JPS6230829A - Working substance for magnetic refrigeration and its production - Google Patents
Working substance for magnetic refrigeration and its productionInfo
- Publication number
- JPS6230829A JPS6230829A JP60169789A JP16978985A JPS6230829A JP S6230829 A JPS6230829 A JP S6230829A JP 60169789 A JP60169789 A JP 60169789A JP 16978985 A JP16978985 A JP 16978985A JP S6230829 A JPS6230829 A JP S6230829A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- tape
- alloy
- magnetic refrigeration
- refrigeration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B21/00—Machines, plants or systems, using electric or magnetic effects
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/012—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Hard Magnetic Materials (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は磁気冷凍機の磁気冷凍作業物質及びその製造方
法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetic refrigeration working material for a magnetic refrigerator and a method for producing the same.
従来技術
近年、低温利用の範囲が著しく広が9、効率のよい冷凍
機の開発が要望されている。BACKGROUND OF THE INVENTION In recent years, the range of low-temperature applications has expanded significantly9, and there is a demand for the development of efficient refrigerators.
従来の気体の圧縮−膨張を繰返す冷凍法では、低温にな
るほど効率が低下する。そこで、全く新しい原理に基づ
く磁気冷凍法が注目されるようになった。In conventional refrigeration methods that repeatedly compress and expand gas, the efficiency decreases as the temperature decreases. Therefore, magnetic refrigeration, which is based on a completely new principle, has attracted attention.
一般に、磁性体を強磁界中に挿入し、磁気スピンを整列
状態にすると発熱が起こる。この熱を外部に取去った後
、強磁界中から磁性体を引出して、磁気スピンを擾乱状
態にすると吸熱が起こり、外部の冷凍対象物から熱を奪
い冷凍する。磁気冷凍法はこの原理を利用するもので、
機構的には気体冷凍における気体の圧縮−膨張に対応す
る。20K (ケルビン)より低い温度では、逆カルノ
ーサイクルが利用できるが、20ければならない。Generally, when a magnetic material is inserted into a strong magnetic field and its magnetic spins are aligned, heat is generated. After removing this heat to the outside, the magnetic material is pulled out of the strong magnetic field and the magnetic spin is disturbed, causing heat absorption, which takes heat from the external object to be frozen and freezes it. Magnetic refrigeration uses this principle,
Mechanistically, it corresponds to the compression-expansion of gas in gas refrigeration. At temperatures below 20K (Kelvin), a reverse Carnot cycle can be used, but only 20K (Kelvin).
これらの磁気冷凍法は、従来の気体冷凍法に比べて、高
い冷凍効率が得られ、かつ圧縮機が不要となるため振動
や騒音が減り、小型軽量化やコンピュータ制御ができる
などの多くの優れた特徴をもっている。このような優れ
た磁気冷凍法ヲ実用化するためには、高性能の磁気冷凍
作業物質の開発が不可欠である。These magnetic refrigeration methods have many advantages over conventional gas refrigeration methods, such as higher refrigeration efficiency, reduced vibration and noise because they do not require a compressor, smaller size and lighter weight, and computer control. It has certain characteristics. In order to put such an excellent magnetic refrigeration method into practical use, it is essential to develop high-performance magnetic refrigeration materials.
現在、20により低い温度領域における磁気冷凍作業物
質としては、Gd5GasOu s Gd5(Gdt−
xAlx)io+zなどのガーネット単結晶が優れた特
性を持つとされ、これを用いた磁気冷凍試験が行われて
いる。Currently, Gd5GasOus Gd5 (Gdt-
Garnet single crystals such as xAlx)io+z are said to have excellent properties, and magnetic refrigeration tests are being conducted using them.
前記のガーネゾト系では、反強磁性7常磁性転移のネー
ル温度がIK近傍にあり、20に未満ではこの転移が利
用できるが、20に以上になると、外部磁界による磁気
エントロピー変化が小さくなり、冷凍能力が著しく低下
する。In the above-mentioned Garnezot system, the Neel temperature of the antiferromagnetic 7 paramagnetic transition is near IK, and this transition can be utilized below 20, but above 20, the change in magnetic entropy due to the external magnetic field becomes small and freezing Capacity is significantly reduced.
