Nothing Special   »   [go: up one dir, main page]

JPS6256523A - Manufacture of high strength rail providing weldability - Google Patents

Manufacture of high strength rail providing weldability

Info

Publication number
JPS6256523A
JPS6256523A JP19697985A JP19697985A JPS6256523A JP S6256523 A JPS6256523 A JP S6256523A JP 19697985 A JP19697985 A JP 19697985A JP 19697985 A JP19697985 A JP 19697985A JP S6256523 A JPS6256523 A JP S6256523A
Authority
JP
Japan
Prior art keywords
rail
apparent
cooling
transformation
pearlite transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19697985A
Other languages
Japanese (ja)
Inventor
Hideaki Kageyama
影山 英明
Kazuo Sugino
杉野 和男
Keiji Fukuda
福田 敬爾
Hiroki Yoshitake
吉武 弘樹
Yoshiaki Makino
牧野 由明
Katsuya Iwano
克也 岩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19697985A priority Critical patent/JPS6256523A/en
Publication of JPS6256523A publication Critical patent/JPS6256523A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To deepen hardened depth and to provide good weldability, by hot rolling steel contg. specified quantities of C, Si, Mn, Cr to rail, and controlling apparent pearlite transformation and cooling condition of a range thereafter. CONSTITUTION:Steel composed of, by weight 0.55-0.85% C, 0.20-1.20% Si, 0.5-1.50% Mn, 0.10-0.80% Cr and the balance Fe with inevitable impurity, if necessary >=added one kind among 0.01-0.05% Nb, 0.05-0.20% V, 0.01-0.05% Ti is used and hot rolled to rail. Then the surface or part less than 5mm from the surface of the top of the rail is cooled at the rate of 2-15 deg.C/sec from 800 deg.C to starting temperature of apparent pearlite transformation. It is continuously cooled in transformation domain succeeding thereto while maintaining apparent transformation temp. Successively it is forcedly cooled by 0.5-10.0 deg.C/sec at temp. between apparent end temp. of pearlite transformation and 450 deg.C further lower than preceding step cooling. In this way, high strength rail superior in weldability is obtd. by adding a small quantity of alloy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、海外の鉱山鉄道のような重荷重条注下、必る
いは茜速込転禾件下で要求される浴接継手部を含めた耐
摩耗性と数状摩耗などによってもたらきれる損傷抵抗性
の向上に有効な微細パーライト組織を有する浴接性付与
高強度レールの製造法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention provides a bath welding joint that is required under heavy load conditions such as mine railways overseas, or under high speed transfer conditions. The present invention relates to a method for manufacturing a high-strength rail with bath weldability, which has a fine pearlite structure that is effective in improving wear resistance and damage resistance caused by numerical wear.

(従来の技術) 近年、重荷重化、関連化を指向する鉄道輸送に、微細パ
ーライト組織によるレール材の高強度化が。
(Conventional technology) In recent years, rail materials with a fine pearlite structure have been made to have higher strength as railway transportation is becoming more and more heavy-duty and related.

その耐rjト耗性、耐損傷性の改善に対して侵れた実積
を示していることは公知の事実となpつつおる1゜特に
耐摩耗性に関しては、アメリカの重向重鉄道の急曲線区
間に、高強度レールの使用が必須の要件となっており、
なおかつ直線区間に対してもアメリカ鉄道規格(AiA
)を従来の七通炭素鋼レールの水準から、さらに高強度
化すべく検討が成されている。
It is a well-known fact that the RJ's wear resistance and damage resistance have been significantly improved.1゜Especially with regard to wear resistance, The use of high-strength rails is an essential requirement in sharply curved sections.
Furthermore, the American Railway Standards (AiA) are also applied to straight sections.
) is being studied to further increase the strength of the conventional seven-way carbon steel rail.

このようなレールの高強度化および中間強度化方法どし
ては、以下の方法が採られている。
The following methods are used to increase the strength and intermediate strength of such rails.

■ Cr 、八10などの合金元素を多投に添加した圧
延ままの合金銅レール(特開昭50.−140316号
公報)。
(2) As-rolled alloy copper rail to which alloying elements such as Cr and 810 are added in large amounts (Japanese Patent Laid-Open No. 140316/1983).

■ 合金を添加せずに、レール頭部あるいは全体を加速
冷却することによって製造される熱処理レール(特公昭
55−23885号公報)。
(1) A heat-treated rail manufactured by accelerated cooling of the rail head or the entire rail without adding any alloy (Japanese Patent Publication No. 55-23885).

■ 比較的低い含有量の合金を添加して、耐摩耗。■ Addition of relatively low content of alloy for wear resistance.

耐損傷性はかりでなく、溶接部の硬度低下を改善した低
合金鋼熱処理レール。
A low-alloy steel heat-treated rail that is not a damage-resistant scale, but has improved the hardness loss of welded parts.

■ 比較的低い含有量の合釡を添加して、塗油区間での
耐損傷性向上を意図した圧延まま高強度レール。
■ High-strength as-rolled rail designed to improve damage resistance in the oiled section by adding a relatively low amount of dowel.

