JPS6238239A - Catalyst for steam reforming of hydrocarbon - Google Patents
Catalyst for steam reforming of hydrocarbonInfo
- Publication number
- JPS6238239A JPS6238239A JP60174823A JP17482385A JPS6238239A JP S6238239 A JPS6238239 A JP S6238239A JP 60174823 A JP60174823 A JP 60174823A JP 17482385 A JP17482385 A JP 17482385A JP S6238239 A JPS6238239 A JP S6238239A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- ruthenium
- component
- steam reforming
- barium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は炭化水素の水蒸気改質に使用嘔れる触媒のなか
にあって、白金族金属成分とアルカリ土類金属成分をア
ルミナ担体に担持させた触媒の改良に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a catalyst which is used in the steam reforming of hydrocarbons and has a platinum group metal component and an alkaline earth metal component supported on an alumina carrier.
白金族金属ヲ活性金属成分として含有する水蒸気改質用
触媒は、古くから知られている。例えば特公昭39−2
9435号公報には、典型的にはアルミナである耐火性
無機酸化物に、白金族金属成分を担持させた水蒸気改質
用触媒が記載され、この触媒にアルカリ金属又はアルカ
リ土類金属の化合物を存在せしめると、触媒に沈着する
炭素量が減少する旨も記載石れている。また特開昭49
−11795号公報によれば、白金族金属成分、特にル
テニウム成分41化亜鉛又は亜鉛化合物と共にアルミナ
に担持させた触媒は、従前の白金族金属含有水蒸気改質
用触媒より高活性であるとされている。このほか、特開
昭51−52991号公報には、共沈法によって製造場
れ、随意にアルカリ金属又はアルカリ土類金属の化合物
を添加できるニッケルールテニウム−アルミナの3成分
系触媒が教示てれており、また特公昭52−2922号
公報には、ニッケル及び/又はコバルトと白金族金属と
アルカリ土類金属と担体を含有する水蒸気改質用触媒が
紹介されている。Steam reforming catalysts containing platinum group metals as active metal components have been known for a long time. For example, special public service 39-2
Publication No. 9435 describes a steam reforming catalyst in which a platinum group metal component is supported on a refractory inorganic oxide, typically alumina, and an alkali metal or alkaline earth metal compound is added to this catalyst. It is also stated that the presence of carbon reduces the amount of carbon deposited on the catalyst. Also, JP-A-49
According to Publication No. 11795, a catalyst supported on alumina together with a platinum group metal component, particularly a ruthenium component, zinc 41ide or a zinc compound, is said to be more active than conventional steam reforming catalysts containing platinum group metals. There is. In addition, JP-A No. 51-52991 teaches a three-component nickel ruthenium-alumina catalyst which can be manufactured by a coprecipitation method and to which an alkali metal or alkaline earth metal compound can be optionally added. Furthermore, Japanese Patent Publication No. 52-2922 introduces a steam reforming catalyst containing nickel and/or cobalt, a platinum group metal, an alkaline earth metal, and a carrier.
以上の通り、白金族金属成分とアルカリ土類金属成分を
アルミナ等の担体に担持させた水蒸気改質用触媒は、観
念的(こは公知であるが、従来技術は白金族金属グルー
プとアルカリ土類金属グループに属する各金属をほとん
ど同列に扱い、とりわけ如何なる白金族金属と如何なる
アルカリ土類金属との組合せが、水蒸気改質触媒にとっ
て最適であるかについては、全く検討が行われていない
。As mentioned above, a steam reforming catalyst in which a platinum group metal component and an alkaline earth metal component are supported on a carrier such as alumina is conceptually (this is publicly known), but the conventional technology is based on a platinum group metal group and an alkaline earth metal component. Each metal belonging to the metal group is treated almost in the same way, and in particular, no study has been made as to which combination of platinum group metal and which alkaline earth metal is optimal for a steam reforming catalyst.