20に〜300にの温度領域の磁気冷凍機では、強磁性
−常磁性転移のキュリ一温度近傍の外部磁界による大き
な磁気エントロピー変化全利用するのが有利になる。こ
の磁気冷凍作業物質には、キュリ一温度が作業温度の範
囲にあるものが要求される。In magnetic refrigerators in the temperature range from 20°C to 300°C, it is advantageous to fully utilize the large magnetic entropy change caused by the external magnetic field near the Curie temperature of the ferromagnetic-paramagnetic transition. This magnetic refrigeration working material is required to have a Curie temperature within the working temperature range.
さらに、磁気モーメントが大きいこと、格子比熱が小さ
いこと及び熱伝導率が大きいことが要求される。Furthermore, it is required to have a large magnetic moment, a small lattice specific heat, and a high thermal conductivity.
特に熱伝導率は磁気冷凍サイクルの動作速度を決定する
重要な因子であり、現在この温度域で優れた特性を持つ
物質のWが行6.i3.c−いる。In particular, thermal conductivity is an important factor that determines the operating speed of a magnetic refrigeration cycle, and currently W is a material with excellent properties in this temperature range. i3. c-There is.
発明の目的
本発明は20〜300にの温度領域にお:゛四七−磁気
エントロピーが大きく、熱伝導率の高い優れた磁気冷凍
性能を持つ磁気冷凍作業物質及びその製造方法を提供す
るにある。OBJECTS OF THE INVENTION The present invention provides a magnetic refrigeration material having a large magnetic entropy, high thermal conductivity, and excellent magnetic refrigeration performance in the temperature range of 20 to 300 degrees Celsius, and a method for producing the same. .
発明の構成
本発明者らは前記目的を達成すべく研究の結果、磁気モ
ーメントの大きい希土類元素のGd1Tbs DYlH
o、 Erの単独もしくは2種以上を含む合金の融体を
、真空中あるいは不活性ガス雰囲気中で、温度を制御し
たCuあるいはAgテープで急冷して、非晶質合金ある
いは多層の微結晶集合合金とCuまたはAgテープとを
一体化させると、広い温度領域に亘って磁気エントロピ
ーが犬きく、シかも熱伝導率の高い磁気冷凍性能の優れ
た作業物質が得られることを究明し得た。この知見に基
いて本発明を完成した。Structure of the Invention In order to achieve the above object, the present inventors conducted research and found that Gd1Tbs DYlH, a rare earth element with a large magnetic moment.
A melt of an alloy containing one or more of O and Er is rapidly cooled with a temperature-controlled Cu or Ag tape in vacuum or an inert gas atmosphere to form an amorphous alloy or a multilayer microcrystalline aggregate. It has been found that when the alloy is integrated with Cu or Ag tape, a working material with excellent magnetic refrigeration performance, which has a high magnetic entropy over a wide temperature range, and also has high thermal conductivity, can be obtained. The present invention was completed based on this knowledge.
本発明の要旨は、
1) Gdt Tbx D7% HO及びErから選
ばれた単独または2種以上の希土類元素を含む非晶質合
金あるいは多相の微結晶集合合金と、CuまたはAgテ
ープとを複合一体化したことを特徴とする磁気冷凍作業
物質。The gist of the present invention is as follows: 1) A composite of an amorphous alloy or a multiphase microcrystalline aggregate alloy containing one or more rare earth elements selected from Gdt Tbx D7% HO and Er, and a Cu or Ag tape. A magnetic refrigeration working substance characterized by being integrated.
2)また、Gd % Tb s Dy% Ho及びEr
から選ばれた単独または2種以上の希土類元素を含む融
体を、真空中あるい、は不活性ガス雰囲J硲、移動する
室温〜600℃のCuまたはAgテープに接触急冷させ
、非晶質合金あるいは多相の微結晶集合合金と、Cut
たはAgf−一一一−を複合一体化することを特徴とす
る磁気冷凍作業物質の製造方法にある。2) Also, Gd % Tb s Dy % Ho and Er
A melt containing one or more rare earth elements selected from the following is quenched in vacuum or in an inert gas atmosphere by contact with a moving Cu or Ag tape at room temperature to 600°C to form an amorphous material. crystalline alloy or multiphase microcrystalline aggregate alloy, and Cut
The present invention provides a method for producing a magnetic refrigeration material, which is characterized by compositely integrating Agf-111 or Agf-111.
