Nothing Special   »   [go: up one dir, main page]

JPS6248745B2 - - Google Patents

Info

Publication number
JPS6248745B2
JPS6248745B2 JP20178183A JP20178183A JPS6248745B2 JP S6248745 B2 JPS6248745 B2 JP S6248745B2 JP 20178183 A JP20178183 A JP 20178183A JP 20178183 A JP20178183 A JP 20178183A JP S6248745 B2 JPS6248745 B2 JP S6248745B2
Authority
JP
Japan
Prior art keywords
titanium
tantalum
carbide
cemented carbide
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20178183A
Other languages
Japanese (ja)
Other versions
JPS6092445A (en
Inventor
Tsutomu Yamamoto
Isao Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIJETSUTO KOGYO KK
Original Assignee
DAIJETSUTO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIJETSUTO KOGYO KK filed Critical DAIJETSUTO KOGYO KK
Priority to JP20178183A priority Critical patent/JPS6092445A/en
Publication of JPS6092445A publication Critical patent/JPS6092445A/en
Publication of JPS6248745B2 publication Critical patent/JPS6248745B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、非磁性で高い強度と硬度を有する超
硬合金に関するものである。 現在、超硬合金は硬度および強度など機械的特
性にすぐれた材料として広範囲な用途に供せられ
ている。 しかし、超硬合金として最も広く用いられてい
るのは炭化タングステン基超硬合金であり、これ
は通常コバルトを結合材として用いるが、このコ
バルトが強磁性体であるために、これを結合材と
した超硬合金も強磁性体となる。また、コバルト
を用いた超硬合金を非磁性体とするためにコバル
トの含有量を減少させても効果がないばかりでな
く、コバルト量の減少に伴つて超硬合金の機械的
強度は低下する。 そこで超硬合金の用途によつて非磁性が要求さ
れる場合は、ニツケルを結合材とし、炭化タング
ステン中の炭素量を理論値より少なくしてニツケ
ル中にタングステンを溶け込ませ、キユーリー点
を降下させることにより非磁性とする方法、もし
くは銅−ニツケル合金を結合相に用いる方法など
が試みられている。 しかしながら、上記の方法によつて得られた該
合金は、高温強度または耐蝕性ないし耐酸化性の
点で必ずしも満足すべきものではない。 本発明は、上記した問題点に鑑み研究を重ねて
なしたもので、理論値以上の炭素を含有する炭化
タングステンをニツケルで結合した超硬合金にチ
タンおよびタンタルを加えることにより非磁性に
し、かつ高温硬度ならびに耐蝕性または耐酸化性
にすぐれた超硬合金を提供することを目的とする
ものである。 本発明は、周期律表の4a・5a・6a族の遷移金属
からなる炭化物・炭窒化物および窒化物の1種ま
たは2種以上に、重量比で5〜20%のチタンおよ
び12〜30%のタンタルを含むチタン−タンタル−
ニツケル合金を0.5〜40%含む非磁性超硬合金で
ある。 以下、本発明の超硬合金を上記の如くなした主
たる理由を説明する。 チタンおよびタンタルは周知の通り、それぞれ
耐蝕性または耐酸化性にすぐれ、かつ融点が鉄族
金属よりも高いために、これを含有せしめた超硬
合金は耐蝕性および耐酸化性にすぐれ、しかも高
温硬度も上昇する。 また、本発明による超硬合金が非磁性となるの
は次のような理由によるものと推察される。すな
わち、添付した図1のニツケル−チタンおよび図
2のニツケル−タンタルの二元状態図に示すよう
に、チタン量あるいはタンタル量が増すにしたが
つてキユーリー点は降下(磁気変態曲線A)し
て、常温時では、それぞれ約7%チタンないし約
23%タンタルを越えると非磁性となる。ところが
チタン−タンタル−ニツケルを含有した場合は、
重量比でチタンが約5%で、かつタンタルが約12
%を越えると非磁性の超硬合金となることがわか
つた。 なお、添加したチタンおよびタンタルの1部は
焼結中に原料のタングステンカーバイト中に含ま
れる遊離炭素を吸収して炭化チタンと炭化タンタ
ルとなる。このようにして生成した炭化物は硬質
物質としての役割をはたす。また結合相中のチタ
ンおよびタンタルの量は、チタンの5%またはタ
ンタルの12%を下廻ると磁性を示すようになり、
逆にチタンが20%、タンタルが30%を越えると異
常相が発生して、この超硬合金の性能(強度)に
悪影響をおよぼすようになる。これらによつて結
合相中のチタンの量は重量比で5〜20%、またタ
ンタルの量は12〜30%の範囲内から選択的に用い
る必要がある。 次に、前記結合相が、この超硬合金中に占める
割合は、重量比で0.5%未満であると焼結性が悪
くなり、かつ合金の強度が低下するし、これが40
%を越えると合金の硬度が著しく低下する。な
お、この超硬合金へのチタン添加方法は、チタン
粉末または水素化チタン粉末のいずれを用いても
よい。また、本発明によるチタン−タンタル−ニ
ツケル合金を結合材として用い非磁性化をはか
り、かつ高温特性、耐蝕性、耐酸化性の改善をは
かることは、炭化タングステンを基材とする場合
は勿論のこと前記炭化タングステン以外の4a・
5a・6a族の遷移金属からなる炭化物・炭窒化物お
よび窒化物を基材としたものにおいても前記同様
の効果を奏する。 以下、本発明の実施例を述べる。 実施例 1 全炭素量6.22%、平均粒度3〜4μの炭化タン
グステン粉末80g、チタン粉末2g、タンタル粉
末3g、ニツケル粉末15gに溶媒を加え、ボール
ミルにて約48時間混合して乾燥し、これをプレス
成形した。 次いで前記圧粉体を1400℃で60分間真空焼結し
た。この焼結された超硬合金は磁性を示さず、合
金組織は硬質相として炭化タングステン、炭化チ
タン、炭化タンタルを含み、結合相はニツケル、