本発明者等はこのような現状に鑑みて、観念的には公知
である上記の水蒸気改質用触媒について、そこで使用可
能であるとされて来た各金属種の水蒸気改質反応に対す
る作用を改めて検討した結果、白金族金属グループのな
かにあってはルテニウムが最も触媒活性に優れ、しかも
ルテニウムの触媒活性はアルカリ土類金属グループのな
かから唯一つ選択葛れる・々リウムと組合せること(こ
よって、一段と向上することを解明した。In view of the current situation, the present inventors have investigated the effect of the above-mentioned steam reforming catalyst, which is conceptually known, on the steam reforming reaction of various metals that have been considered usable therein. As a result of re-examination, we found that among the platinum group metals, ruthenium has the best catalytic activity, and that the catalytic activity of ruthenium is the only one selected from the alkaline earth metal group. As a result, it was found that there was further improvement.
而して本発明に係る炭化水素の水蒸気改質用触媒は、ア
ルミナ担体に白金族金属成分としてルテニウムを、アル
カリ土類金属成分として・々リウム全担持させたことを
特徴とする。従って当然のことながら、ルテニウムを使
用してもバリウム以外のアルカリ土類金属全使用したり
、あるいは〕ζリウムを使用してもルテニウム以外の白
金族金属を使用した場合には、本発明の触媒に匹敵する
程の高活性触媒を得ることができない。The catalyst for steam reforming of hydrocarbons according to the present invention is characterized in that ruthenium as a platinum group metal component and lithium as an alkaline earth metal component are fully supported on an alumina carrier. Therefore, it goes without saying that even if ruthenium is used, all alkaline earth metals other than barium are used, or even if ζlium is used but a platinum group metal other than ruthenium is used, the catalyst of the present invention It is not possible to obtain a highly active catalyst comparable to that of
本発明の触媒に於て、ルテニウム成分の含有量は元素状
金属換算でアルミナの0.01〜20重量%、好ましく
は0.1〜10ii(量チの範囲にあり、バリウム成分
の含有量はBaO換算でアルミナの0.1〜12重量優
にあることを可とする。このような触媒は当業界で貫用
の触媒製造方法で製造することができ、例えば、予め調
製されたアルミナにルテニウム化合物及びバリウム化合
物の水浴液を含浸嘔せる方法、あるいはアルミナ前駆物
とバリウム成分を共沈嘔せてバリウム含有アルミナ担体
を調製し、これにルテニウム成分を含浸で担持嘔せる方
法等により、本発明の触媒は製造可能である。つまり、
本発明はアルミナと所定量のルテニウム成分及び)々リ
ウム成分からなる触媒が得られる限り、その製造手段を
問わない。In the catalyst of the present invention, the content of the ruthenium component is in the range of 0.01 to 20% by weight of alumina in terms of elemental metal, preferably 0.1 to 10% by weight, and the content of the barium component is The amount of alumina can be well over 0.1 to 12% by weight in terms of BaO.Such a catalyst can be manufactured by a catalyst manufacturing method common in the art, for example, by adding ruthenium to pre-prepared alumina. The present invention can be carried out by impregnating a compound and a barium compound in a bath solution, or by co-precipitating an alumina precursor and a barium component to prepare a barium-containing alumina carrier, and then impregnating and supporting the ruthenium component. It is possible to produce a catalyst of
The present invention is not concerned with the production method used as long as a catalyst consisting of alumina and a predetermined amount of a ruthenium component and a ruthenium component can be obtained.