Gd、 Tb% D7s Ha及びErの希土類元素は
磁気モーメントが大きいため、これを含む合金は磁気冷
凍作業物質として優れている。これら元素の単独または
2種以上を20〜80原子チ含む合金が好ましい。この
希土類元素成分が80原子チを超えると非晶質合金ある
いは多相の微結晶集合合金が得られず、はぼ単相の結晶
組織になり、冷凍能力が著しく低下する。一方その量が
20原子チよう少ないと磁気モーメントが小さくなるた
め磁気エントロピーが急激に小さくなり、冷凍能力を発
揮しなくなるので、20〜80原子チであることが好ま
しい。Rare earth elements such as Gd, Tb% D7s Ha and Er have a large magnetic moment, so alloys containing them are excellent as materials for magnetic refrigeration. An alloy containing 20 to 80 atoms of these elements alone or two or more is preferred. If the rare earth element component exceeds 80 atoms, an amorphous alloy or a multiphase microcrystalline aggregated alloy cannot be obtained, but a nearly single-phase crystal structure is obtained, and the refrigeration capacity is significantly reduced. On the other hand, if the amount is less than 20 atoms, the magnetic moment becomes small, so the magnetic entropy decreases rapidly, and the refrigerating ability is no longer exhibited, so it is preferably 20 to 80 atoms.
テープの温度は組成によっては室温でもよいが、加熱す
ると、融体とのぬれ性が改善されるため、合金との密接
性が向上して熱伝導性がよくなシ、また均一な厚さとな
る。Depending on the composition, the temperature of the tape may be room temperature, but heating improves its wettability with the melt, which improves its closeness with the alloy, resulting in better thermal conductivity and a more uniform thickness. .
従って、50〜600℃とするのが好ましい。Therefore, it is preferable to set it as 50-600 degreeC.
50〜400℃では非晶質合金とCu、またはAgテー
プとが一体となった複合テープが得られ、400〜60
0℃では、高密度で多相の微結晶の集合からなる合金と
Cu、またはAgテープとが一体化した複合テープが得
られる。At 50-400°C, a composite tape in which the amorphous alloy and Cu or Ag tape are integrated is obtained;
At 0° C., a composite tape is obtained in which a Cu or Ag tape is integrated with an alloy consisting of a collection of high-density, multi-phase microcrystals.
前者の複合テープは非晶質合金の組成によってキュリ一
温度を容易に制御することができ、キュリ一温度を中心
とした広い温度領域に亘って磁気エントロピーが大きく
、さらにCutたはAgテープ部分を熱が伝導し、熱伝
導率が高く、磁気冷凍性能に優れ、特に冷凍サイクル効
率の高い磁気冷凍作業物質となる。In the former composite tape, the Curie temperature can be easily controlled by the composition of the amorphous alloy, and the magnetic entropy is large over a wide temperature range centered on the Curie temperature. It conducts heat, has high thermal conductivity, and has excellent magnetic refrigeration performance, making it a magnetic refrigeration working material with particularly high refrigeration cycle efficiency.
また、後者の複合テープは、多相の微結晶集合合金の組
成によって各相のキュリ一温度を300〜20Kに分布
するように制御でき、この温度領域で磁気エントロピー
が大きく、磁気エントロピーの温度による変化がゆるや
かで、さらにCuまたはAgテープ部分を熱が伝導し、
熱伝導率が高く、磁気冷凍性能に優れ、特に冷凍サイク
ル効率の高い磁気冷凍作業物質となる。In addition, in the latter composite tape, the Curie temperature of each phase can be controlled to be distributed between 300 and 20 K depending on the composition of the multi-phase microcrystalline aggregate alloy, and the magnetic entropy is large in this temperature range, and the magnetic entropy depends on the temperature. The change is gradual, and heat is conducted through the Cu or Ag tape.
