Nothing Special   »   [go: up one dir, main page]

JPS6244614A - Method and instrument for measuring squareness - Google Patents

Method and instrument for measuring squareness

Info

Publication number
JPS6244614A
JPS6244614A JP18304985A JP18304985A JPS6244614A JP S6244614 A JPS6244614 A JP S6244614A JP 18304985 A JP18304985 A JP 18304985A JP 18304985 A JP18304985 A JP 18304985A JP S6244614 A JPS6244614 A JP S6244614A
Authority
JP
Japan
Prior art keywords
light
measuring
measurement
beams
squareness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18304985A
Other languages
Japanese (ja)
Inventor
Tadanori Komatsu
小松 忠紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18304985A priority Critical patent/JPS6244614A/en
Publication of JPS6244614A publication Critical patent/JPS6244614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure squareness with high accuracy with simple constitution by forming measuring beams of light using a reflector. CONSTITUTION:The title method is a measuring method to measure squareness of a central axial line 4 with a plane part 5 of an object 10 to be measured having a reference hole 3 and the orthogonal plane part 5 to the central axial line 4 of the hole. The plural lights of the 1st beams of light 24c-27c which make a straight advance in the opposite directions mutually on the same optical path and the plural lights of the measuring beam lights consisting of the 2nd beams of light 25d-27d are projected in parallel mutually and one measuring beams of light among these measuring beams of light 25c-27c, for instance, 26c is made the reference measuring light and the object 10 to be measured is positioned at the position where the reference measuring light is passed through the reference hole 3. Then, the squareness is obtained by comparing the optical paths between the reflected light of the measuring light beam 26c at the plane part 5 of the object 10 to be measured and the measuring light beam 26c.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は中空細管にフランジを取付けたような部材の両
者の直角度を測定するのに好適な直角度測定方法および
装置に関するっ 〔発明の技術的背景とその問題点〕 従来から各産業分計において第3図に示゛すような管体
(1)の両端に7ランジ(2) 、 (2)を設けた形
状の部品は広く用いられている。例えば流体用のパイプ
類から宇宙機器の電子光学部品に至るまで用途精度も種
々なものがある。このような部品は一般にその管体(1
)の基準孔(3)の中心軸線(4)に対するフランジ(
2)の平面部(端面)(5)の直角度の精度が重要であ
る。この直角度の測定は第4図に示すように、測定すべ
き7ランジ(2)の平面部(5)を治具(6)の基準面
(7)に当てて固定し、この基準面(7)に直角な方向
に可動なテーブル(8)上に測定子1例えば電気マイク
ロメータのヘッド(9)を取付け、テーブル(8)を管
体(1)の長手方向に移動させ、測定子(9)が管体(
1)の外壁に沿って出入りする量δ(x)を測り、直角
度を求めていた。このような方法によれば、測定点は管
体(1)の外形であり、必らずしも中心軸線(4)を計
測しているとは言えず精度は低い。また管体(1)の外
壁に放熱フィンなどが多数取付けられている場合は全く
測定不可能である0さらにまた直接外壁に接触して測る
ので外壁にすり傷がつくなどの不都合があったっ 〔発明の目的〕 本発明は上述の不都合を除去するためになされたもので
、高精度で非接触であり、しかも簡便に測定できる直角
度測定方法およびこれを実施する装置を提供することを
目的とする。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a squareness measuring method and apparatus suitable for measuring the squareness of a member such as a hollow tube with a flange attached. Background and problems] A part with a shape of a tube body (1) having seven lunges (2), (2) at both ends, as shown in Figure 3, has been widely used in various industries. ing. For example, there are various precision applications ranging from fluid pipes to electro-optical components for space equipment. Such parts generally have their tubes (1
) with respect to the center axis (4) of the reference hole (3) of the flange (
The accuracy of the perpendicularity of the flat part (end face) (5) in 2) is important. To measure this squareness, as shown in Figure 4, the flat part (5) of the seven flange (2) to be measured is placed against the reference surface (7) of the jig (6) and fixed. The head (9) of the probe 1, for example, an electric micrometer, is mounted on a table (8) movable in a direction perpendicular to the probe (7), and the table (8) is moved in the longitudinal direction of the tube body (1). 9) is the tube body (
1) The amount of movement in and out δ(x) along the outer wall was measured to find the perpendicularity. According to such a method, the measuring point is the outer shape of the tube body (1), and it cannot necessarily be said that the central axis (4) is being measured, so the accuracy is low. Furthermore, if a large number of heat dissipation fins are attached to the outer wall of the tube body (1), measurement is impossible at all.Furthermore, since measurements are taken by directly contacting the outer wall, there are inconveniences such as scratches on the outer wall. Purpose of the Invention The present invention was made in order to eliminate the above-mentioned disadvantages, and an object of the present invention is to provide a method for measuring squareness that is highly accurate, non-contact, and easy to measure, and an apparatus for carrying out the method. do.