(発明が解決しようとする問題点) ■の合金鋼レールは圧延ままで微細パーライト組織によ
る高強度化を達成するために、高価な合金を多量に添加
せねばならない。しかも合金添加量は、圧延ままでマル
テンサイト組織などの異組織の混入を防ぐために、自ず
と添加量の限界が生ずる。このエリにして製造された合
金鋼レールは。
(Problems to be Solved by the Invention) In order to achieve high strength due to the fine pearlite structure in the alloy steel rail (2) as rolled, a large amount of expensive alloy must be added. Moreover, there is a natural limit to the amount of alloy added in order to prevent foreign structures such as martensitic structure from being mixed into the rolled steel. This alloy steel rail is manufactured by Eri.

強度的にはたかだか125に4i/ltm2であり、後
述する熱処理レールに比べてレール頭表部の到達強度は
低′めを示す。さらにロングレール化のためのフラー・
ンーパノト浴接時には、圧延時の冷却速度(800’〜
みかげの・?−ライト変態開始温度IVl 0.4〜0
.7℃/、、c)に比べて継手部の冷却速&(同温度範
囲0.7〜b 金鋼レール溶接継手部にはマルテンサイト組織が生成す
る。これを防止するためには、溶接に際し予熱あるいは
後熱処理を必要とし溶接能率を著しく阻害する。しかし
、合金鋼レール母材部の特性としてはレール頭部の内部
方向に硬度低下がitとんどなく、後述する通常の再加
熱・熱処理レールの硬度分布と頭表面下15m附近から
逆転した高硬度を示す。また、合金鋼レールは圧延まま
で製造が可能であるため生産効率が高いメリットも有し
ている。
In terms of strength, it is 125 to 4i/ltm2 at most, and the strength achieved at the rail head surface is lower than that of the heat-treated rail described later. Additionally, fuller rails for longer rails are available.
When contacting the bath, the cooling rate during rolling (800'~
Mikage's? -Light transformation starting temperature IVl 0.4~0
.. 7℃/,,c) The cooling rate of the joint part & (same temperature range 0.7~b) A martensitic structure is generated in the welded joint part of the steel rail.In order to prevent this, it is necessary to Preheating or post-heat treatment is required, which significantly impedes welding efficiency.However, as a characteristic of the alloy steel rail base material, there is almost no decrease in hardness toward the inside of the rail head, so normal reheating and heat treatment described later is not possible. The hardness distribution of the rail shows a high hardness that is reversed from about 15m below the head surface.Also, alloy steel rails can be manufactured as rolled, so they have the advantage of high production efficiency.

一方、■および■の熱処理レールはその主流が圧延後室
温まで放冷したレールの頭部を再加熱オーステナイト化
した後、圧縮空気などでエアークエンチする方法で製造
されている。この方法では再加熱のためのエネルギーを
必要とするばかりか、レール頭部の内部方向に加熱温度
勾配に対応した硬度低下が生じてしまう。従って敷設後
のレール使用と共に硬度の低くなる内部方向に摩耗が進
行することになり、経時と共に漸次耐摩耗性が低下する
傾向を示す。
On the other hand, heat-treated rails (1) and (2) are mainly manufactured by a method in which the head of the rail is cooled to room temperature after rolling, reheated to austenite, and then air quenched with compressed air or the like. This method not only requires energy for reheating, but also causes a decrease in hardness corresponding to the heating temperature gradient in the inner direction of the rail head. Therefore, as the rail is used after installation, wear progresses toward the inside where the hardness decreases, and the wear resistance tends to gradually decrease over time.

また、■の中間強度レールは、硬度で示すとHB269
→Ha 286程度であ夛塗油区間でも、緩曲勝区間に
限定されてしまう。従って、よ)高強度化した下限HB
 300を有する中間強度レールは塗油との組合せによ
って急曲線区間への適用が今後広範囲に展開していくも
のと考えられる。
In addition, the medium strength rail of ■ is HB269 in terms of hardness.
→Ha is around 286, and even in heavily oiled sections, it is limited to gentle curves and sections. Therefore, the lower limit HB with higher strength
It is thought that medium strength rails having a rating of 300 will be widely used in sharply curved sections in combination with oil application.

(問題点を解決するための手段) 本発明は、上記合金鋼レールの溶接のしにくさ、あるい
は到達強度の億さを改善し、合金鋼レールの利点である
深さ方向硬度の安定性を備え、さらに現有熱処理レール
が必要とする再加熱エネルギーの節約を図りつつ、製造
能率の高い高強度レール製造のための圧延後直接熱処理
を施す製造法に係るものである。
(Means for Solving the Problems) The present invention improves the difficulty of welding the alloy steel rail or the difficulty in achieving the strength, and improves the stability of hardness in the depth direction, which is an advantage of the alloy steel rail. The present invention relates to a manufacturing method that directly heat-treats after rolling to produce high-strength rails with high production efficiency while saving reheating energy required by existing heat-treated rails.