また、本発明の触媒を炭化水素の水蒸気改質に使用する
に際しては、従来の白金族金属含有触媒を使用する場合
と同様な反応条件が採用可能であって、そこに格別な制
限が付されることはない。しかし、本発明の触媒は水蒸
気改質操作の初期段階に於て、そしてまた水蒸気改質を
低圧条件で実施する場合に、特に優れた効果を発揮する
。ちなみに、従来のルテニウム含有水蒸気改質用触媒は
、圧力10〜30 kg/ cm”、温度400〜45
0”Cという通常の反応条件下での定常運転では、炭素
析出も少なく安定した活性を示すが、運転開始直後に於
て初期劣化が大きく、また低圧に於ける反応速度の低下
が大きいという欠点がある。然るにルテニウム成分及び
・ゞリウム成分を併有する本発明の触媒によれば、上記
欠点が大幅に改善でれる。Furthermore, when using the catalyst of the present invention for steam reforming of hydrocarbons, the same reaction conditions as in the case of using conventional platinum group metal-containing catalysts can be adopted, but there are no special restrictions. It never happens. However, the catalyst of the present invention is particularly effective in the early stages of steam reforming operations and also when steam reforming is carried out under low pressure conditions. By the way, conventional ruthenium-containing steam reforming catalysts have a pressure of 10 to 30 kg/cm" and a temperature of 400 to 45
In steady operation under normal reaction conditions of 0"C, stable activity is shown with little carbon precipitation, but the disadvantages are that initial deterioration is large immediately after the start of operation, and the reaction rate is greatly reduced at low pressure. However, according to the catalyst of the present invention containing both a ruthenium component and a dylium component, the above-mentioned drawbacks can be greatly improved.
比較例1
アルミナ担体にルテニウム、パラジウム、白金及びロジ
ウムのいずれかを元素状金属換算でQ、 5 vrt%
担持させた4f4の触媒を調製し、それぞれの触媒を人
、B、C及びDとした。Comparative Example 1 One of ruthenium, palladium, platinum, and rhodium was added to an alumina carrier at Q, 5 vrt% in terms of elemental metal.
Supported 4f4 catalysts were prepared, and the respective catalysts were designated as Human, B, C, and D.
比較例2
CaOとして10wt%のカルシウム成分金倉むアルミ
ナ担体に、元素状金属換算でQ、 5 wt%のパラジ
ウム成分を担持嘔せて触媒Bi調製した。Comparative Example 2 A catalyst Bi was prepared by supporting a palladium component of Q, 5 wt% in terms of elemental metal, on an alumina carrier containing a calcium component of 10 wt% as CaO.
比較例3
BaOとして2 wt%のバリウム成分を含有するアル
ミナ担体に、元素状金属換算でQ、 5 wt%のパラ
ジウム成分を担持嘔せて触媒Fを調製した。Comparative Example 3 Catalyst F was prepared by supporting Q, 5 wt % palladium component in terms of elemental metal, on an alumina support containing 2 wt % barium component as BaO.
比較例4
CaOとしてlQwt%のカルシウム成分を含むアルミ
ナ担体に、元素状金属換算でQ、 5 wt%のルテニ
ウム成分を担持させて触媒Gを調製した。Comparative Example 4 Catalyst G was prepared by supporting an alumina support containing Q, 5 wt % of a ruthenium component in terms of elemental metal on an alumina support containing a calcium component of 1 Q wt % as CaO.
比較例5
Mg0としてlQwt%のマグネシウム成分を含むアル
ミナ担体に、元素状金属換算でQ、 5 wt%のパラ
ジウム成分を担持させて触媒Hを調製した。Comparative Example 5 Catalyst H was prepared by supporting a palladium component of Q, 5 wt% in terms of elemental metal, on an alumina support containing a magnesium component of 1Qwt% as Mg0.
比較例6
Mg0としてlQwt%のマグネシウム成分を含むアル
ミナ担体Iこ元素状金属換算f O,5wt%のルテニ
ウム成分を担持させて触媒r2調製した。Comparative Example 6 A catalyst r2 was prepared by supporting an alumina support I containing a magnesium component of 1Qwt% as Mg0 and supporting a ruthenium component of 5wt% in terms of elemental metal fO.
比較例7
BaOとして0.05 wt%のノ々リウム成分を含む
アルミナ担体に、元素状金属換算でQ、5 wt%のル
テニウムを担持嘔せて触媒Jを調製した。Comparative Example 7 Catalyst J was prepared by supporting Q, 5 wt % of ruthenium in terms of elemental metal, on an alumina support containing 0.05 wt % of Nororium as BaO.
実施例l
BaOとして2 wt%のバリウム成分金倉むアルミナ
担体に、元素状金属換算でQ、5wt%のルテニウム成
分を担持させて触媒に金調製した。Example 1 Gold was prepared as a catalyst by supporting an alumina support containing 2 wt % of barium component as BaO and supporting Q and 5 wt % of ruthenium component in terms of elemental metal.