〔発明の重要〕[Importance of invention]

本発明方法は、基準孔と、これの中心軸線にほぼ直角な
平面部とを有する被測定物の上記中心軸線に対する上記
平面部の直角度を測定する方法であって、同一光路上を
互に反対方向に向う第1のビーム光と第2のビーム光と
からなる測定ビーム光を互に平行て複数個投射し、これ
らの測定ビーム光の一部を基準測定光とし、これが上゛
記基準孔を通るようKして中心軸線が測定ビーム光と平
行になるように被測定物を位置決めし、このとき平面部
により遍られた測定ビーム光の反射四としての光路と遮
られない場合の光路とを比較して直角で、上記第1のビ
ーム光を投射する投光光学系と反射により第1のビーム
光を上記第2のビーム光とし上記測定ビーム光を形成す
る反射体と、ビームスプリッタにより測定ビーム光を光
路外に導出し検出体により受光する検出光学系と、基準
測定光の全光束が基準孔を通るように被測定物を位置決
め保持する保持台とで構成され、位置決めされた被測定
物の平面部により遮られる測定ビーム光が、遣られない
場合の光路と反射した場合の光路とを検出体で比較して
直角度を検出する直角度測定装置である。
The method of the present invention is a method for measuring the perpendicularity of the flat part to the central axis of an object to be measured, which has a reference hole and a flat part substantially perpendicular to the central axis of the reference hole. A plurality of measurement beams consisting of a first beam and a second beam directed in opposite directions are projected in parallel to each other, and a part of these measurement beams is used as the reference measurement light, and this is the reference measurement light described above. Position the object to be measured so that it passes through the hole so that its central axis is parallel to the measurement beam, and at this time, the optical path as a reflection of the measurement beam distributed by the flat surface and the optical path when it is not blocked. a projection optical system for projecting the first beam, a reflector for converting the first beam into the second beam by reflection to form the measurement beam, and a beam splitter. It consists of a detection optical system that directs the measurement beam light out of the optical path and receives it by the detection object, and a holding table that positions and holds the object to be measured so that the entire luminous flux of the reference measurement light passes through the reference hole. This is a perpendicularity measurement device that detects the perpendicularity by comparing the optical path of a measurement beam that is blocked by a flat surface of an object with a detection object between the optical path when the measurement beam is not emitted and the optical path when the measurement beam is reflected.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明方法および発明装置の詳細を実施例により
説明する。まず1発明装置につき説明しその作用ととも
に発明方法につき述べる。
Hereinafter, details of the method and apparatus of the present invention will be explained using examples. First, one inventive device will be explained, and its operation and inventive method will be described.