すなわち、本発明はC:0.55〜0.85俤、 St
:0.20〜1.20%、 Mn : 0.50〜1゜
50.、もし〈はこれにCr:0.10〜0.80%加
えた成分系を基本とし、必要に応じてNb 、 V 、
 TIの一種又は二種以上を含有した鋼レールを熱間圧
延終了後のオーステナイト域から、レール頭表面、もし
くは頭表面下5++m未満の深さ位置で800℃〜みか
げのパーライト変態開始温度間を2〜b冷却し、引き続
く・2−ライト変態領域をみかげの変態開始温度を維持
しつつパーライト変態を中断することなく連続的に冷却
し、パーライト変態のみかけの終了温度〜450℃間を
0−5〜10−0 ′C75ecで強制冷却することを
特徴とするものである。
That is, in the present invention, C: 0.55 to 0.85 yen, St
: 0.20~1.20%, Mn: 0.50~1°50. , 〈 is based on a component system in which 0.10 to 0.80% of Cr is added to this, and Nb, V, as necessary.
A steel rail containing one or more types of TI is heated from the austenitic region after hot rolling to the rail head surface or at a depth of less than 5++ m below the head surface between 800°C and the apparent pearlite transformation start temperature. 2-b cooling, followed by continuous cooling of the 2-lite transformation region without interrupting the pearlite transformation while maintaining the apparent transformation start temperature, and cooling the area between the apparent end temperature of pearlite transformation and 450°C to 0. It is characterized by forced cooling at -5 to 10-0'C75ec.

(発明の構成) 以下に本発明について詳細に説明する。(Structure of the invention) The present invention will be explained in detail below.

本発明は転炉あるいは電気炉等で溶製した下記成分範囲
のレール用鋼を用いる。
In the present invention, steel for rails having the following composition range is used, which is melted in a converter or an electric furnace.

(1)  C: o、s s〜0.85%、Si:0.
20〜1.20% 、 Mn : 0.50〜1.50
 % 、 Cr : 0.10〜0.80チを含有し残
部が鉄および不可避的不純物からなる鋼。
(1) C: o, ss~0.85%, Si: 0.
20~1.20%, Mn: 0.50~1.50
%, Cr: Steel containing 0.10 to 0.80%, with the balance consisting of iron and inevitable impurities.

(2)C:0.55〜0185チ、 Si : 0.2
0〜1620% 、  Mn 0.50〜1.50% 
、  Cr  :  0.1 0〜0.8 0チを含有
し、Nb * v * Tiの一種又は二種以上を含有
し、残部逗鉄および不可避的不純物からなる鋼。
(2) C: 0.55-0185chi, Si: 0.2
0-1620%, Mn 0.50-1.50%
, Cr: 0.10 to 0.80 Ti, one or more types of Nb*v*Ti, and the balance consists of ferrite and inevitable impurities.

これらの化学成分のうち、Cは高強度化およびパーライ
ト組織生成のための必須元素であり、また耐摩耗性に対
して一義的に効果を示す元素であるが、0.55チ未満
ではオーステナイト粒界に耐摩耗性に好ましくない初析
フェライトが多量に生成し、0.85%を超えるとオー
ステナイト粒界に有害な初析セメンタイトを生成させる
ばかりか。
Among these chemical components, C is an essential element for increasing strength and forming a pearlite structure, and is also an element that has a unique effect on wear resistance. A large amount of pro-eutectoid ferrite, which is unfavorable for wear resistance, is generated at the boundaries, and if it exceeds 0.85%, not only is pro-eutectoid cementite harmful to the austenite grain boundaries generated.

熱処理層や溶接部の微小偏析部にマルテンサイトが生成
し脆化させるため0.55〜0.85チに限定した。S
iはパーライト組織中のフェライトに固溶することによ
って強度を上昇させ耐摩耗性を向上させる元素であるが
、脱酸元素としても0.20%以上の添加が必要であり
、また1、、 20 %を超えると脆化が生じ溶接接合
性をも減するので0.20〜1.20%に限定した。M
rはC同様ノR−ライト変態温度を低下させ焼入性を高
めることによって、高強度化に寄与する元素である。し
かし、0.50%未満ではその寄与が小さくまた1、5
0チを超えると偏析部にマルテンサイトを生成させやす
くするため0.50〜1.50チに限定した。Crはパ
ーライト変態開始温度を低下させ高強度化に寄与するば
かジか、・9−ライト中のセメンタイトを強化すること
によっても耐摩耗性に貢献することが見い出されており
、さらに熱処理レールの溶接部軟化防止に対しても欠く
べからざる元素であり本発明の重要な構成要素である。
The thickness was limited to 0.55 to 0.85 inch because martensite is generated in minute segregation areas of heat-treated layers and welded parts and causes embrittlement. S
i is an element that increases strength and improves wear resistance by solidly dissolving in ferrite in pearlite structure, but it also needs to be added in an amount of 0.20% or more as a deoxidizing element, and 1, 20 If it exceeds 0.2%, embrittlement will occur and the welding bondability will be reduced, so it is limited to 0.20 to 1.20%. M
Like C, r is an element that contributes to high strength by lowering the R-lite transformation temperature and increasing hardenability. However, if it is less than 0.50%, its contribution is small and 1,5%
In order to facilitate the formation of martensite in the segregated portions when it exceeds 0.0, the range is limited to 0.50 to 1.50. It has been found that Cr contributes to high strength by lowering the temperature at which pearlite transformation starts, but it has also been found to contribute to wear resistance by strengthening the cementite in 9-lite. It is an indispensable element for preventing part softening and is an important component of the present invention.