It has high thermal conductivity and excellent magnetic refrigeration performance, making it a magnetic refrigeration material with particularly high refrigeration cycle efficiency.
なお、テープの温度が600℃を超えると、結晶粒が粗
大化し、もろくなるので好ましくない。Note that if the temperature of the tape exceeds 600°C, the crystal grains will become coarse and brittle, which is not preferable.
磁気冷凍作業物質、即ち合金の厚さはCuまたはAgテ
ープの移動速度によって制御できる。この移動速度の大
きいほど合金の厚さは薄くなる。合金とテープの厚さの
割合は、磁気冷凍機の設計仕様に基いて選定することが
できる。一般的に、テープの移動速度は5〜30m/s
で、厚さは10〜10011rnであることが好ましい
。10μm未満では複合テープとしての安定性が不十分
となり、一方100μmを超えると渦電流損が大きくな
って磁気冷凍効率を低下させる。The thickness of the magnetic refrigeration material, or alloy, can be controlled by the speed of movement of the Cu or Ag tape. The higher the moving speed, the thinner the alloy becomes. The alloy to tape thickness ratio can be selected based on the design specifications of the magnetic refrigerator. Generally, the tape moving speed is 5 to 30 m/s
The thickness is preferably 10 to 10011rn. If it is less than 10 μm, the stability as a composite tape will be insufficient, while if it exceeds 100 μm, eddy current loss will increase and the magnetic refrigeration efficiency will decrease.
実施例1゜
あらかじめアーク溶解法で作製した表1に示す組成のイ
ンゴットをレビテーション法で真空中で溶解し、その融
体を細孔ノズルから室温のCu冷却体上に急冷して非晶
質合金を作製した。Example 1 An ingot with the composition shown in Table 1 prepared in advance by an arc melting method was melted in vacuum by a levitation method, and the melt was rapidly cooled from a fine-hole nozzle onto a Cu cooling body at room temperature to form an amorphous material. An alloy was made.
つぎに、融体を細孔ノズルから、室温で速度20m/s
で移動する厚さ20μmのCuテープ上に急冷し、厚さ
約20μmの非晶質合金を付着させて複合テープを作製
した。Next, the melt was passed through a small hole nozzle at room temperature at a speed of 20 m/s.
A composite tape was prepared by rapidly cooling an amorphous alloy having a thickness of approximately 20 μm onto a moving Cu tape having a thickness of 20 μm.
表1
得られた非晶質合金および複合テープの磁化の温度によ
る変化を7.5T(テスラ)までの磁界H中で測定し、
主要な磁気冷凍性能である磁気エントロピーΔSMを求
めた。磁気エントロピーの最大値ΔS M maX s
ΔSMmaxを示す温度T m a x sΔSMma
xに対して63Mが60%以上の値を示す温度範囲ΔT
6(1sおよび熱伝導率λを表2に示す。Table 1 Changes in magnetization of the obtained amorphous alloy and composite tape due to temperature were measured in a magnetic field H up to 7.5 T (Tesla),
Magnetic entropy ΔSM, which is the main magnetic refrigeration performance, was determined. Maximum value of magnetic entropy ΔS M maX s
Temperature T m a x sΔSMma indicating ΔSMmax
Temperature range ΔT where 63M shows a value of 60% or more with respect to x
6 (1s and thermal conductivity λ are shown in Table 2.
表2
63Mの温度による変化はゆるやかで、ΔTeaは非常
に広い。また、ΔSMmax s T max 、ΔT
uは、希土類元素の種類やその含有量を変化させること
によって容易に制御できる。非晶質合金と複合テープの
ΔSMmaX% λを比較すると、Cuテープとの複
合によって、ΔSMmaxは2/3程度に低下するが、
λは著しく高くなる。Table 2 Changes due to temperature at 63M are gradual, and ΔTea is very wide. Also, ΔSMmax s T max , ΔT
u can be easily controlled by changing the type of rare earth element and its content. Comparing the ΔSMmaX% λ of the amorphous alloy and composite tape, ΔSMmax decreases to about 2/3 due to the composite with Cu tape, but
λ becomes significantly higher.