第1図および第2図において、本装置は投光光学系αυ
と、反射体α2と、検出光学系α国と、演算装置α乃と
、保持台σりとから構成されている。投光光学系συは
、レーザ発振器21)と、これから発振されたレーザ光
□□□を3個のビーム光(22a)、 (22b )、
 (22c)に分割する例えば回折格子(財)と、これ
らのビーム光(22a)、 (22b)、(22c)を
光軸i、ca、(27)が平行な第1のビーム光(25
a)、(26a)、(27a)にするレンズ弼とから構
成されている。なお第1のビーム光(26a)は後述す
る位置決めに際し基準測定光となる。反射体(1Bは平
面反射ミラーから構成されていて、その反射平面は光軸
(ホ)、@、(5)に直角に設定されており、第1のビ
ーム光(25a) 、 (26a) 、(27a)を反
射して、光路は同一であるが向きが反対な第2のビーム
光(25b)、(26b)、(27b)を形成し、第1
および第2のビーム光(25a) 、 (25b)と第
1および第2のビーム光(26a)、(26b)と第1
および第2のビーム光(27a)。
In Figures 1 and 2, this device is a projection optical system αυ
, a reflector α2, a detection optical system α, an arithmetic unit α, and a holding table σ. The light projection optical system συ uses a laser oscillator 21) and the laser beam oscillated from it into three beams (22a), (22b),
For example, a diffraction grating is used to divide these beams (22a), (22b), and (22c) into a first beam (25) whose optical axes i, ca, and (27) are parallel.
a), (26a), and (27a). Note that the first light beam (26a) serves as a reference measurement light during positioning, which will be described later. The reflector (1B is composed of a plane reflection mirror, whose reflection plane is set perpendicular to the optical axis (E), @, (5), and the first beam light (25a), (26a), (27a) to form second beams (25b), (26b), and (27b) having the same optical path but opposite directions;
and the second beam light (25a), (25b) and the first and second beam light (26a), (26b) and the first
and a second beam of light (27a).

(27b)とにより互に平行な3個の測定ビーム光(2
5c) 、 (26c)、 (27c)が構成される。
(27b) and three mutually parallel measurement beams (2
5c), (26c), and (27c) are constructed.

そして測定ビーム光(26c)は前述した基準測定光で
ある。検出光学系α■はレンズ(至)の近傍の反射体α
2側に置かれた・・−フビームスプリッタGυと検出体
C2とから構成されていて、ハープビームスプリッタ6
1)は光路(至)に対し45度傾斜して設けられており
、第2のビーム光(25b) 、 (26t))、 (
27b)はその半分が直角に反射されて光路(25)外
圧検出光(25d) 、 (26d) 、 (27d)
として導出され、検出体C(3に達する。検出体c3っ
は平坦な受光面(至)を具えていて、この表面には例え
ばマトリックス状に光電変換素子が配設されておシ、検
出光(25d) 、 (26d )、 (27d)の受
光位置を電気信号として送出する。演算装置αDはマイ
クロコンビーータを1  内蔵していて検出体国からの
電気信号により受光位置の変化を演算する。
The measurement beam light (26c) is the reference measurement light described above. The detection optical system α■ is the reflector α near the lens (to)
Placed on the 2 side... - It is composed of the harp beam splitter Gυ and the detection object C2, and the harp beam splitter 6
1) is provided at an angle of 45 degrees with respect to the optical path (to), and the second beam light (25b), (26t)), (
Half of 27b) is reflected at right angles to optical path (25) external pressure detection light (25d), (26d), (27d)
The detection object C (3) is derived. The detection object C3 has a flat light-receiving surface (to), and photoelectric conversion elements are arranged in a matrix on this surface, and the detected light is The light receiving positions of (25d), (26d), and (27d) are sent out as electrical signals.The arithmetic unit αD has a built-in microconbeater and calculates changes in the light receiving positions based on electrical signals from the detection body. .

保持台α9は−・−フビームスプリッタC31)と反射
体aつとの間に設けられていて1回転テーブルc3勺と
、これの上に取付けられたY方向(至)に移動自在なY
テーブル(3?)と、このYテーブルθη上に設けられ
て高さ方向(紙面画直方向)に位置調節自在なVブロッ
ク(至)、(至)とから構成されていて、被測定物αQ
は管体(1)をVブロック(至)、■上に載置されて測
定される。
The holding stand α9 is provided between the beam splitter C31) and the reflector A, and includes a one-turn table C3 and a Y-table mounted on the table C3, which is movable in the Y direction.
It consists of a table (3?) and V blocks (to) and (to) that are provided on this Y table θη and whose position can be adjusted in the height direction (direction perpendicular to the paper screen).
is measured by placing the tube body (1) on the V block (toward).

本装置は上述のように構成され℃いるが、その作用とと
もに本発明方法につき述べる。レーザ見損器CDから出
たレーザ光(わは回折素子(格子)Q4レンズ(至)に
より3個の第1のビーム光(25a)、(26a)(2
7a)とな#)第1図左方へ進み、平面反射鏡(12a
)により反射して第2のビーム光(25b) 、 (2
6b) 、 (27b ’1となり第1のビーム光(2
5a) 、 (26;′I) 、 (27a)と同一光
路(ハ)、(至)、(財)上を反対方向に進む。この第
1のビーム光(25a) 、 (26a) 、(27a
)と第2のビーム光(25b)。
The present apparatus is constructed as described above, and its function and method of the present invention will be described below. The laser light emitted from the laser sighting device CD is divided into three first beams (25a), (26a) (2
7a) Tona #) Go to the left in Figure 1 and take the flat reflector (12a)
) and reflected by the second beam light (25b), (2
6b), (27b '1 and the first beam light (2
5a), (26;'I), and (27a) travel in the opposite direction on the same optical paths (c), (to), and (l). This first beam light (25a), (26a), (27a
) and a second beam of light (25b).

(26b )、 (27b)とで測定ビーム光(25c
> 、 (26c) 、 (27c)が形成され、測定
ビーム光(26c)を基準測定光に設定する。これら測
定ビーム光(25c) 、 (2Gc) 、 (27c
)はノ・−7ビームスプリツタGυによりその一部が反
射され検出光(25d) 、 (26d)、 (27d
)として投光光学系(111外に導出され、検出体02
の受光部(至)に投射される。
(26b), (27b) and measurement beam light (25c)
> , (26c), (27c) are formed, and the measurement beam light (26c) is set as the reference measurement light. These measurement beam lights (25c), (2Gc), (27c
) is partially reflected by the No.-7 beam splitter Gυ, and the detection light (25d), (26d), (27d
) as a light emitting optical system (111), and the detection object 02
The light is projected onto the light-receiving section (to).

そしてこの各投射位置(XI 、XO、X2)は光電変
換素子の電気信号として演算装置に送られ、その位置が
算出されて表示される。次に被測定物α0をVブロック
(至)上に載置し、回転、上下、Y方向端の調節により
基準測定光(26C)が基準孔(3)をその全光束が通
るように位置決めするっこの状態では基準測定光(26
c)は被測定物α1がない場合と同じ位置に検出体C3
aK投射する。さて被測定物αQの平面部(5)は測定
ビーム光(25c)、 (27c)を遮り、それらはこ
こで反射し、検出光(25d)、 (27d)として導
出され検出体c3湯の受光部(至)上に投射し、それら
の位置(Xl’。
Each projection position (XI, XO, X2) is sent as an electrical signal from the photoelectric conversion element to a calculation device, and the position is calculated and displayed. Next, place the object to be measured α0 on the V block (top), and position the reference measurement light (26C) so that its entire luminous flux passes through the reference hole (3) by rotating, vertically, and adjusting the Y-direction end. In this state, the reference measurement light (26
In c), the detection object C3 is placed at the same position as when there is no object to be measured α1.
aK Project. Now, the flat part (5) of the object to be measured αQ blocks the measurement beam lights (25c) and (27c), and they are reflected here and are derived as detection lights (25d) and (27d). and their positions (Xl').

Xo 、X2 ) は、前述と同様に演算装置α4にょ
シ演算、表示される。このとき中央の基準測定光(26
C)の検出体Cツ上の位fiX’oはレーザ光器の方向
が変動しなければ位置Xoと一致する。そして被測定物
α〔の平面部(5)が、中心軸線(4)と完全に直角な
らば2個の検出光(25d) 、 (27d)も変化せ
ず位R(X’l)、(X’2)は位置(Xl) 、 (
X2 )にそれぞれ一致する。しかるに完全に直角でな
ければ平面部(5)により反射した測定ビーム光(25
c )、 (27c )が光軸12り、@から偏り位置
(Xl)ハ位# QCs’ ) ヘ、位t (X2) 
ハ位tll (Xz’)へ、!:変位することになる。
Xo, X2) are calculated and displayed by the calculation device α4 in the same manner as described above. At this time, the central reference measurement light (26
The position fiX'o on the detection object C in C) coincides with the position Xo if the direction of the laser beam device does not change. If the flat part (5) of the object to be measured [α] is completely perpendicular to the central axis (4), the two detection lights (25d) and (27d) will not change and the positions R(X'l), ( X'2) is the position (Xl), (
X2) respectively. However, if the angle is not completely perpendicular, the measurement beam light (25
c), (27c) is on the optical axis 12, and is offset from the @ position (Xl) C position #QCs') F, position t (X2)
To tll (Xz')! : It will be displaced.

例えば7ランジ(2)と管体(1)とが直角ではない場
合、すなわち平面部(5)と中心軸線(4)とが直角で
なり(−十〇)radであるとすると反射光の方向は2
θ変化し、受光面(像上の投射位置の変化Δ=X’ −
X=(L t +L2 ) tan2θJF2 (Ll
+L2)θとなる。但し、Xは平面部(5)と中心軸線
(4)とが直角の場合の検出体国土の投射位置、X′は
同じく(−+θ) rad のときの投射位置LIけフ
ランジ(2)の端面から中心軸線(4)が・・−フビー
ムスブリッタ61)と交わる交点(41までの距離、L
2は交点顛から受光面Q3までの距離である。−例とし
て検出体(至)の光!変換素子を10μmピッチのライ
ンセンサとし、L1+L2を10cIrLとすると、レ
ーザ光(ハ)のゆらぎを無視すればθ=5X10  r
adと極めて小さな角度を検出することが可能である。
For example, if the 7 flange (2) and the tube body (1) are not at right angles, that is, if the plane part (5) and the central axis (4) are at right angles and are (-10) rad, then the direction of the reflected light is is 2
θ changes, and the light receiving surface (change in projection position on the image Δ=X' −
X=(L t +L2 ) tan2θJF2 (Ll
+L2) θ. However, X is the projection position of the detection object's land when the plane part (5) and the central axis (4) are at right angles, and X' is the end face of the LI flange (2) at the projection position when (-+θ) rad. The distance from 41 to the intersection point (41) where the central axis line (4) intersects with the hub beam splitter 61), L
2 is the distance from the intersection point to the light receiving surface Q3. -For example, the light of the object to be detected! If the conversion element is a line sensor with a pitch of 10 μm and L1+L2 is 10cIrL, then θ=5X10 r if the fluctuation of the laser beam (c) is ignored.
ad and extremely small angles can be detected.

〔発明の効果〕〔Effect of the invention〕

以上詳述したよって、本発明の直角度測定方法は被測定
物の基準孔を基準にして位置決めするので、正確に直角
度を測定することができ、しかも光学的なので非接触で
あるから、管体の外形による影響は全くないり また本発明の装置は、反射体を用すて測定ビーム光を形
成したので、簡単な構成で精度のよい測定ができるとい
う効果がある。
As described in detail above, the squareness measuring method of the present invention positions the object to be measured using the reference hole as a reference, so it is possible to accurately measure the squareness, and since it is optical and non-contact, it is possible to measure the squareness accurately. There is no influence from the external shape of the body, and since the device of the present invention uses a reflector to form the measurement beam, it has the advantage of being able to perform accurate measurements with a simple configuration.

なお、本実施例においては、測定ビーム光ニレーザ光を
用い、また反射鏡を用いて測定ビーム光を形成したが、
これに限定されない。さらにまた検出体もスクリーンに
よる目視、ラインセンサ、分割センサ、ITVなど目的
とコストに応じて種々なものを採用してもよい。さらに
また、測定ビーム光は3本に限定されず、何本でもよく
、その形状も例えば基準測定光を中心にした1個の円環
状の測定ビーム光を用いてもよい。
In this example, the measurement beam was formed using a laser beam and a reflecting mirror.
It is not limited to this. Furthermore, various detection objects may be employed depending on the purpose and cost, such as visual inspection using a screen, line sensor, split sensor, ITV, etc. Furthermore, the number of measurement beams is not limited to three, and any number may be used, and for example, a single annular measurement beam with the reference measurement light at the center may be used.

