Nothing Special   »   [go: up one dir, main page]

JPS6249215A - Flowmeter - Google Patents

Flowmeter

Info

Publication number
JPS6249215A
JPS6249215A JP60189024A JP18902485A JPS6249215A JP S6249215 A JPS6249215 A JP S6249215A JP 60189024 A JP60189024 A JP 60189024A JP 18902485 A JP18902485 A JP 18902485A JP S6249215 A JPS6249215 A JP S6249215A
Authority
JP
Japan
Prior art keywords
pipe
sensors
voltage
heating coil
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60189024A
Other languages
Japanese (ja)
Inventor
Hiroshi Ochiai
落合 洋
Shigemi Kato
加藤 繁美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Original Assignee
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd filed Critical Tokyo Keiso Co Ltd
Priority to JP60189024A priority Critical patent/JPS6249215A/en
Publication of JPS6249215A publication Critical patent/JPS6249215A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To achieve a highly accurate measurement of flow rate, by directly adjusting the current to be run to a heating coil with a sensor provided on the surface of a pipe within the same circuit. CONSTITUTION:A pipe 1 through which a fluid runs is wound with a heating coil 2a and sensors 3 (3a and 3b) are provided on the upstream and on the downstream of this part. An output voltage is inputted separately into both the sensors 3 and a device (an operation amplifier 9 or the like) is provided to control the current to be fed to the coil 2a so as to always keep the temperature difference constant between the two sensors 3. the sensors 3 generate an output voltage according to the respective temperatures thereof while the fluid runs through the pipe 1. Then, when the temperature difference detected with the sensors 3 is adjusted to be constant, the heating power required depending on the flow rate varies. The heating power can be learned from the current flowing through a heater 2 and the current is detected as voltage V0 of a resistance 8. The voltage V0 is proportional to the amount of the fluid liquid thereby permitting the measurement of the flow rate of a liquid running through the pipe on the value of the voltage V0.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は流体流量を1唱1川櫨−るための波、l、1.
3.lに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention provides a wave, l, 1.
3. Regarding l.

〔従来の技術〕[Conventional technology]

従来、流体の流れるパイプに電熱コイルによる加熱を行
なって流星−を検出する装置としては種々のものがあっ
たが、流体の温度変化によって誤差が生じ易い欠点があ
り、また加熱f1イルを絶縁体を介り、てパイプ部分に
巻装するため、コイルを加熱してから流体へ熱が伝わる
までの時間の近れが多く、高精度の測定が困難であると
いう欠・、飄があった。
Conventionally, there have been various devices that detect meteors by heating a pipe through which a fluid flows using an electric heating coil, but these have the disadvantage that errors are easily caused by changes in the temperature of the fluid. Since the coil is wrapped around the pipe via the coil, the time between heating the coil and the time the heat is transferred to the fluid is often very short, making it difficult to measure with high precision.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

未発IJJはI4述した問題点を解決するため、加熱コ
イルへ流す電流をパイプ表面に設けられたセンサーによ
り同一01+!1路内で直接A節し、しかもパイプを熱
伝達力の高いセラミック製とすることで高精度の流Ia
測測定行なえるようにした。
In order to solve the problem mentioned above, the unreleased IJJ uses a sensor installed on the surface of the pipe to control the current flowing to the heating coil using the same 01+! Direct A node in one passage, and the pipe is made of ceramic with high heat transfer ability to achieve high precision flow Ia.
Measurements can now be performed.

〔問題点を解決するだめの下段〕[Bottom section for solving problems]