Crば0.10%以上添加することによって加速冷却時
に強度増加が顕在化し、0.10〜0.80%Crの範
囲では本発明の後段の冷却条件でもレール頭部中央のミ
クロ偏析部にマルテンサイトが生成する危険性はない。
By adding 0.10% or more of Cr, an increase in strength becomes apparent during accelerated cooling, and in the range of 0.10 to 0.80% Cr, even under the latter cooling conditions of the present invention, marten is formed in the micro-segregation area at the center of the rail head. There is no risk that the site will generate.

しかし0.8−以上のCrの添加は偏析部のみならず過
冷却傾向の強いレール肩部にベーナイトやマルテンサイ
トが生成してしまう。従ってCrの成分範囲を0.10
〜0.80%に限定した。
However, when Cr is added in an amount of 0.8 or more, bainite and martensite are generated not only in the segregated areas but also in the rail shoulders where there is a strong tendency to overcool. Therefore, the component range of Cr is 0.10
It was limited to ~0.80%.

この場合に、 Nb 、 V 、 Tiなどのオーステ
ナイト粒細粒化元素を添加することによって、高強度化
と共に延性も確保することが出来る。歯は熱間圧延時に
低温加熱することに工ってNb(C,N)の析出物がオ
ーステナイト粒成長を抑制し細粒化に寄与する。また、
高温加熱・低温仕上圧延によって熱間圧延後のオーステ
ナイト粒を細粒化し、強制冷却後に得られるパーライト
・ブロックサイズを細粒にする。これらの細粒化による
パーライト変態点の上昇は強度を低下させる方向である
が、その分Orなどの強化元素と添加することによって
、強度と延性に優れ溶接部の軟化を改善したレールを製
造することが可能となる。このとき有効なNb添加9ば
0.01%であり、0.05チを超えるとNbCが生成
し、かえって脆化を招く。従ってNbの成分範囲を0.
01〜0.05%に限定した。VはNbとほぼ同様の傾
向を示すが、加熱中に析出するV(C,N)はNb (
C、N ) 、二り溶融温度が低いため、レール圧延時
の低温加熱時のみ初Klオーステナイト粒の細粒化て寄
与する。また通常加熱によって溶融したV(C、N)は
冷却中に再析出して析出硬化による強度増をもたらす。
In this case, by adding austenite grain refining elements such as Nb, V, and Ti, it is possible to ensure not only high strength but also ductility. By heating the teeth at a low temperature during hot rolling, Nb (C, N) precipitates suppress austenite grain growth and contribute to grain refinement. Also,
The austenite grains after hot rolling are refined by high-temperature heating and low-temperature finish rolling, and the pearlite block size obtained after forced cooling is made fine. An increase in the pearlite transformation point due to these grain refinements tends to reduce strength, but by adding reinforcing elements such as Or, rails with excellent strength and ductility and improved welded joint softening can be manufactured. becomes possible. At this time, the effective amount of Nb added is 0.01%, and if it exceeds 0.05%, NbC is generated, which instead causes embrittlement. Therefore, the Nb component range is set to 0.
It was limited to 0.01 to 0.05%. V shows almost the same tendency as Nb, but V(C,N) precipitated during heating is more similar to Nb (
C, N), since the melting temperature is low, the primary Kl austenite grains contribute to refinement only during low-temperature heating during rail rolling. Further, V (C, N) melted by normal heating is reprecipitated during cooling, resulting in an increase in strength due to precipitation hardening.

しかしVのo、 o s %以下の添加ではその析出物
の数も少なく所定の効果は期待できない。また0、20
%超のVの添加はV(C,N)の粗大化によってかえっ
て脆化を生じさせる。この之めVの成分範囲を0.05
〜0.20%に限定した。TIは析出したTi (C。
However, if the amount of V added is less than 0.0 s %, the number of precipitates will be small and the desired effect cannot be expected. 0,20 again
Addition of more than % of V will cause embrittlement due to coarsening of V(C,N). The component range of this V is 0.05
It was limited to ~0.20%. TI is precipitated Ti (C.

N)が高温でも溶融しないことが知られており、通常の
レール圧延加熱温度でもオーステナイトの初期粒度を細
粒化する几めに有効である。しかし、Nb同様T1も0
.01チ以下ではその効果は小さく、0.05%超では
主としてTiNの粗大化が生じ損傷の起点となる可能性
が高いため、T+の成分範囲を0.01〜0.05チに
限定した。
It is known that N) does not melt even at high temperatures, and is effective in reducing the initial grain size of austenite even at normal rail rolling heating temperatures. However, like Nb, T1 is also 0
.. If it is less than 0.01 inch, the effect is small, and if it exceeds 0.05%, it is likely that the TiN will become coarse and become the starting point of damage, so the range of T+ components was limited to 0.01 to 0.05 inch.