この非晶質合金複合テープを磁気冷凍作業物質として用
いると、広い温度領域で高い冷凍能力を発揮し、す・f
クル効率の高い磁気冷凍機が可能になる。When this amorphous alloy composite tape is used as a magnetic refrigeration material, it exhibits high refrigeration capacity over a wide temperature range, and
This makes it possible to create magnetic refrigerators with high cycle efficiency.
実施例2゜
表3
あらかじめアーク溶解法で作製した表3に示fm成のイ
ンゴットをレビテーション法で真空中で溶解し、その融
体を細孔ノズルから、480℃に加熱したCu冷却体上
に急冷して多相の微結晶集合合金を作製した。つぎに、
融体を細孔ノズルから、480℃に加熱した速度20m
/sで移動する厚さ20μmのCuテープ上に急冷し、
厚さ約20μmの多相の微結晶集合合金を付着させて複
合テープを作製した。Example 2゜Table 3 An ingot with the fm composition shown in Table 3 prepared in advance by an arc melting method was melted in vacuum by a levitation method, and the melt was passed through a fine hole nozzle onto a Cu cooling body heated to 480°C. A multiphase microcrystalline aggregate alloy was prepared by rapid cooling. next,
The melt was heated to 480°C from the pore nozzle at a speed of 20 m.
quenched on a 20 μm thick Cu tape moving at /s,
A composite tape was prepared by depositing a multiphase microcrystalline aggregate alloy with a thickness of about 20 μm.
多相の微結晶集合合金および複合テープのΔSMmax
v Tmax、 ΔTao1およびλを表4に示す。ΔSMmax of multiphase microcrystalline aggregate alloys and composite tapes
v Tmax, ΔTao1 and λ are shown in Table 4.
この多相の微結晶集合合金は、キュリ一温度Tcの異な
るGdCu (Tc = 90K ) 、 GdCu
A1(Tc=67K)、Gd Alz (Tc = 1
68K )、Gd5i(Tc=50K)および、DyN
1(Tc=48K)、DyNiA1 (Tc=39K)
、D)’A12 (TO= 68 K )、Dy5iz
(Tc = 17 K )などの微結晶からなるため
、68Mの温度による変化が非常にゆるやかになり、Δ
Tuは広い。また、Tmax、 ΔTsoは、希土類元
素の種類やその含有量を変化させることによって容易に
制御できる。多相の微結晶集合合金と複合テープのΔS
Mmax、 λを比較すると、 Cuテープとの複合
によって、68M maxは2/3程度に低下するが、
λは著しく高くなる。この多相の微結晶集合合金複合テ
ープを磁気冷凍作業物質として用いると、広い温度領域
で高い冷凍能力を発揮し、サイクル効率の高い磁気冷凍
機が可能になる。This multi-phase microcrystalline aggregate alloy consists of GdCu (Tc = 90K), GdCu with different Curie temperatures Tc
A1 (Tc = 67K), Gd Alz (Tc = 1
68K), Gd5i (Tc=50K) and DyN
1 (Tc=48K), DyNiA1 (Tc=39K)
,D)'A12 (TO=68K), Dy5iz
(Tc = 17 K), the change due to temperature of 68M is very gradual, and Δ
Tu is wide. Further, Tmax and ΔTso can be easily controlled by changing the type of rare earth element and its content. ΔS of multiphase microcrystalline aggregate alloy and composite tape
Comparing Mmax and λ, 68Mmax decreases to about 2/3 by combining with Cu tape, but
λ becomes significantly higher. When this multiphase microcrystalline aggregated alloy composite tape is used as a magnetic refrigeration working material, a magnetic refrigerator that exhibits high refrigeration capacity over a wide temperature range and has high cycle efficiency becomes possible.
実施例1.2において、Cu基板温度を100℃以上に
加熱した場合、合金の厚さの均一性や、合金とCu基板
との密接性の改善が認められた。In Example 1.2, when the Cu substrate temperature was heated to 100° C. or higher, it was observed that the uniformity of the thickness of the alloy and the closeness between the alloy and the Cu substrate were improved.