チタン、タンタル、タングステン、炭素であり、
η相または遊離炭素などの有害な相を含まず良好
であつた。なお、この合金の特性値は、抗折力
237Kg/mm2、硬度はHRA86.7であつた。 実施例 2 上記実施例1に示す方法により硬質炭化物と
Ni−Ti−Taの焼結体を第1表に示す組成で製作
した。
The present invention relates to a cemented carbide that is non-magnetic and has high strength and hardness. Currently, cemented carbide is used in a wide range of applications as a material with excellent mechanical properties such as hardness and strength. However, the most widely used cemented carbide is tungsten carbide-based cemented carbide, which usually uses cobalt as a binder, but since cobalt is a ferromagnetic material, it is not used as a binder. Cemented carbide also becomes ferromagnetic. Furthermore, reducing the cobalt content to make cobalt-based cemented carbide non-magnetic is not only ineffective, but also reduces the mechanical strength of the cemented carbide as the amount of cobalt decreases. . Therefore, if non-magnetism is required depending on the application of the cemented carbide, use nickel as a binder and lower the amount of carbon in tungsten carbide than the theoretical value to dissolve the tungsten into the nickel and lower the Curie point. Attempts have been made to make the material non-magnetic, or to use a copper-nickel alloy as a binder phase. However, the alloy obtained by the above method is not necessarily satisfactory in terms of high temperature strength or corrosion resistance or oxidation resistance. The present invention was made through repeated research in view of the above-mentioned problems, and is made by adding titanium and tantalum to a cemented carbide made of tungsten carbide, which contains more than the theoretical value of carbon and bonded with nickel, to make it non-magnetic. The object of the present invention is to provide a cemented carbide that has excellent high-temperature hardness and corrosion resistance or oxidation resistance. The present invention combines 5 to 20% titanium and 12 to 30% by weight of one or more carbides, carbonitrides, and nitrides made of transition metals of groups 4a, 5a, and 6a of the periodic table. Titanium containing tantalum
It is a non-magnetic cemented carbide containing 0.5 to 40% nickel alloy. The main reason for making the cemented carbide of the present invention as described above will be explained below. As is well known, titanium and tantalum have excellent corrosion resistance and oxidation resistance, respectively, and have higher melting points than iron group metals. Therefore, cemented carbide containing titanium and tantalum have excellent corrosion resistance and oxidation resistance, and can withstand high temperatures. Hardness also increases. Moreover, the reason why the cemented carbide according to the present invention becomes non-magnetic is presumed to be due to the following reason. That is, as shown in the attached binary phase diagrams of nickel-titanium in Figure 1 and nickel-tantalum in Figure 2, as the amount of titanium or tantalum increases, the Curie point decreases (magnetic transformation curve A). , at room temperature, about 7% titanium to about 7% titanium, respectively.
If it exceeds 23% tantalum, it becomes non-magnetic. However, when it contains titanium-tantalum-nickel,
Titanium is approximately 5% by weight, and tantalum is approximately 12% by weight.
%, it was found that the cemented carbide becomes non-magnetic. A portion of the added titanium and tantalum absorbs free carbon contained in the raw material tungsten carbide during sintering and becomes titanium carbide and tantalum carbide. The carbide produced in this way serves as a hard substance. Furthermore, when the amount of titanium and tantalum in the bonding phase is less than 5% of titanium or 12% of tantalum, it becomes magnetic.
On the other hand, if titanium exceeds 20% and tantalum exceeds 30%, abnormal phases will occur, which will adversely affect the performance (strength) of this cemented carbide. Accordingly, the amount of titanium in the binder phase must be selectively used in the range of 5 to 20% by weight, and the amount of tantalum must be selectively used within the range of 12 to 30%. Next, if the proportion of the binder phase in this cemented carbide is less than 0.5% by weight, sinterability will be poor and the strength of the alloy will be reduced.
%, the hardness of the alloy decreases significantly. Note that this method of adding titanium to the cemented carbide may use either titanium powder or titanium hydride powder. Furthermore, it is of course possible to use the titanium-tantalum-nickel alloy according to the present invention as a binder to make it non-magnetic and to improve its high-temperature properties, corrosion resistance, and oxidation resistance when using tungsten carbide as a base material. 4a other than the above-mentioned tungsten carbide
The same effects as described above are also achieved with carbides, carbonitrides, and nitrides made of transition metals of Groups 5a and 6a. Examples of the present invention will be described below. Example 1 A solvent was added to 80 g of tungsten carbide powder, 2 g of titanium powder, 3 g of tantalum powder, and 15 g of nickel powder with a total carbon content of 6.22% and an average particle size of 3 to 4 μm, and the mixture was mixed in a ball mill for about 48 hours and dried. Press molded. Next, the green compact was vacuum sintered at 1400°C for 60 minutes. This sintered cemented carbide does not exhibit magnetism, and the alloy structure contains tungsten carbide, titanium carbide, and tantalum carbide as hard phases, and the binder phase is nickel,
titanium, tantalum, tungsten, carbon,
It was good, containing no harmful phases such as η phase or free carbon. Furthermore, the characteristic value of this alloy is the transverse rupture strength.
The weight was 237Kg/mm 2 and the hardness was HRA86.7. Example 2 Hard carbide and
A sintered body of Ni-Ti-Ta was manufactured with the composition shown in Table 1.

【表】【table】

【表】 上記第1表において、試料No.1〜9は本発明合
金の組成を示したもので、試料No.10、11は本発明
合金と比較のために用いた合金組成である。これ
らについて物性および磁性を測定した結果を以下
の第2表に示す。
[Table] In Table 1 above, samples Nos. 1 to 9 show the compositions of the alloys of the present invention, and samples Nos. 10 and 11 are alloy compositions used for comparison with the alloys of the present invention. The results of measuring the physical properties and magnetism of these are shown in Table 2 below.

【表】 第2表から明らかなように、本発明合金は、い
ずれも磁性を示さず、しかも抗折力および硬度な
どもすぐれた値を示している。 したがつて本発明による超硬合金は、いずれも
が結合相によつて磁性が変化し、また炭化物の性
質により、あるいは炭化物と結合相の濡れ性など
によつて特性値は互いに多少相違するが、すぐれ
た非磁性の超硬合金となる。 以上説明したように本発明による超硬合金は、
炭化タングステンなどの基材に所定量のチタン−
タンタル−ニツケル合金を含有させることによつ
て非磁性の超硬合金となるもので、高温強度・耐
蝕性および耐酸化性にすぐれた特性を有するもの
である。
[Table] As is clear from Table 2, none of the alloys of the present invention exhibits magnetism, and also exhibits excellent transverse rupture strength and hardness. Therefore, the magnetic properties of all cemented carbide alloys according to the present invention change depending on the binder phase, and the characteristic values may differ slightly depending on the nature of the carbide or the wettability of the carbide and the binder phase. , it becomes an excellent non-magnetic cemented carbide. As explained above, the cemented carbide according to the present invention is
A predetermined amount of titanium on a base material such as tungsten carbide.
By containing a tantalum-nickel alloy, it becomes a non-magnetic cemented carbide, and has excellent properties such as high-temperature strength, corrosion resistance, and oxidation resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ニツケル−チタン二元状態図、第2
図はニツケル−タンタルの二元状態図を示す。 A……磁気変態曲線。
Figure 1 is a binary phase diagram of nickel-titanium,
The figure shows a binary phase diagram of nickel-tantalum. A...Magnetic transformation curve.

Claims (1)

【特許請求の範囲】[Claims] 1 周期律表の4a・5a・6a族の遷移金属からなる
炭化物.炭窒化物および窒化物の1種または2種
以上に、重量比にて5〜20%のチタンおよび12〜
30%のタンタルを含むチタン−タンタル−ニツケ
ル合金を0.5〜40%含むことを特徴とする非磁性
超硬合金。
1. Carbide consisting of transition metals from groups 4a, 5a, and 6a of the periodic table. 5 to 20% titanium and 12 to 20% by weight of one or more carbonitrides and nitrides
A non-magnetic cemented carbide characterized by containing 0.5 to 40% titanium-tantalum-nickel alloy containing 30% tantalum.
JP20178183A 1983-10-26 1983-10-26 Nonmagnetic sintered hard alloy Granted JPS6092445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20178183A JPS6092445A (en) 1983-10-26 1983-10-26 Nonmagnetic sintered hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20178183A JPS6092445A (en) 1983-10-26 1983-10-26 Nonmagnetic sintered hard alloy

Publications (2)

Publication Number Publication Date
JPS6092445A JPS6092445A (en) 1985-05-24
JPS6248745B2 true JPS6248745B2 (en) 1987-10-15

Family

ID=16446833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20178183A Granted JPS6092445A (en) 1983-10-26 1983-10-26 Nonmagnetic sintered hard alloy

Country Status (1)

Country Link
JP (1) JPS6092445A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128231U (en) * 1990-04-06 1991-12-24

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002086042A (en) * 2000-09-13 2002-03-26 Dijet Ind Co Ltd Coating tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128231U (en) * 1990-04-06 1991-12-24

Also Published As

Publication number Publication date
JPS6092445A (en) 1985-05-24

Similar Documents

Publication Publication Date Title
JP3717525B2 (en) Hard sintered alloy
US4684405A (en) Sintered tungsten carbide material and manufacturing method
JP2660455B2 (en) Heat resistant hard sintered alloy
JPS5916952A (en) Fe-based sintered material excellent in wear resistance
JPS5867842A (en) Hard sintered alloy
US5223020A (en) Hard-metal body
CA1053486A (en) Ruthenium powder metal alloy and method for making same
JPS6137946A (en) Composite material and its production
JPS6248745B2 (en)
JPS6252026B2 (en)
JPS6117895B2 (en)
JPH073357A (en) High hardness cemented carbide excellent in oxidation resistance
JPH06279913A (en) Composition for metal injection molding
JPS5949297B2 (en) Hard sintered alloy for decorative parts
US4986961A (en) Fine grain tungsten heavy alloys containing additives
JPS62211340A (en) Corrosion resistant hard alloy
JPS63143236A (en) Composite boride sintered body
JP3190062B2 (en) Non-magnetic cemented carbide
JP2677287B2 (en) Nickel-molybdenum compound boride-based sintered body
JP2564857B2 (en) Nickel-Morbuden compound boride sintered body
JPS582582B2 (en) Sliding material with wear and corrosion resistance
JPS613861A (en) Sintered heat-and wear-resistant hard alloy for hot working tool
JPS582581B2 (en) Sliding material with wear and corrosion resistance
JPS6334217B2 (en)
JP2629941B2 (en) Co-reduced composite Mo alloy powder and Fe-based sintered alloy sliding member manufactured using the same