【図面の簡単な説明】[Brief explanation of drawings]

i    第1図は本発明装置の構成図、第2図は第1
図による装置を用いた本発明方法の説明図、第3図は従
来例および本発明における被測定物の断面図第4図は従
来における測定方法の説明図である。 (3)・・・基準孔、(4)・・・中心軸線、 (5)
・・・平面部、αq・・・被測定物、 ■・・・投光光
学系、Q3・・・反射体、 a9・・・保持台、Cυ・
・・レーザ発振器。 (ハ)・・・レーザ光、(至)、@、@・・・光路、(
25a)、 (26a) 、 (27a)・・・第1の
ビーム光、(25b) 、(26b) 、 (27b)
・・第2のビーム光、(25c)、 (26c) 、(
27c)・・・測定ビーム光、0υ・・・ビームスプリ
ッタ、 国・・・検出体。 代理人 弁理士  則 近 憲 佑 同     竹 花 喜久男 第1図 第2図 第3図 1N4図
i Figure 1 is a configuration diagram of the device of the present invention, Figure 2 is the
FIG. 3 is a cross-sectional view of the object to be measured in the conventional example and the present invention; FIG. 4 is an explanatory diagram of the conventional measuring method. (3)...Reference hole, (4)...Center axis, (5)
...Flat surface, αq...Object to be measured, ■...Emission optical system, Q3...Reflector, a9...Holding stand, Cυ・
...Laser oscillator. (c)... Laser light, (to), @, @... optical path, (
25a), (26a), (27a)...first beam light, (25b), (26b), (27b)
...Second beam light, (25c), (26c), (
27c)...Measurement beam light, 0υ...Beam splitter, country...Detection object. Agent Patent Attorney Noriyuki Ken Yudo Takehana Kikuo Figure 1 Figure 2 Figure 3 Figure 1N4

Claims (6)

【特許請求の範囲】[Claims] (1)基準孔とこれの中心軸線に直角な平面部とを有す
る被測定物の上記中心軸線と上記平面部との直角度を測
る直角度測定方法であって、同一光路上を互に反対方向
に直進する第1のビーム光と第2のビーム光とからなる
測定ビーム光を互に平行に複数個投射し、これら測定ビ
ーム光の中の1個の測定ビーム光を基準測定光としてこ
れが上記基準孔を通る位置に上記被測定物を位置決めし
この被測定物の平面部における上記測定ビーム光の反射
光と上記測定ビーム光との光路の比較により上記直角度
を求めることを特徴とする直角度測定方法。
(1) A perpendicularity measurement method for measuring the perpendicularity between the central axis and the flat part of an object having a reference hole and a flat part perpendicular to the central axis of the object, in which A plurality of measuring beams consisting of a first beam and a second beam traveling straight in the direction are projected in parallel to each other, and one of these measuring beams is used as a reference measuring beam. The method is characterized in that the object to be measured is positioned at a position passing through the reference hole, and the perpendicularity is determined by comparing the optical path of the reflected light of the measurement beam on a flat surface of the object to be measured and the optical path of the measurement beam. How to measure squareness.
(2)第1のビーム光と第2のビーム光とはいずれか一
方が他方の反射光であることを特徴とする特許請求の範
囲第1項記載の直角度測定方法。
(2) The squareness measuring method according to claim 1, wherein either the first light beam or the second light beam is reflected light from the other.
(3)測定ビーム光はレーザ光であることを特徴とする
特許請求の範囲第1項または第2項記載の直角度測定方
法。
(3) The squareness measuring method according to claim 1 or 2, wherein the measurement beam is a laser beam.
(4)基準孔とこれの中心軸線に直角な平面部とを有す
る被測定物の上記中心軸線と上記平面部との直角度を測
定する直角度測定装置であって、互に平行な複数個の第
1のビーム光を投射する投光光学系と、上記複数個の第
1のビーム光を反射し、これらを第1のビーム光とそれ
ぞれ同一光路の複数個の第2のビーム光とし上記第1の
ビーム光および上記第2のビーム光からなる複数個の測
定ビーム光を形成する反射体と、上記測定ビーム光中に
設けられてこれら測定ビーム光を光路外に導出するビー
ムスプリッタと、上記導出された測定ビーム光を受光し
それらの受光位置を検出する検出体と、上記基準孔に上
記測定ビーム光が通過する位置に上記被測定物を保持し
上記平面部で上記測定ビーム光を反射させて上記検出体
に投射させる保持台とを具備したことを特徴とする直角
度測定装置。
(4) A squareness measuring device for measuring the perpendicularity between the central axis and the flat part of a workpiece having a reference hole and a flat part perpendicular to the central axis thereof, the squareness measuring device having a plurality of parallel measuring devices. a projection optical system that projects a first beam of light; and a projection optical system that reflects the plurality of first beams and converts them into a plurality of second beams of light each having the same optical path as the first beam of light. a reflector that forms a plurality of measurement beams consisting of the first beam and the second beam; a beam splitter that is provided in the measurement beam and guides the measurement beams out of the optical path; a detection body that receives the derived measurement beam light and detects the position of the light reception; A squareness measuring device characterized by comprising a holding table for projecting the reflected light onto the detection object.
(5)ビーム投光光学系は測定ビーム光の光源としてレ
ーザ発振器を有することを特徴とする特許請求の範囲第
4項記載の直角度測定装置。
(5) The squareness measuring device according to claim 4, wherein the beam projection optical system has a laser oscillator as a light source of the measurement beam light.
(6)検出体は測定ビーム光の受光部に光電変換素子を
有することを特徴とする特許請求の範囲第4項または第
5項に記載の直角度測定装置。
(6) The squareness measuring device according to claim 4 or 5, wherein the detection object has a photoelectric conversion element in the light receiving part of the measurement beam light.
JP18304985A 1985-08-22 1985-08-22 Method and instrument for measuring squareness Pending JPS6244614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18304985A JPS6244614A (en) 1985-08-22 1985-08-22 Method and instrument for measuring squareness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18304985A JPS6244614A (en) 1985-08-22 1985-08-22 Method and instrument for measuring squareness

Publications (1)

Publication Number Publication Date
JPS6244614A true JPS6244614A (en) 1987-02-26

Family

ID=16128844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18304985A Pending JPS6244614A (en) 1985-08-22 1985-08-22 Method and instrument for measuring squareness

Country Status (1)

Country Link
JP (1) JPS6244614A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4970606A (en) * 1988-07-27 1990-11-13 Ricoh Company, Ltd. Document reading apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4970606A (en) * 1988-07-27 1990-11-13 Ricoh Company, Ltd. Document reading apparatus

Similar Documents

Publication Publication Date Title
CA1232444A (en) Method and apparatus for the contact-less measuring of objects
US3765764A (en) Coordinate measuring instrument
US4483618A (en) Laser measurement system, virtual detector probe and carriage yaw compensator
CN101545761A (en) Optical measuring system with multiple degrees of freedom
US4204772A (en) Optical measuring system
CN102865834A (en) Even number narrow slit type photoelectric autocollimator
JP3921004B2 (en) Displacement tilt measuring device
JPS6244614A (en) Method and instrument for measuring squareness
US5142146A (en) High-accuracy position comparator using 2 dimensional grating
KR100295477B1 (en) Device for measuring the dimensions of objects
US4115008A (en) Displacement measuring apparatus
JPH1089957A (en) Three-dimensional measuring method for structure member
JPS6125003A (en) Configuration measuring method
JPS62502421A (en) Equipment for orienting, inspecting and/or measuring two-dimensional objects
SU1566206A1 (en) Apparatus for remote measuring of object angular deviations
JP2672771B2 (en) Through hole inner diameter measuring device
JP5149085B2 (en) Displacement meter
SU1728654A1 (en) Method of determination of position of workpiece with hole
RU2094756C1 (en) Device for measuring the deviation from rectilinearity
JP2638356B2 (en) Focusing spot coaxiality measuring device
JPH01242905A (en) Method for measuring actual size of visual device
SU1523907A1 (en) Spherometer
JPH0730288Y2 (en) Optical marker
Polunov Methods and devices for an objective centering of small holes
JPH03252513A (en) Parabolic antenna surface measuring instrument