次に本発明では上記の化学組成を有するレール鋼を熱間
圧延後のオーステナイト域から、レール頭表面もしくは
頭表面下5ツ未溝の深さ位置で800℃〜みかけのパー
ライト変態開始温度間を2〜15 ′c/。。で冷却し
、引き続くパーライト変態領域をみかけの変態開始温度
を維持しつつ・り一ライト変態を中断することなく連続
的に冷却し、パーライト変態のみかげの終了温度〜45
0℃間を0.5〜10.0℃/3eeでかつ前段冷却エ
リ遅い速度で強制冷却する。この熱処理条件の詳細を以
下に説明する。
Next, in the present invention, the rail steel having the above chemical composition is heated from the austenitic region after hot rolling to the apparent pearlite transformation starting temperature of 800°C at the depth of the rail head surface or five grooves below the head surface. 2-15'c/. . The subsequent pearlite transformation region is cooled continuously without interrupting the pearlite transformation while maintaining the apparent transformation start temperature to the apparent end temperature of pearlite transformation ~ 45
Forced cooling is performed between 0°C at a rate of 0.5 to 10.0°C/3ee and at a slow speed in the front cooling area. The details of the heat treatment conditions will be explained below.

本発明においてレール熱間圧延後の強制冷却ユ・n度を
800℃〜みかげの・譬−ライト変態開始温度間を、レ
ール頭表面もしくは頭表面下5喝未渦の深さ位置で2〜
15 ′c/secとしたのは、レールの強度に強い相
関を持つバニライト変態温度の抑制に変態開始までの冷
却速度が決定的な影響を有するからである。そこで、み
かけの/4’−ライト変1報開始までの800℃からの
冷却速度を2〜15鈷。。
In the present invention, the forced cooling temperature after hot rolling of the rail is set between 800°C and the temperature at which the light transformation starts, at the rail head surface or below the head surface at a depth of 5° to 2°.
The reason for setting it at 15'c/sec is that the cooling rate until the start of transformation has a decisive influence on suppressing the vanillite transformation temperature, which has a strong correlation with the strength of the rail. Therefore, the cooling rate from 800°C until the apparent /4'-light change signal starts is set at 2 to 15 degrees. .

とじた。ここで云うみかけの/4’−ライト変態開始と
は、CCTC作図作成時張曲線の偏曲点ではなく、冷却
曲線上の・セーライト変態熱による熱分析屈曲点を云う
。また、ここで云う強制冷却とは上記温度範囲を、上記
測定法さ位置で圧延後の通常の放冷を超える冷却速度で
冷却することを云う。この2〜15VS、l!の冷却速
度範囲は、大断面レールから小断面レールまでの頭表部
強度が115kl!/+m2以上を確保するために必要
な冷却速度でちり、高強度レールとは趣を異にした中間
強度レールの要求に対する広範囲な強度レベルのレール
を製造するための発明の重大な構成要素である。すなわ
ち、中間強度レールは価格の高い高強度レールに代えて
摩耗環境のさほど厳しくない曲線区間、あるいは塗油を
施した急曲線区間に敷設しようとするもので、近年新た
に登場した新分野のレールであり、冷却速度の下限2℃
/secは、中間強度としての115 kpm2以上を
得るための下限値である。ま念上限の冷却速度を15℃
l5ecに限定したのは、これ以上の冷却速度ではレー
ル頭表面にマルテンサイトあるいはベーナイト組織を生
成させ、レール材質をそこなう。以上の理由から800
℃〜みかげの/?−ライト変態開始温度までの冷却速度
を2〜b 引き続く・クーライト変態領域では、みかけのパーライ
ト変態開始温度を維持しつつ、レール断面あるいは化学
組成、さらにはみかげの・ぞ−ライト変態開始温度まで
の冷却速度によって異なるパーライト変態発熱を抑制し
、パーライト変態を中断することなく連続的に冷却する
Closed. The apparent start of /4'-lite transformation referred to here refers not to the inflection point of the tension curve at the time of CCTC drawing, but to the thermal analysis inflection point due to the heat of salite transformation on the cooling curve. In addition, the forced cooling referred to herein means cooling within the above temperature range at a cooling rate that exceeds normal cooling after rolling at the position of the above measurement method. This 2~15VS, l! The cooling rate range is 115kl for the head surface strength from large cross-section rails to small cross-section rails! /+m2 dust at the cooling rate required to ensure more than 2 m2, is a critical component of the invention for producing rails of a wide range of strength levels for the requirements of medium strength rails, which are different from high strength rails. . In other words, medium-strength rails are intended to replace expensive high-strength rails and be installed on curved sections where the wear environment is not very severe, or on steep curved sections coated with oil, and are a new field of rail that has emerged in recent years. and the lower limit of the cooling rate is 2℃
/sec is the lower limit value for obtaining an intermediate strength of 115 kpm2 or more. Please set the upper limit cooling rate to 15℃.
The reason why the cooling rate is limited to 15ec is that if the cooling rate is higher than this, martensite or bainite structure will be generated on the rail head surface and the rail material will be damaged. 800 for the above reasons
℃~Mikageno/? -The cooling rate to the light transformation start temperature is set to 2~b.In the subsequent coolite transformation region, while maintaining the apparent pearlite transformation start temperature, the rail cross section or chemical composition is further reduced to the apparent pearlite transformation start temperature. The heat generated by pearlite transformation, which varies depending on the cooling rate, is suppressed and the pearlite transformation is continuously cooled without interruption.

そして、レール頭表面もしくは頭表面下5燗未満の深さ
位置で、みかけのパーライト変態終了温度〜450℃間
を0.5〜10.0 ′c/seeでかつ前段冷却より
遅い速度で強制冷却する。ここで云うみかゆのパーライ
ト変態終了温度とは、レール頭表面もしくは頭表面下5
嘱未満の深さ位置で得られる冷却曲線上のみかけの・2
−ライト変態終了点に意味する屈曲点温度である。ここ
では、みかげ上・2−ライト変態が終了した頭表層に次
いで、レール頭部の硬化深度を高める目的で強制冷却を
行う。
Then, on the rail head surface or at a depth less than 5 degrees below the head surface, forced cooling is performed between the apparent pearlite transformation end temperature and 450°C at a rate of 0.5 to 10.0'c/see and at a slower rate than the previous stage cooling. do. The temperature at which the pearlite transformation of Umikayu ends is defined as the temperature at which the pearlite transformation ends at the rail head surface or below the head surface.
The apparent value of 2 on the cooling curve obtained at a depth below
- the inflection point temperature, meaning the end point of light transformation. Here, forced cooling is performed for the purpose of increasing the hardening depth of the rail head, following the head surface layer which has undergone the superficial 2-light transformation.

冷却速度範囲を0.5〜10.0″C/see とした
のは、0、5 ’C/see より遅い冷却速度では十
分な硬化深度が得られず、10.0 ′c/′see以
上ではCr添加した・セーライト変態速度の低下したレ
ール鋼の頭部内部や、レール頭部中央部に1ま存在する
微小偏析部に有害なマルテンサイトが生成してしまう。
The cooling rate range was set to 0.5 to 10.0'C/see because a cooling rate slower than 0.5'C/see would not provide sufficient hardening depth; In this case, harmful martensite is generated inside the head of the rail steel with Cr added and whose salite transformation rate has been reduced, or in the micro-segregation part that exists in the center of the rail head.

まt、この温度間の冷却速度を前段の800℃〜みかけ
のパーライト変態開始温度までの冷却速度より遅い速度
で強制冷却する目的は、後段で変態するパーライトが偏
析部を含めて合金元素の濃縮度が高まるにつれ変態速度
を著るしく低下させるため。
Also, the purpose of forced cooling at a slower rate than the cooling rate from 800°C to the apparent pearlite transformation start temperature in the previous stage is to ensure that the pearlite that transforms in the latter stage concentrates alloying elements including the segregated parts. Because the rate of metamorphosis decreases significantly as the degree increases.

パーライト変態を出来るだけ高温で完結させ未変態部分
からのベーナイトやマルテンサイトの生成を阻止するこ
とにちる。従って、みかけのノ9−ライト変態終了温度
〜450℃間を前段冷却より遅い0.5〜10.0℃/
8ecの冷却速度で強制冷却することとした。
The purpose is to complete the pearlite transformation at as high a temperature as possible and prevent the formation of bainite and martensite from the untransformed portion. Therefore, the temperature between the apparent No9-lite transformation end temperature and 450°C is 0.5 to 10.0°C, which is slower than the previous stage cooling.
Forced cooling was performed at a cooling rate of 8 ec.

なお、これらの強制冷却方法として圧縮空気冷却、気水
冷却、水冷、湯冷、流動層冷却、およびこれらの組合せ
のいずれでも可能であり、熱間圧延終了後に引き続いて
冷却処理を行う。この際、曲がり制御のためにレール頭
部以外の部位の強制的な冷却、あるいは拘速冷却を行っ
てもよい。
Note that any of these forced cooling methods can be compressed air cooling, air/water cooling, water cooling, hot water cooling, fluidized bed cooling, or a combination thereof, and the cooling treatment is performed successively after the hot rolling is completed. At this time, forced cooling or constraint cooling of parts other than the rail head may be performed to control bending.

(実施例) 以下に本発明の実施例を示す。(Example) Examples of the present invention are shown below.

表1に本発明鋼と比較従来鋼の化学組成を示す。Table 1 shows the chemical compositions of the inventive steel and comparative conventional steel.

表2には本発明鋼と比較従来鋼の冷却速度の組合せを示
す。そして表3には、これらの冷却方法によって得られ
たレール鋼の機械的性質を示す。また、第1図に本発明
鋼(AおよびB)と比較鋼(BおよびC)のレール頭部
の断面硬度分布を示し、第2図には本発明鋼(AIB)
および比較鋼(C,D)のツーラッシュ・バット溶接継
平部断面硬度分布を示す。′これらの図から本発明鋼は
比較的少ない量の合金添加によって圧延後の直接熱処理
で従来の再加熱熱処理レールに比べて硬化深度の深い高
強度母材部が得られ、またフラッジ−・バット溶接継手
部の断面硬度も合金添加量と冷却速度の組合せによって
従来レールにない広範囲な強度レベル金有する母材部と
継手部硬度一体となった溶接性付与高強度レールが得ら
れる。従って本発明鋼は最も敷設条件の厳しい急曲線の
みならず、塗油を施された緩曲線区間に用いられても、
耐摩耗性、耐損傷性および、溶接性のすぐれた広範囲の
敷設条件に適応可能な溶接性付与高強度レールでおる。
Table 2 shows the combinations of cooling rates of the steel of the present invention and comparative conventional steel. Table 3 shows the mechanical properties of rail steel obtained by these cooling methods. In addition, Fig. 1 shows the cross-sectional hardness distribution of the rail head of the inventive steel (A and B) and comparative steel (B and C), and Fig. 2 shows the cross-sectional hardness distribution of the inventive steel (AIB).
and shows the cross-sectional hardness distribution of the two-lash butt weld joint of comparative steels (C, D). 'From these figures, the steel of the present invention can be directly heat treated after rolling by adding a relatively small amount of alloy, resulting in a high-strength base material with a deeper hardening depth than the conventional reheating heat-treated rail, and also has a high strength base metal with a deeper hardening depth than the conventional reheating heat treated rail. With regard to the cross-sectional hardness of the welded joint, by combining the amount of alloy added and the cooling rate, it is possible to obtain a high-strength rail with weldability, which has a wide range of strength levels not found in conventional rails, and the hardness of the base material and the joint part are unified. Therefore, the steel of the present invention can be used not only for steep curves with the most severe installation conditions, but also for gentle curve sections that are oiled.
It is a high-strength rail with excellent wear resistance, damage resistance, and weldability that can be applied to a wide range of installation conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図囚、 (B) 、 (C) 、 @は夫々本発明
鋼A、Bと比較例C,Dのレニル頭部の断面硬度分布を
示すグラフ、 第2図は本発明鋼A、Bと比較例C,Dのフラッシュ・
バット溶接継中部硬度分布を示すグラフである。
Figure 1 (B), (C), and @ are graphs showing the cross-sectional hardness distribution of the Renil head of the invention steels A and B and comparative examples C and D, respectively. and the flash of comparative examples C and D.
It is a graph showing the hardness distribution of a butt weld joint.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で  C:0.55〜0.85% Si:0.20〜1.20% Mn:0.50〜1.50% Cr:0.10〜0.80% を含有し、残部が鉄および不可避的不純物からなる鋼を
、レール熱間圧延終了後のオーステナイト域からの冷却
において、800℃〜みかけのパーライト変態開始温度
間を2〜15℃/secで冷却し、引き続くパーライト
変態領域をみかけの変態開始温度を維持しつつ、パーラ
イト変態を中断することなく連続的に冷却し、パーライ
ト変態のみかけの終了温度〜450℃間を0.5〜10
.0℃/secでかつ前後冷却よりも遅い速度で強制冷
却することを特徴とする溶接性付与高強度レールの製造
法。
(1) Contains C: 0.55-0.85% Si: 0.20-1.20% Mn: 0.50-1.50% Cr: 0.10-0.80% in weight%, Steel, the remainder of which is iron and unavoidable impurities, is cooled from the austenitic region after rail hot rolling by cooling from 800°C to the apparent pearlite transformation start temperature at a rate of 2 to 15°C/sec, followed by subsequent pearlite transformation. While maintaining the apparent transformation start temperature of the region, the area is continuously cooled without interrupting the pearlite transformation, and the temperature between the apparent end temperature of the pearlite transformation and 450°C is 0.5 to 10°C.
.. A method for manufacturing a high-strength rail with weldability, characterized by forced cooling at 0° C./sec and at a slower rate than front and rear cooling.
(2)重量%で  C:0.55〜0.85% Si:0.20〜1.20% Mn:0.50〜1.50% Cr:0.10〜0.80% を含有し、 Nb:0.01〜0.05%、V:0.05〜0.20
%、Ti:0.01〜0.05%の一種又は二種以上を
含有し、残部が鉄および不可避的不純物からなる鋼をレ
ール熱間圧延終了後のオーステナイト域から、800℃
〜みかけのパーライト変態開始温度間を2〜15℃/s
ecで冷却し、引き続くパーライト変態領域をみかけの
変態開始温度を維持しつつ、パーライト変態を中断する
ことなく連続的に冷却し、パーライト変態のみかけの終
了温度〜450℃間を0.5〜10.0℃/secでか
つ前段冷却速度よりも遅い速度で強制冷却することを特
徴とする溶接性付与高強度レールの製造法。
(2) Contains C: 0.55-0.85% Si: 0.20-1.20% Mn: 0.50-1.50% Cr: 0.10-0.80% in weight%, Nb: 0.01-0.05%, V: 0.05-0.20
%, Ti: 0.01 to 0.05% of one or more kinds, with the balance consisting of iron and inevitable impurities, from the austenite region after rail hot rolling, to 800 ° C.
~2 to 15℃/s between the apparent pearlite transformation start temperature
EC to cool the subsequent pearlite transformation region while maintaining the apparent transformation start temperature and continuously cooling the pearlite transformation without interrupting the pearlite transformation apparent end temperature to 450°C by 0.5 to 10°C. A method for manufacturing a high-strength rail with weldability, characterized by forced cooling at a rate of .0°C/sec and slower than the cooling rate of the previous stage.
JP19697985A 1985-09-06 1985-09-06 Manufacture of high strength rail providing weldability Pending JPS6256523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19697985A JPS6256523A (en) 1985-09-06 1985-09-06 Manufacture of high strength rail providing weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19697985A JPS6256523A (en) 1985-09-06 1985-09-06 Manufacture of high strength rail providing weldability

Publications (1)

Publication Number Publication Date
JPS6256523A true JPS6256523A (en) 1987-03-12

Family

ID=16366818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19697985A Pending JPS6256523A (en) 1985-09-06 1985-09-06 Manufacture of high strength rail providing weldability

Country Status (1)

Country Link
JP (1) JPS6256523A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127453A (en) * 1985-11-26 1987-06-09 Nippon Kokan Kk <Nkk> High-efficiency rail excellent in toughness and ductility and its production
JPS6362846A (en) * 1986-09-03 1988-03-19 Nippon Kokan Kk <Nkk> High-strength low-alloy rail excellent in softening resistance in weld zone
AU688750B2 (en) * 1993-04-12 1998-03-19 Goodyear Tire And Rubber Company, The Process for producing patented steel wire
CN1304861C (en) * 2002-06-27 2007-03-14 松下电器产业株式会社 Optical waveguide and method for mfg. same
JP4757955B2 (en) * 2009-03-27 2011-08-24 新日本製鐵株式会社 Rail welding section cooling device and cooling method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127453A (en) * 1985-11-26 1987-06-09 Nippon Kokan Kk <Nkk> High-efficiency rail excellent in toughness and ductility and its production
JPH0530883B2 (en) * 1985-11-26 1993-05-11 Nippon Kokan Kk
JPS6362846A (en) * 1986-09-03 1988-03-19 Nippon Kokan Kk <Nkk> High-strength low-alloy rail excellent in softening resistance in weld zone
JPH0559191B2 (en) * 1986-09-03 1993-08-30 Nippon Kokan Kk
AU688750B2 (en) * 1993-04-12 1998-03-19 Goodyear Tire And Rubber Company, The Process for producing patented steel wire
CN1304861C (en) * 2002-06-27 2007-03-14 松下电器产业株式会社 Optical waveguide and method for mfg. same
JP4757955B2 (en) * 2009-03-27 2011-08-24 新日本製鐵株式会社 Rail welding section cooling device and cooling method
US8353443B2 (en) 2009-03-27 2013-01-15 Nippon Steel Corporation Device and method for cooling rail weld zone

Similar Documents

Publication Publication Date Title
CA2222281C (en) Low-alloy heat-treated pearlitic steel rail excellent in wear resistance and weldability and process for producing the same
JPS6323244B2 (en)
JP3445619B2 (en) Rail with excellent wear resistance and internal damage resistance, and method of manufacturing the same
JPH08246100A (en) Pearlitic rail excellent in wear resistance and its production
JP4264177B2 (en) Method for producing a steel material having a coarse ferrite layer on the surface layer
JPS613842A (en) Manufacture of high strength rail
KR100723201B1 (en) High strength and toughness steel having superior toughness in multi-pass welded region and method for manufacturing the same
JP3267772B2 (en) Manufacturing method of high strength, high ductility, high toughness rail
JPS6256523A (en) Manufacture of high strength rail providing weldability
JPS61177326A (en) Manufacture of wire rod for wire having high strength as well as weatherability
JPH1192866A (en) Bainitic steel rail excellent in joinability in weld zone, and its production
JP2001152291A (en) Bainitic rail excellent in resistance to rolling fatigue damage and internal fatigue damage and welded joint properties, and its manufacturing method
JP3117916B2 (en) Manufacturing method of pearlitic rail with excellent wear resistance
JP4061141B2 (en) Perlite high-strength rail excellent in ductility and manufacturing method thereof
KR101253823B1 (en) No_heat treated wire rod having excellent low temperature toughness and steel wire and method for manufacturing thereof
JPH01159327A (en) Manufacture of rail having high strength and high toughness
JP3117915B2 (en) Manufacturing method of high wear resistant pearlite rail
JPS602364B2 (en) Manufacturing method of non-thermal high tensile strength steel plate with excellent low-temperature toughness
JP4174041B2 (en) Method for producing welding steel having a tensile strength of 1150 MPa or more
JPH1192867A (en) Low segregation pearlitic rail excellent in wear resistance and weldability and its production
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
JPH01159326A (en) Manufacture of high-strength rail with weldability
KR910003883B1 (en) Making process for high tension steel
JPS6369918A (en) Manufacture of high strength rail having superior toughness
JPH09295067A (en) Manufacture of high strength bent pipe excellent in toughness at welded metal part