なお、実施例ではCuテープを使用した場合を示したが
、これに代えAgテープを使用した場合も幸同様な結果
が得られた。In addition, although the case where Cu tape was used was shown in the Example, the same result was happily obtained when Ag tape was used instead.
発明の効果
合テープは、組成によってキュリ一温度を容易に制御す
ることができ、キュリ一温度を中心とした広い温度領域
にわたって磁気エントロピーが大きく、かつ磁気エント
ロピーの温度による変化がゆるやかで磁気熱量効果が大
きく、熱伝導率の高い、優れた磁気冷凍作業物質である
。The effect of the invention is that the Curie temperature can be easily controlled by the composition of the tape, and the magnetic entropy is large over a wide temperature range centered on the Curie temperature, and the change in magnetic entropy due to temperature is gradual, resulting in a magnetocaloric effect. It is an excellent material for magnetic refrigeration because of its large size and high thermal conductivity.
したがって、室温から20にの低温環境発生用磁気冷凍
機が可能になる。この磁気冷凍機は効率が従来のガス冷
凍機のそれより高くなるとともに小形化、軽量化するこ
とができる。Therefore, a magnetic refrigerator for generating a low temperature environment from room temperature to 20 degrees is possible. This magnetic refrigerator has higher efficiency than conventional gas refrigerators, and can be made smaller and lighter.
特許出願人 科学技術庁金属材料技術研究所長中 川
龍 −Patent applicant: Ryu Kawa, Director, Research Institute for Metals, Science and Technology Agency −
Claims (1)
独または2種以上の希土類元素を含む非晶質合金あるい
は多相の微結晶集合合金と、CuまたはAgテープを複
合一体化したことを特徴とする磁気冷凍作業物質。 2) Gd、Tb、Dy、Ho及びErから選ばれた単
独または2種以上の希土類元素を含む融体を、真空中あ
るいは不活性ガス雰囲気中で、移動する室温〜600℃
のCuまたはAgテープに接触急冷させ、非晶質合金あ
るいは多相の微結晶集合合金と、CuまたはAgテープ
とを複合一体化することを特徴とする磁気冷凍作業物質
の製造方法。[Claims] 1) An amorphous alloy or multiphase microcrystalline aggregate alloy containing one or more rare earth elements selected from Gd, Tb, Dy, Ho, and Er, and Cu or Ag tape. A magnetic refrigeration material characterized by being integrated into a composite material. 2) Moving a melt containing one or more rare earth elements selected from Gd, Tb, Dy, Ho, and Er in a vacuum or in an inert gas atmosphere at room temperature to 600°C
1. A method for producing a magnetic refrigeration material, which comprises contacting and rapidly cooling a Cu or Ag tape to composite and integrate an amorphous alloy or a multiphase microcrystalline aggregate alloy with the Cu or Ag tape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60169789A JPS6230829A (en) | 1985-08-02 | 1985-08-02 | Working substance for magnetic refrigeration and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60169789A JPS6230829A (en) | 1985-08-02 | 1985-08-02 | Working substance for magnetic refrigeration and its production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6230829A true JPS6230829A (en) | 1987-02-09 |
JPS6335703B2 JPS6335703B2 (en) | 1988-07-15 |
Family
ID=15892906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60169789A Granted JPS6230829A (en) | 1985-08-02 | 1985-08-02 | Working substance for magnetic refrigeration and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6230829A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0411591A3 (en) * | 1989-07-31 | 1991-10-16 | Kabushiki Kaisha Toshiba | Cold accumulating material and method of manufacturing the same |
US5074935A (en) * | 1989-07-04 | 1991-12-24 | Tsuyoshi Masumoto | Amorphous alloys superior in mechanical strength, corrosion resistance and formability |
US5362339A (en) * | 1991-03-14 | 1994-11-08 | Honda Giken Kogyo Kabushiki Kaisha | Magnetic refrigerant and process for producing the same |
US5462610A (en) * | 1993-07-08 | 1995-10-31 | Iowa State University Research Foundation, Inc. | Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants |
CN103334043A (en) * | 2013-03-22 | 2013-10-02 | 中国科学院物理研究所 | Magnetic alloy serving as magnetic refrigeration material |
-
1985
