Nothing Special   »   [go: up one dir, main page]

JPS6248243A - Motor of permanent magnet system - Google Patents

Motor of permanent magnet system

Info

Publication number
JPS6248243A
JPS6248243A JP60186093A JP18609385A JPS6248243A JP S6248243 A JPS6248243 A JP S6248243A JP 60186093 A JP60186093 A JP 60186093A JP 18609385 A JP18609385 A JP 18609385A JP S6248243 A JPS6248243 A JP S6248243A
Authority
JP
Japan
Prior art keywords
magnetic
magnets
permanent magnet
motor
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60186093A
Other languages
Japanese (ja)
Inventor
Masayuki Nashiki
政行 梨木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP60186093A priority Critical patent/JPS6248243A/en
Publication of JPS6248243A publication Critical patent/JPS6248243A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To improve efficiency, by combining the magnetic poles of the titled motor with two kinds of permanent magnets at least with mutually different magnetic characteristic to organize one magnetic pole, and by increasing the density of the magnetic flux of the pole. CONSTITUTION:On the outer periphery of a rotor shaft 1, four quarter-circular permanent magnets 2 which are made of ferritic magnet material and are comparatively thick are equally arranged in the circumference. On the outer periphery of the magnets 2, a thin permanent magnet 6 which is made of rare earth magnet material excellent in magnetic characteristic is fixed and set confronting the magnets 2. In this manner, the magnets 2 are combined with the magnet 6 in the radial direction to organize a rotor. As a result, the density of the magnetic flux of the magnetic pole is increased, and the motor of high performance is economically produced.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は磁極に永久磁石を使用した電動機に関し、特
にその磁極構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an electric motor using permanent magnets for its magnetic poles, and particularly to its magnetic pole structure.

従来技術 従来の永久磁石式電動機につき、第5図に示す4極同期
電動機を例に挙げて説明する。第5図の電動機では、ロ
ータ軸1の外周に四分円からなる4個の永久磁石2が周
方向に配設されて、回転子が構成されている。磁路とな
る積層けい素鋼板製の電機子鉄心4にはスロット3が刻
設され、このスロット3に電動機巻a(図示せず)が収
容されている。そして電機子鉄心4に形成した内部通孔
中に、永久磁石2を備えた前記回転子が所定のギャップ
をもって回転自在に収納されている。このように構成し
た従来の電動機では、その回転子表面における磁束密度
分布は、第3図に実線10で示すように、矩形波状にな
っている。
BACKGROUND OF THE INVENTION A conventional permanent magnet electric motor will be described using a four-pole synchronous motor shown in FIG. 5 as an example. In the electric motor shown in FIG. 5, four permanent magnets 2 each having a quarter circle are circumferentially arranged around the outer periphery of a rotor shaft 1 to form a rotor. A slot 3 is cut into an armature core 4 made of laminated silicon steel plates, which serves as a magnetic path, and a motor winding a (not shown) is housed in this slot 3. The rotor including the permanent magnets 2 is rotatably housed in an internal hole formed in the armature core 4 with a predetermined gap therebetween. In the conventional electric motor constructed in this way, the magnetic flux density distribution on the rotor surface has a rectangular wave shape, as shown by the solid line 10 in FIG.

発明が解決しようとする問題点 フェライト磁石の如く一般に磁束密度の低い永久磁石を
使用した電動機において、その永久磁石2の磁気的動作
点が、第4図に示す特性ライン13上のA点にあるとし
、この動作点をB点にまで移動させて磁束密度を上げ、
当該電動機の効率を向上させる場合を考える。
Problems to be Solved by the Invention In an electric motor that uses a permanent magnet that generally has a low magnetic flux density, such as a ferrite magnet, the magnetic operating point of the permanent magnet 2 is at point A on the characteristic line 13 shown in FIG. Then, move this operating point to point B to increase the magnetic flux density,
Consider a case where the efficiency of the electric motor is to be improved.

一般に磁気回路の近似式として、次式(1)が使用され
る。
Generally, the following equation (1) is used as an approximate equation for a magnetic circuit.

B=Qm   ・・・・(1)   flg ここにBおよびHは、動作点における永久磁石の磁束密
度および磁界の大きさである。またQmは永久磁石の厚
みで、2gは磁路中のギャップ長である。
B=Qm (1) flg Here, B and H are the magnetic flux density of the permanent magnet and the magnitude of the magnetic field at the operating point. Further, Qm is the thickness of the permanent magnet, and 2g is the gap length in the magnetic path.

そこで第4図の動作点を、A点から8点に移動させる場
合、第4図において磁界Hの大きさは略1/2にしなけ
ればならない。従って前記の第(1)式によれば、B/
Hを約2倍にするためには、使用する永久磁石の厚みQ
mを約2倍にする必要がある。しかし永久磁石の厚みを
大きくすることは、必然的に電動機が大型化することを
意味し、コスト的にも不利となる。また図示の如く回転
子側に永久磁石を用いた電動機にあっては、その永久磁
石の厚みを大きくすると、回転子の直径が大きくなって
周速が速くなるため、構造的に堅固なものを作らなけれ
ばならない不利も指摘される発明の目的 本発明は上述した従来技術の問題点に鑑みてなされたも
のであって、電動機に使用する磁極の磁束密度を増大さ
せて電動機の効率を向上させ、しかも構造的・ニス1〜
的に無理のない小型で高性能な永久磁石式電動機を提供
することを目的とする。
Therefore, when moving the operating point in FIG. 4 from point A to point 8, the magnitude of the magnetic field H in FIG. 4 must be reduced to approximately 1/2. Therefore, according to equation (1) above, B/
In order to approximately double H, the thickness of the permanent magnet used must be
It is necessary to approximately double m. However, increasing the thickness of the permanent magnet inevitably means increasing the size of the electric motor, which is also disadvantageous in terms of cost. In addition, as shown in the figure, for electric motors that use permanent magnets on the rotor side, increasing the thickness of the permanent magnets increases the diameter of the rotor and increases the circumferential speed. OBJECT OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and aims to improve the efficiency of the motor by increasing the magnetic flux density of the magnetic poles used in the motor. , and structural varnish 1~
The purpose of the present invention is to provide a compact, high-performance permanent magnet electric motor that is reasonably reasonable.

問題点を解決するための手段 この目的を達成するため、本発明に係る永久磁石式電動
機では、磁気的特性の異なる少なくとも2種の永久磁石
を組合わせて磁極を構成することを特、徴とする。
Means for Solving the Problems In order to achieve this object, the permanent magnet electric motor according to the present invention is characterized in that a magnetic pole is constructed by combining at least two types of permanent magnets having different magnetic properties. do.

作用 上記の如く構成したことにより、永久磁石の厚みを大き
く設定することなくして、磁束密度の大きな磁極が形成
され、しかも電動機を大型化することなく効率を向上さ
せることが可能となる。
Effect: With the above structure, a magnetic pole with a large magnetic flux density can be formed without increasing the thickness of the permanent magnet, and efficiency can be improved without increasing the size of the electric motor.

実施例 次に本発明に係る永久磁石式電動機につき、好適な実施
例を挙げて、添付図面を参゛照しながら以下説明する。
Embodiments Next, preferred embodiments of the permanent magnet electric motor according to the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の一実施例に係る4極間期電動機の断面
図を示すものであって、ロータ軸1の外周に、フェライ
ト磁石を材質とし、かつ厚みの比較的大きい四分円形状
の永久磁石2が、周方向に4個等配分で配設されている
。そして各永久磁石2の外側には、磁気特性の良好な希
土類磁石を材質とする薄手の永久磁石5が夫々対応的に
配設固定され、このように半径方向に2種類の異る磁気
的特性を有する永久磁石2,5を重ね合わせることによ
って、独立した1個の回転子が構成されている。なお参
照符号3および4は、夫々スロットおよび電機子鉄心を
示し、これは第5図に関連して説明したスロットや電機
子鉄心と同じものである。
FIG. 1 shows a cross-sectional view of a four-pole interphase motor according to an embodiment of the present invention, in which the outer periphery of a rotor shaft 1 is made of ferrite magnets and has a relatively thick quarter-circular shape. Four permanent magnets 2 are equally distributed in the circumferential direction. Then, on the outside of each permanent magnet 2, thin permanent magnets 5 made of rare earth magnets with good magnetic properties are arranged and fixed in a corresponding manner. An independent rotor is constructed by overlapping the permanent magnets 2 and 5 having the following characteristics. Reference numerals 3 and 4 indicate a slot and an armature core, respectively, which are the same as the slot and armature core described in connection with FIG.

一般に希土類磁石の磁気特性は、第4図の特性ライン1
4に示すように、磁束密度の低いフェライト磁石の磁気
特性より良好であるが、その重量単価はフェライト磁石
の約30倍も高価であって、その広汎な普及には価格上
の制約がある。しかし本実施例では、この高価な希土類
磁石を、前記回転子の磁極における薄手の外殻部にのみ
、永久磁石5として使用するため、コスト的にはそれ程
上昇しない。
In general, the magnetic properties of rare earth magnets are characteristic line 1 in Figure 4.
As shown in Fig. 4, the magnetic properties are better than those of ferrite magnets with low magnetic flux density, but their weight unit price is about 30 times more expensive than ferrite magnets, and there are price constraints on their widespread use. However, in this embodiment, this expensive rare earth magnet is used as the permanent magnet 5 only in the thin outer shell of the magnetic pole of the rotor, so the cost does not increase that much.

このように、回転子の外殻部に希土類磁石5を設け、こ
れを内殻部をなすフェライト磁石2に対して磁気回路的
に直列に配置したため、回転子表面の磁束密度分布は、
第3図の破線11に示すようになる。すなわち第5図に
示す如く、回転子としてフェライト磁石2を用いた従来
の電動機における磁束密度(第3図に実線10で示す)
より、本実施例に係る永久磁石式電動機では高い磁束密
度が得られるものである。
In this way, the rare earth magnets 5 are provided in the outer shell of the rotor, and are arranged in series in the magnetic circuit with the ferrite magnets 2 forming the inner shell, so that the magnetic flux density distribution on the rotor surface is as follows.
This is as shown by the broken line 11 in FIG. That is, as shown in FIG. 5, the magnetic flux density in a conventional electric motor using a ferrite magnet 2 as a rotor (indicated by a solid line 10 in FIG. 3)
Therefore, a high magnetic flux density can be obtained in the permanent magnet electric motor according to this embodiment.

このときのフェライト磁石2および希土類磁石5の動作
点は、夫々第4図に示す0点およびD点となり、従って
回転子の直径を大きくすることなく(つまり永久磁石2
の厚みが増大することなく)、磁束密度を高くして、電
動機の効率を向上させることができる。なお回転子が回
転し、電動子反乍用により永久磁石側に減磁力が作用し
た場合、フェライト磁石2および希土類磁石5の動作点
は、夫々第4図のE点およびF点に移動する。しかしこ
の減磁力の大部分は、永久磁石の大部分を占めるフェラ
イト磁石2に作用するため、フェライト磁石2と希土類
磁石5とで構成される磁極全体の耐減磁特性は良好とな
る。
The operating points of the ferrite magnet 2 and the rare earth magnet 5 at this time are the 0 point and the D point shown in FIG.
It is possible to increase the magnetic flux density and improve the efficiency of the motor without increasing the thickness of the motor. Note that when the rotor rotates and a demagnetizing force acts on the permanent magnet side due to the movement of the armature, the operating points of the ferrite magnet 2 and the rare earth magnet 5 move to points E and F in FIG. 4, respectively. However, most of this demagnetizing force acts on the ferrite magnet 2, which occupies most of the permanent magnets, so that the entire magnetic pole composed of the ferrite magnet 2 and the rare earth magnet 5 has good anti-demagnetizing characteristics.

第2図は、本発明の別の実施例に係る4極間期電動機の
断面図である。第1図に示した実施例では、フェライト
磁石2の外周面を全面的に希土類磁石5で覆ったが、本
実施例では、四分円形状のセグメントからなる各フェラ
イト磁石2(合計4個が周方向に配列されて、リング状
磁石をなす)の中央上部を扇状に切除し、得られた凹所
中に扇状に形成した希土類磁石5を組み込んである。 
 、このように構成することにより、回転子表面の磁束
密度分布は、第3図の実線12に示すように、正弦波形
に近似される。このように磁束密度分布が正弦波形に近
づくと、磁束密度分布が矩形状波形10の場合に比較し
て、電機子巻線を短節巻にしなくても電動機トルクの脈
動分が減少し、また電動機の組立コストを低廉になし得
るものである。
FIG. 2 is a sectional view of a four-pole interphase motor according to another embodiment of the present invention. In the embodiment shown in FIG. 1, the outer circumferential surface of the ferrite magnet 2 is entirely covered with rare earth magnets 5, but in this embodiment, each ferrite magnet 2 is made up of quadrant-shaped segments (four in total). A fan-shaped rare earth magnet 5 is installed in the resulting recess by cutting out the central upper part of the ring-shaped magnets (arranged in the circumferential direction to form a ring-shaped magnet).
With this configuration, the magnetic flux density distribution on the rotor surface is approximated to a sinusoidal waveform, as shown by the solid line 12 in FIG. When the magnetic flux density distribution approaches a sinusoidal waveform in this way, compared to the case where the magnetic flux density distribution has a rectangular waveform 10, the pulsation of the motor torque decreases even if the armature winding is not short-pitch winding, and The assembly cost of the electric motor can be reduced.

以上の如く、4極電動機を例に挙げて説明したが、本発
明はこの実施例に限定されるものではなく、直流′1重
電機、同期電g!jJ機、リニアモータ、フラットモー
タ等の各種の電動機に適用でき、また永久磁石を回転子
側ではなく、固定子側に使用する電動機にも本発明を適
用できることはいうまでもない。
As mentioned above, the explanation has been given using a four-pole electric motor as an example, but the present invention is not limited to this embodiment. It goes without saying that the present invention can be applied to various electric motors such as JJ machines, linear motors, and flat motors, and can also be applied to electric motors in which permanent magnets are used not on the rotor side but on the stator side.

なお本発明では「電動機」と述へているが、周知のよう
に電動機と発電機とは電力と動力の変換方向が逆なだけ
で原理は同じであるため、本発明の「電動機」の概念と
しては、発電機を含むものである。
Although the term "electric motor" is used in the present invention, as is well known, the principle of an electric motor and a generator is the same except that the direction of conversion of electric power and motive power is reversed, so the concept of the "electric motor" of the present invention is This includes generators.

発明の効果 本発明によれば、磁気特性の異なる少なくとも2種類の
永久磁石を組合わせて磁極を構成したものであって、安
価で小型かつ効率の改善された高性能の電動機を得るこ
とができる。
Effects of the Invention According to the present invention, a magnetic pole is constructed by combining at least two types of permanent magnets with different magnetic properties, and it is possible to obtain a high-performance electric motor that is inexpensive, compact, and has improved efficiency. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る4極間期電動機の断面
図、第2図は本発明の他の実施例に係る4極間期電動機
の断面図、第3図は回転子表面の磁束密度分布図、第4
図はB−H特性図、第5図は従来の4極間期電動機の断
面図である。 1・・ロータ
FIG. 1 is a cross-sectional view of a four-pole interphase motor according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a four-pole interphase motor according to another embodiment of the present invention, and FIG. 3 is a rotor surface. Magnetic flux density distribution diagram, 4th
The figure is a B-H characteristic diagram, and FIG. 5 is a sectional view of a conventional four-pole interphase motor. 1. Rotor

Claims (3)

【特許請求の範囲】[Claims] (1)磁極に永久磁石を使用した永久磁石式電動機にお
いて、磁気的特性の異なる少なくとも2種類の永久磁石
を組合わせて1極の磁極を構成したことを特徴とする永
久磁石式電動機。
(1) A permanent magnet electric motor using permanent magnets for magnetic poles, characterized in that one magnetic pole is constructed by combining at least two types of permanent magnets with different magnetic characteristics.
(2)磁気的特性の異なる少なくとも2種類の永久磁石
を、磁気回路的に直列に配置して1極の磁極を構成した
ことを特徴とする特許請求の範囲第1項記載の永久磁石
式電動機。
(2) A permanent magnet electric motor according to claim 1, characterized in that at least two types of permanent magnets having different magnetic properties are arranged in series in a magnetic circuit to constitute one magnetic pole. .
(3)第1の永久磁石の中央上部に磁束密度の大きい第
2の永久磁石を配置し、磁束分布を正弦波に近似させた
ことを特徴とする特許請求の範囲第2項記載の永久磁石
式電動機。
(3) A permanent magnet according to claim 2, characterized in that a second permanent magnet with a high magnetic flux density is arranged above the center of the first permanent magnet, and the magnetic flux distribution is approximated to a sine wave. electric motor.
JP60186093A 1985-08-24 1985-08-24 Motor of permanent magnet system Pending JPS6248243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60186093A JPS6248243A (en) 1985-08-24 1985-08-24 Motor of permanent magnet system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60186093A JPS6248243A (en) 1985-08-24 1985-08-24 Motor of permanent magnet system

Publications (1)

Publication Number Publication Date
JPS6248243A true JPS6248243A (en) 1987-03-02

Family

ID=16182241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60186093A Pending JPS6248243A (en) 1985-08-24 1985-08-24 Motor of permanent magnet system

Country Status (1)

Country Link
JP (1) JPS6248243A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211032A (en) * 1989-02-10 1990-08-22 Tomoyuki Okumura Composite-structured magnet member
JPH03106850U (en) * 1989-12-05 1991-11-05
KR100748953B1 (en) * 2001-01-04 2007-08-13 주식회사 엘지이아이 Line bar started permanent magnet motor
WO2013073756A1 (en) * 2011-11-16 2013-05-23 (주)코모텍 Motor having embedded permanent magnet
WO2024046670A1 (en) 2022-09-01 2024-03-07 MS-Schramberg Holding GmbH Magnet component comprising a multi-component body, in particular produced by injection molding, and method for producing a magnet component of this kind

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261712A (en) * 1975-11-17 1977-05-21 Hitachi Metals Ltd Permanent magnet rotary machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261712A (en) * 1975-11-17 1977-05-21 Hitachi Metals Ltd Permanent magnet rotary machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211032A (en) * 1989-02-10 1990-08-22 Tomoyuki Okumura Composite-structured magnet member
JPH03106850U (en) * 1989-12-05 1991-11-05
KR100748953B1 (en) * 2001-01-04 2007-08-13 주식회사 엘지이아이 Line bar started permanent magnet motor
WO2013073756A1 (en) * 2011-11-16 2013-05-23 (주)코모텍 Motor having embedded permanent magnet
US9787147B2 (en) 2011-11-16 2017-10-10 Komotek Co., Ltd. Interior permanent magnet motor
WO2024046670A1 (en) 2022-09-01 2024-03-07 MS-Schramberg Holding GmbH Magnet component comprising a multi-component body, in particular produced by injection molding, and method for producing a magnet component of this kind
DE102022122195A1 (en) 2022-09-01 2024-03-07 MS-Schramberg Holding GmbH Magnetic component comprising a multi-component body, in particular produced by injection molding, and method for producing such a magnetic component

Similar Documents

Publication Publication Date Title
US5117142A (en) Permanent magnetized synchronous machine designed according to the transverse flux principle
US4774428A (en) Compact three-phase permanent magnet rotary machine having low vibration and high performance
US5030867A (en) Same polarity induction generator
US20020074887A1 (en) Permanent magnet type rotor and permanent magnet type rotary electrical machine
CA2051752A1 (en) Rotor lamination for an ac permanent magnet synchronous motor
KR970060638A (en) Brushless DC motor
EP0429729A1 (en) Electric machines with ironcore disk armatures
JPS63117647A (en) Permanent magnet field type motor
US4591766A (en) Brushless direct current motor
US4104552A (en) Synchronous motor structure
USRE31950E (en) Alternating current generators and motors
CN112688523B (en) Axial magnetic field stator yoke-free magnetic flux reverse permanent magnet motor
US3855490A (en) Synchronous motor with flux conductor
JPS6248243A (en) Motor of permanent magnet system
US4701656A (en) Electromechanical device with slotted stator
GB1438920A (en) Brushless dc electric motors
JPH06319238A (en) Rotor for permanent magnet generator
GB1253167A (en)
JP2972907B2 (en) Permanent magnet rotating electric machine with concentrated winding stator
US5952759A (en) Brushless synchronous rotary electrical machine
JPS64912B2 (en)
RU2079949C1 (en) Electrical machine
RU2130679C1 (en) Permanent-magnet ac generator
CN214480207U (en) Disc type motor
RU2759797C1 (en) Motor-generator