実施例2
元素状金属換算でQ、5 wt%のルテニウムを含有す
る触媒Aに、BaOとして2 wt%のバリウム成分を
担持堰せて触媒りを調製した。Example 2 A catalyst was prepared by carrying a barium component of 2 wt% as BaO on Catalyst A containing Q, 5 wt% of ruthenium in terms of elemental metal.
実施例3
BaOとして0、l wt%の・々リウム成分を含むア
ルミナ担体に、元素状金属換算でQ、 5 wt%のル
テニウムを担持嘔せて触媒Mを調製した。Example 3 Catalyst M was prepared by supporting Q, 5 wt% of ruthenium in terms of elemental metal on an alumina support containing 0.1 wt% of ruthenium as BaO.
実施例4
BaOとして2wt%のバリウム成分を含むアルミナ担
体に、元素状金属換算で2.Owt%のルテニウム成分
を担持嘔せて触媒Nkm製した。Example 4 An alumina support containing 2 wt% of barium as BaO was coated with 2. A catalyst Nkm was prepared by supporting Owt% of the ruthenium component.
上記の比較例及び実施例で得た)式媒A、Mを用いてn
−ヘキサンの水蒸気改質反応を行い、反応開始5時間後
に於けるn−ヘキサンの転化率にて各触媒の活性を評価
した。実1;検条件は次の通りである。n using formula mediums A and M (obtained in the above comparative examples and examples)
- A steam reforming reaction of hexane was carried out, and the activity of each catalyst was evaluated based on the conversion rate of n-hexane 5 hours after the start of the reaction. Fact 1: The test conditions are as follows.
使用原料:n−ヘキサン(試薬1級) ?、 8 v
tl / hrスチーム添加比:4.5モル/1炭素原
子圧カニ 10 kg/ cm2− G
反応温度:500“C
触媒量:0.1g
結果を次表に示す。Raw material used: n-hexane (1st grade reagent)? , 8v
tl/hr Steam addition ratio: 4.5 mol/1 carbon atomic pressure Crab 10 kg/cm2-G Reaction temperature: 500"C Catalyst amount: 0.1 g The results are shown in the following table.
上表から明らかな如く、アルカリ土類金属成分を含まな
い触媒A、Dでは、ルテニウム成分を含むポ媒Aが最も
活性が高い。一方、アルカリ土類金属成分含有触媒E、
Mについて言えば、パラジウムに対するアルカリ土類金
属成分の添加は、若干の活性向上が認められるだけで、
特定なアルカリ土類金属を添加した場合にのみ活性が格
別に向上することはなく、活性し4ルも触媒Aの1/3
程度にすぎない。これとは対照的にルテニウムに対する
アルカリ土類金M成分の添加は、アルカリ土類金属成分
がカルシウム又はマグネシウムである場合、添加効果が
殆ど認められないものの、バリウムである場合には著し
く活性が向上する。As is clear from the above table, among catalysts A and D that do not contain alkaline earth metal components, polymedia A that contains a ruthenium component has the highest activity. On the other hand, alkaline earth metal component-containing catalyst E,
Regarding M, the addition of alkaline earth metal components to palladium only slightly improves the activity.
The activity does not improve significantly only when a specific alkaline earth metal is added, and the active level is only 1/3 that of catalyst A.
It's just a matter of degree. In contrast, when the alkaline earth metal component is added to ruthenium, almost no effect is observed when the alkaline earth metal component is calcium or magnesium, but the activity is significantly improved when the alkaline earth metal component is barium. do.
Claims (1)
成分を担持させた炭化水素の水蒸気改質用触媒に於て、
白金族金属成分がルテニウムであり、アルカリ土類金属
成分がバリウムであることを特徴とする水蒸気改質用触
媒。 2、ルテニウム成分の含有量が元素状金属換算でアルミ
ナの0.01〜20重量%の範囲にあり、バリウム成分
の含有量がBaO換算でアルミナの0.1〜12重量%
の範囲にある特許請求の範囲第1項記載の水蒸気改質用
触媒。[Claims] 1. In a hydrocarbon steam reforming catalyst in which a platinum group metal component and an alkaline earth metal component are supported on an alumina carrier,
A steam reforming catalyst characterized in that the platinum group metal component is ruthenium and the alkaline earth metal component is barium. 2. The content of ruthenium component is in the range of 0.01 to 20% by weight of alumina in terms of elemental metal, and the content of barium component is 0.1 to 12% by weight of alumina in terms of BaO.
A steam reforming catalyst according to claim 1, which falls within the scope of claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60174823A JPS6238239A (en) | 1985-08-08 | 1985-08-08 | Catalyst for steam reforming of hydrocarbon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60174823A JPS6238239A (en) | 1985-08-08 | 1985-08-08 | Catalyst for steam reforming of hydrocarbon |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6238239A true JPS6238239A (en) | 1987-02-19 |
JPH054134B2 JPH054134B2 (en) | 1993-01-19 |
Family
ID=15985286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60174823A Granted JPS6238239A (en) | 1985-08-08 | 1985-08-08 | Catalyst for steam reforming of hydrocarbon |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6238239A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1301836A (en) * | 1969-02-06 | 1973-01-04 | ||
JPS50126005A (en) * | 1974-03-25 | 1975-10-03 | ||
JPS5614340A (en) * | 1979-07-13 | 1981-02-12 | Hitachi Ltd | Communication control system |
-
1985
- 1985-08-08 JP JP60174823A patent/JPS6238239A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1301836A (en) * | 1969-02-06 | 1973-01-04 | ||
JPS50126005A (en) * | 1974-03-25 | 1975-10-03 | ||
JPS5614340A (en) * | 1979-07-13 | 1981-02-12 | Hitachi Ltd | Communication control system |
Also Published As
Publication number | Publication date |
---|---|
JPH054134B2 (en) | 1993-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5258340A (en) | Mixed transition metal oxide catalysts for conversion of carbon monoxide and method for producing the catalysts | |
EP1611072B1 (en) | Palladium-based catalyst for selective hydrogenation of acetylene | |
US4105674A (en) | Production of gamma-butyrolactone from maleic anhydride with a hydrogenation catalyst | |
US4532351A (en) | Process for hydrogenating organic compounds by use of Group VIII aluminum-silicate catalysts | |
JPH0623269A (en) | Catalyst containing group viii and iiia metal supported on carrier thereof | |
JP2003507291A (en) | Method and catalyst structure for steam reforming hydrocarbons | |
JPS6241781B2 (en) | ||
WO2002078839A1 (en) | Process for selective hydrogenation of acetylene in an ethylene purification process | |
JPH10509711A (en) | Method for converting chlorinated alkanes to lower chlorinated alkenes | |
CN86107489A (en) | Supported metal catalysts and application method thereof | |
JPH05261286A (en) | Catalyst for reforming hydrocarbon vapor and its production | |
US5994606A (en) | Method for dehydrogenation of hydrocarbon | |
JP3307976B2 (en) | Hydrocarbon steam reforming catalyst | |
JPS6238239A (en) | Catalyst for steam reforming of hydrocarbon | |
US20070093559A1 (en) | Catalytic reduction and oxidation processes | |
US4593014A (en) | Catalyst support compositions | |
JP3831444B2 (en) | Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method | |
JPH069657B2 (en) | Hydrocarbon steam reforming catalyst | |
US5639927A (en) | Process of producing cycloolefin | |
JPH02227141A (en) | Methanol reforming catalyst | |
US4497907A (en) | Coprecipitated Si-Al-metal-particle catalyst | |
EP0231401B1 (en) | Ruthenium-rhenium-titania catalysts, and use thereof for fischer-tropsch synthesis | |
EP0180957B1 (en) | Preparation process of indoles | |
KR20000022369A (en) | Catalyst for dehydrogenation of cyclohexanol, process for the preparation of said catalyst and use thereof | |
JP3153526B2 (en) | Catalyst for partial hydrogenation of aromatic olefin and method for partial hydrogenation thereof |