本発明の流量計は、流体の流れるセラミアク材のバ、イ
ブに加熱コイルを巻装し、かつパイプ表面の加熱コイル
を巻装した部分の4−流側と下流側にセンサーを設け、
上流側のセンサーと下流側のセンサーの出力電圧を入力
し、差電「「を出力する加減算回路を設け、回加減算回
路の出力電圧により前記加熱コイルへの電楡値を制御す
るl・ランジスタを設けたことにより、常に−[−流側
センサーとf流側センサーの温度差が一定となるように
し、加熱コイルへの入力電流値により流量を検出する構
成と1.である。
The flowmeter of the present invention has a heating coil wrapped around a ceramic tube through which fluid flows, and sensors are provided on the 4-stream side and downstream side of the portion of the pipe surface around which the heating coil is wound.
An addition/subtraction circuit is provided which inputs the output voltages of the upstream sensor and the downstream sensor and outputs a differential voltage, and an l-transistor is provided to control the electric current value to the heating coil by the output voltage of the addition/subtraction circuit. By providing this, the temperature difference between the -[- flow side sensor and the f flow side sensor is always kept constant, and the flow rate is detected by the input current value to the heating coil.

〔作用〕[Effect]

絶縁体であるセラミック製パ・イブに直接巻装した加熱
コイルにより2ケ所に設けられたセンサー間の温度差が
常に一定となるようパイプ内流体を加熱し、加えた電力
4Yより流体fM Fnを測定する。
The fluid in the pipe is heated by a heating coil directly wound around a ceramic piping pipe, which is an insulator, so that the temperature difference between the sensors installed at two locations is always constant, and the fluid fM Fn is heated by the applied electric power 4Y. Measure.

〔実施例〕〔Example〕

lu下木発明の一実施例を添付図面に示す旦体例により
詳細に説明する。
An embodiment of the invention will be described in detail with reference to an example shown in the accompanying drawings.

図の符号1は流体の流れるパイプで、耐蝕性がよいが熱
伝達率の大きいセラミックでhられている。2はパイプ
に巻いた加熱−1,4、rし2aで、′電流を流してヒ
ーター2として一使用する。
Reference numeral 1 in the figure indicates a pipe through which fluid flows, and it is made of ceramic that has good corrosion resistance and high heat transfer coefficient. 2 is a heating element 2a wound around a pipe, which is used as a heater 2 by passing a current through it.

3a、3bはパイプC,″おけるヒーター2の上流側の
温Iffど下治7側の#jL度との差な検出する温■W
検出センザ・−であり、−上流側の温1m検出七ノサー
3dの測定位置はヒータ・−2の十分上垢、側ばEl、
流体が流れでいるとき、ヒー ターの影響を受けないよ
う番こする。また下流側の温度検出センサー35はヒ・
−グーの直後の?ぺの温度を検出するようにする。
3a and 3b are the detected temperatures W on the upstream side of the heater 2 in the pipe C, which is the difference between the temperature Iff and the #jL degree on the lower side 7.
The measurement position of the temperature detection sensor 3d on the upstream side is at the upper surface of the heater 2, the side El,
When the fluid is flowing, make sure that it is not affected by the heater. Also, the temperature detection sensor 35 on the downstream side is
-Right after Goo? It will detect the temperature of the bae.

センサー3a、3bはそれぞれ温度に応じた出力電圧を
発生し、センサー3aの出力はオペアンプ9098端へ
入力し、センサー3dの出力111ff、)A 5を介
I7て8d端へ入力するようになっており、各センサー
の差電圧が出力端9Cへ出力されるようになっている。
Sensors 3a and 3b each generate an output voltage according to the temperature, and the output of sensor 3a is input to the operational amplifier 9098 terminal, and the output of sensor 3d is inputted to terminal 8d via I7 and 111ff through A5. The differential voltage of each sensor is outputted to the output terminal 9C.

また出力端9Cはトランジスタ7ベース端一接続Sれ、
コレクタ端はilj源Vsに十さ統され、】−ミッタ端
はコンデンサ6を介し2で9a端へ接続されるとともに
、加熱コイル2aの他端は抵抗8を介して接地されてい
る。
In addition, the output terminal 9C is connected to the base terminal of the transistor 7,
The collector end is connected to the ilj source Vs, the -mitter end is connected to the end 9a through a capacitor 6 at 2, and the other end of the heating coil 2a is grounded through a resistor 8.

なお、オペアンプ9の96端は抵抗4によりマイナ゛ス
電圧であるーVsに接続しである。
Note that the 96 end of the operational amplifier 9 is connected to a negative voltage -Vs through a resistor 4.

次に本発明の動作について述べる。Next, the operation of the present invention will be described.

パイプ1に流体が流れている状態でセンサー3a、3b
が同一温度を検出し、■なる電圧を発生しているとする
と、オペアンプ9の8b端にはVが入力され、9a端は
v−vsrr)電圧が人力される。このため差電圧に比
例した電圧が9c@に発生し、トランジスタ7はノ[飽
和状態であれば差電圧に比例した電流を電源Vs端より
加熱コイル2aに流すようになる。この加熱コイル2a
により流体が加熱されることでセンサー3bにより流体
の温度が検出され、出力′1を圧が高くなるにつれてオ
ペアンプ8の8aと9b端の差電圧が減少(7、同時に
80端よりの出力”電圧も減少し、加熱コイル2aに流
される電流イtlを少なくする。これにより上流側セン
サー3aと下流側センサー3bの検出ナス−1N美バー
’i;F (、’かス↓うトランジス々71よヒーター
2へ流れる電翰を調節する。この回路の場合、温IW差
は抵抗4.5とマ・fナス′r[!、流−Vsで設定さ
れる。
Sensors 3a and 3b with fluid flowing through pipe 1
Assuming that the two detect the same temperature and generate a voltage of (2), V is input to the 8b terminal of the operational amplifier 9, and a voltage (v-vsrr) is input to the 9a terminal. Therefore, a voltage proportional to the differential voltage is generated at 9c@, and the transistor 7 is in a saturated state, allowing a current proportional to the differential voltage to flow from the power source Vs terminal to the heating coil 2a. This heating coil 2a
As the fluid is heated, the temperature of the fluid is detected by the sensor 3b, and as the pressure of the output '1 increases, the differential voltage between the 8a and 9b terminals of the operational amplifier 8 decreases (7, at the same time, the output voltage from the 80 terminal This also reduces the current Itl flowing through the heating coil 2a.As a result, the detection of the upstream sensor 3a and the downstream sensor 3b by the transistors 71 The electric wire flowing to the heater 2 is adjusted.In the case of this circuit, the temperature IW difference is set by the resistance 4.5 and the current -Vs.

流体の比熱をCP、重早流h;をGemとすると、温度
ΔTだ1」+4させるに要するエネルギーはGn+*C
p*△T であり、 温度差△Tが一定になるようにすると、論、量Ge+に
より必要とされるエネルギー、すなはら加熱電力が変化
する。加熱電力はヒーターに流れる電流で知ることがで
き、+1−タ・−に流れる−1を流は抵抗8の電圧vO
として検出できる。
If the specific heat of the fluid is CP and the heavy flow h; is Gem, the energy required to raise the temperature ΔT1'+4 is Gn++C
p*ΔT, and if the temperature difference ΔT is kept constant, the required energy, or heating power, will change depending on the amount Ge+. The heating power can be determined by the current flowing through the heater.
can be detected as

このVoは流体流量に比例した値となるため、Voの値
によりパイプ内を流れる流体の流樋を測定することがで
きる。
Since this Vo is a value proportional to the fluid flow rate, the flow rate of the fluid flowing inside the pipe can be measured by the value of Vo.

〔本発明の効果〕[Effects of the present invention]

以−[−のように、本発明によればパイプの2点間の温
度差を常に一定とするJ゛うヒーターを制御する方法で
あるため、パイプ内流体の液温か変化しても常に1確な
流品測定が行なえる。
As shown below, according to the present invention, the temperature difference between two points of the pipe is always constant, so even if the temperature of the fluid in the pipe changes, the temperature difference is always constant. Accurate quality measurement can be performed.