- 1985-08-02 JP JP60169789A patent/JPS6230829A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5074935A (en) * | 1989-07-04 | 1991-12-24 | Tsuyoshi Masumoto | Amorphous alloys superior in mechanical strength, corrosion resistance and formability |
EP0411591A3 (en) * | 1989-07-31 | 1991-10-16 | Kabushiki Kaisha Toshiba | Cold accumulating material and method of manufacturing the same |
EP0774522A3 (en) * | 1989-07-31 | 1997-06-04 | Kabushiki Kaisha Toshiba | A method of manufacturing a cold accumulating material and a refrigerator using the cold accumulating material |
US5362339A (en) * | 1991-03-14 | 1994-11-08 | Honda Giken Kogyo Kabushiki Kaisha | Magnetic refrigerant and process for producing the same |
US5462610A (en) * | 1993-07-08 | 1995-10-31 | Iowa State University Research Foundation, Inc. | Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants |
CN103334043A (en) * | 2013-03-22 | 2013-10-02 | 中国科学院物理研究所 | Magnetic alloy serving as magnetic refrigeration material |
Also Published As
Publication number | Publication date |
---|---|
JPS6335703B2 (en) | 1988-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Review on the materials and devices for magnetic refrigeration in the temperature range of nitrogen and hydrogen liquefaction | |
Sahashi et al. | New magnetic material R 3 T system with extremely large heat capacities used as heat regenerators | |
Annaorazov et al. | Alloys of the Fe Rh system as a new class of working material for magnetic refrigerators | |
US5887449A (en) | Dual stage active magnetic regenerator and method | |
JP6465884B2 (en) | Magneto-caloric material containing B | |
Gschneidner Jr et al. | Rare earths and magnetic refrigeration | |
CN106350690B (en) | Rare earth gadolinium-based AMORPHOUS ALLOY RIBBONS for room temperature magnetic refrigerating material and preparation method thereof | |
JPS6230840A (en) | Working substance for magnetic refrigerator and its production | |
JP6480933B2 (en) | Magneto-caloric material containing B | |
Shao et al. | Magnetic entropy in nanocomposite binary gadolinium alloys | |
Fujieda et al. | Enhancements of magnetocaloric effects in La (Fe0. 90Si0. 10) 13 and its hydride by partial substitution of Ce for La | |
Li et al. | Phase constitution, microstructure evolution and magnetocaloric properties of LaFe11. 8Si1. 2 strip-casting flakes | |
JPS6230829A (en) | Working substance for magnetic refrigeration and its production | |
Aliev et al. | Magnetocaloric properties of La0. 9Pr0. 1Fe11. 2Co0. 7Si1. 1 compound through direct measurements under cyclic magnetic fields up to 30 Hz | |
Bin et al. | Effect of proportion change of aluminum and silicon on magnetic entropy change and magnetic properties in La0. 8Ce0. 2Fe11. 5Al1. 5-xSix compounds | |
CN103668008B (en) | Thulium base metal glass, preparation method and application | |
CN103334043B (en) | Magnetic alloy serving as magnetic refrigeration material | |
WO1999020956A1 (en) | Cold-accumulating material and cold-accumulating refrigerator | |
US5462610A (en) | Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants | |
US5435137A (en) | Ternary Dy-Er-Al magnetic refrigerants | |
Gschneidner Jr et al. | Magnetic refrigeration | |
Cui et al. | Effect of Cu doping on the magnetic and magnetocaloric properties in the HoNiAl intermetallic compound | |
JP2004225920A (en) | Cool accumulator | |
CN110983207B (en) | Amorphous composite material without Fe, Co and Ni and preparation method and application thereof | |
Fujieda et al. | Control of Working Temperature of Large Isothermal Magnetic Entropy Change in La (FexTMySi1− x− y) 13 (TM= Cr, Mn, Ni) and La1− zCez (FexMnySi1− x− y) 13 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |