mask and manufacture of mask | |
JP3110245B2 (en) | Reflective exposure mask and pattern forming method | |
JP3178516B2 (en) | Phase shift mask | |
JP3422054B2 (en) | Optical mask and method of manufacturing the same | |
KR20010004043A (en) | Method of manufacturing reflective mask for EUV exposure apparatus | |
JP2693805B2 (en) | Reticle and pattern forming method using the same | |
JP2002303967A (en) | Mask for exposure, method for producing the same and exposure method using the same | |
JPH05142751A (en) | Photomask and projection exposure method | |
JPH03283418A (en) | Resist pattern forming method | |
JPH09255370A (en) | Pattern forming method |