またバイブにセラミック材を用いているため、ヒー タ
ーを絶縁体の介在なしに直接取り+1けることができ、
しかも熱伝達を111ぬることができるため応答Hの良
い流−1計を実現できる。
In addition, since the vibrator is made of ceramic material, the heater can be installed directly without intervening an insulator.
Furthermore, since the heat transfer can be reduced by 111, a flow-1 meter with good response H can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明に係る流M、i+の一実施例を示す回路図で
ある。 図中
The figure is a circuit diagram showing an embodiment of streams M and i+ according to the present invention. In the diagram

Claims (2)

【特許請求の範囲】[Claims] (1)流体の流れるパイプに加熱コイルを巻装し、かつ
パイプ表面の加熱コイルを巻装した部分の上流側と下流
側にセンサーを設け、上流側のセンサーと下流側のセン
サーの出力電圧を入力し、差電圧を出力する加減算回路
を設け、回加減算回路の出力電圧により前記加熱コイル
への電流値を制御するトランジスタを設けたことにより
、常に上流側センサーと下流側センサーの温度差が一定
となるようにし、加熱コイルへの入力電流値により流量
を検出することを特徴とする流量計。
(1) A heating coil is wrapped around a pipe through which fluid flows, and sensors are installed on the upstream and downstream sides of the part of the pipe surface where the heating coil is wrapped, and the output voltage of the upstream sensor and downstream sensor is adjusted. By providing an adder/subtracter circuit that inputs the voltage and outputs the difference voltage, and a transistor that controls the current value to the heating coil based on the output voltage of the adder/subtractor circuit, the temperature difference between the upstream sensor and the downstream sensor is always constant. A flowmeter characterized in that the flow rate is detected by the input current value to the heating coil.
(2)特許請求の範囲第1項記載の流量計において、流
体の流れるパイプがセラミック材で構成されることを特
徴とする流量計。
(2) The flowmeter according to claim 1, wherein the pipe through which the fluid flows is made of a ceramic material.
JP60189024A 1985-08-28 1985-08-28 Flowmeter Pending JPS6249215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60189024A JPS6249215A (en) 1985-08-28 1985-08-28 Flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60189024A JPS6249215A (en) 1985-08-28 1985-08-28 Flowmeter

Publications (1)

Publication Number Publication Date
JPS6249215A true JPS6249215A (en) 1987-03-03

Family

ID=16234023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60189024A Pending JPS6249215A (en) 1985-08-28 1985-08-28 Flowmeter

Country Status (1)

Country Link
JP (1) JPS6249215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017517013A (en) * 2014-05-21 2017-06-22 センティネル ハイドロソリューションズ エルエルシーSentinel Hydrosolutions,Llc Non-invasive heat distribution flow meter with timekeeping or fluid leak detection and freeze burst prevention

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118753A (en) * 1974-02-28 1975-09-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118753A (en) * 1974-02-28 1975-09-17

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017517013A (en) * 2014-05-21 2017-06-22 センティネル ハイドロソリューションズ エルエルシーSentinel Hydrosolutions,Llc Non-invasive heat distribution flow meter with timekeeping or fluid leak detection and freeze burst prevention

Similar Documents

Publication Publication Date Title
US5463899A (en) Simultaneous measurement of gas thermal conductivity and mass flow
KR100326479B1 (en) Differential current thermal mass flow transducer
JPH086268Y2 (en) Thermal flow meter
US7000464B2 (en) Measuring and control of low fluid flow rates with heated conduit walls
GB2123960A (en) Thermal mass flowmetering
US4016759A (en) Fluid flowmeter
US5035138A (en) Mass flow sensor having wide dynamic range
WO2003029759A1 (en) Flow rate measuring instrument
JPS6249215A (en) Flowmeter
US6736005B2 (en) High accuracy measuring and control of low fluid flow rates
JPS61128123A (en) Mass flow meter
JP2929356B2 (en) Flowmeter
JP3998295B2 (en) Mass flow meter
Melani et al. Hot wire anemometric MEMS sensor for water flow monitoring
JP3019009U (en) Mass flow meter
JPH0557624U (en) Flowmeter
JP2879256B2 (en) Thermal flow meter
JP3582718B2 (en) Thermal flow meter
JPH0516730B2 (en)
JPS61231415A (en) Apparatus for detecting mass flow
JP2724496B2 (en) Mass flow controller for liquid
JPH0334652Y2 (en)
JPS63201529A (en) Temperature compensating method for flow sensor
JPH085431A (en) Flow meter
JP2003315129A (en) Thermal flow measuring instrument