Nothing Special   »   [go: up one dir, main page]

JPS62293772A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62293772A
JPS62293772A JP13761386A JP13761386A JPS62293772A JP S62293772 A JPS62293772 A JP S62293772A JP 13761386 A JP13761386 A JP 13761386A JP 13761386 A JP13761386 A JP 13761386A JP S62293772 A JPS62293772 A JP S62293772A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
gate electrode
oxide film
gate
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13761386A
Other languages
Japanese (ja)
Inventor
Makio Goto
後藤 万亀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP13761386A priority Critical patent/JPS62293772A/en
Publication of JPS62293772A publication Critical patent/JPS62293772A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4983Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7836Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a significant overlap between the lightly doped extension and the gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To make a semiconductor surface structure relatively flat and reduce resistance of gate wiring material by providing high melting point metal silicide layers on side walls of a polycrystalline silicon gate electrode. CONSTITUTION:Field oxide films 102, a gate oxide film 103 and a polycrystalline silicon layer are formed on a P-type semiconductor substrate 101 and phosphorus is diffused by hot diffusion. Then, after the polycrystalline silicon layer is etched with a resist pattern as a mask to form a gate electrode 104, N-type low concentration diffused layers 105 are formed by ion implantation. Then high melting point metal silicide is applied to the whole surface by sputtering and the whole surface is etched by reactive ion etching to form silicide side walls 107 only on the sides of the gate electrode 104. Then, after annealing is performed, N- type high concentration diffused layers 108 are formed by ion implantation and, after heat annealing is performed, an oxide film 109 for interlayer insulation is formed and contact holes are formed by etching with a resist pattern as a mask and Al wirings 110 are formed.

Description

【発明の詳細な説明】 五 発明の詳細な説明 〔産業上の利用分野〕 本発明はMOS型半導体装置の構造に関する。[Detailed description of the invention] V. Detailed description of the invention [Industrial application field] The present invention relates to the structure of a MOS type semiconductor device.

〔発明の概要〕[Summary of the invention]

本発明け、MOS型半導体装置の構造においてゲート電
極の側壁に高融点金属のケイ化物(以下シリサイドと略
記)を設けることにより、ゲート配線材料の低抵抗化と
ゲート材料の薄膜化を同時に行い、段差の低減をばかろ
ことで、上層配線材料のn線を防ぐとい5効果を提供し
たものである。
According to the present invention, by providing a refractory metal silicide (hereinafter abbreviated as silicide) on the side wall of the gate electrode in the structure of a MOS type semiconductor device, the resistance of the gate wiring material and the thickness of the gate material can be reduced at the same time. By not only reducing the level difference, but also preventing n-line radiation from the upper layer wiring material, this provides five effects.

〔従来の技術〕[Conventional technology]

従来のMOS型半導体装置、%Ky型の構造n面図を算
2図に示す。同図において201け一導電型半導体基板
、2Q21d素子分離用酸化模、203けゲート酸化膜
、204は多結晶シリコン、205け高融点金属ケイ化
物、206け酸化膜サイドウオール、207け低濃度不
純物拡散層、208は高濃度不純物拡散層、209け眉
間絶縁用酸化膜、210け配線材料用dである。
An n-plane view of the structure of a conventional MOS type semiconductor device, %Ky type, is shown in Figure 2. In the same figure, 201 is a single conductivity type semiconductor substrate, 2Q21d is an oxide pattern for element isolation, 203 is a gate oxide film, 204 is a polycrystalline silicon, 205 is a high melting point metal silicide, 206 is a silicon oxide film side wall, and 207 is a low concentration impurity. Diffusion layer 208 is a high concentration impurity diffusion layer, 209 is an oxide film for insulation between the eyebrows, and 210 is for wiring material.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上述の従来技術では、ゲート1!極が多結晶シ
リコン及び金属ケイ化物の二層構造であるため大きな段
差h;生じ、そのため上層のaがalしやすいとい5欠
点b’−あった。
However, in the prior art described above, gate 1! Since the electrode has a two-layer structure of polycrystalline silicon and metal silicide, a large step h; is generated, and therefore, the upper layer a tends to be alkalized.

そこで本発明はこのような問題点を解決するもので、そ
の目的とすることは、多結晶シリコンの側壁に高融点金
属ケイ化物を設けることでより、段差の低減と、ゲート
配線材料の低抵抗化を同時に満たしうる半導体装置の構
造を提供することにある。
The present invention aims to solve these problems, and its purpose is to reduce the level difference and reduce the resistance of the gate wiring material by providing a high melting point metal silicide on the sidewalls of polycrystalline silicon. An object of the present invention is to provide a structure of a semiconductor device that can simultaneously satisfy the following requirements.

〔問題点を解決する念めの手段〕[A precautionary measure to resolve the problem]

本発明の半導体装置け、多結晶シリコンゲート電極ht
側壁に高融点金属ケイ化物を有することを特徴とする。
Semiconductor device of the present invention, polycrystalline silicon gate electrode ht
It is characterized by having a high melting point metal silicide on the side wall.

〔実施例〕〔Example〕

以下図面により詳細に説明する。 This will be explained in detail below with reference to the drawings.

第1図れ)は本発明の半導体装置の構造、第1図の)は
製造方法をあられす断面図であり、工程を追って説明す
る。
FIG. 1) is a cross-sectional view showing the structure of the semiconductor device of the present invention, and FIG. 1) is a cross-sectional view showing the manufacturing method, and the steps will be explained step by step.

工程(1)第1図(b) −1 P型半導体基板101上に素子分離用酸化膜102を形
成した後、ゲート酸化ill 103を熱酸化法で15
0〜200λ形成し、その上だ多結晶シリコンを100
0〜2000人化学的気相成長法で形成し、800〜1
000℃でリンを熱拡散する。次忙レジストパターンを
マスクに前記多結晶シリコンをエツチングし、ゲート電
極104を形成しに後、低濃度リンのイオン注入を行い
N型低濃度拡散層105を形成する。
Step (1) FIG. 1(b) -1 After forming an oxide film 102 for element isolation on a P-type semiconductor substrate 101, a gate oxide ill 103 is formed using a thermal oxidation method.
0 to 200λ is formed, and then polycrystalline silicon is deposited on top of 100λ.
0-2000 people Formed by chemical vapor deposition method, 800-1
Thermal diffusion of phosphorus is carried out at 000°C. The polycrystalline silicon is etched using the busy resist pattern as a mask to form a gate electrode 104, and then low concentration phosphorus ions are implanted to form an N type low concentration diffusion layer 105.

工程(2)  笹1図の)−2 スパッタ法により高融点金属ケイ化物を1000〜20
00A全面に形成する。
Step (2) Bamboo shoots (Fig. 1)-2 Sputtering high melting point metal silicide to 1000 to 20%
Formed on the entire surface of 00A.

工程(3)  fit 1図(b)−3リアクテイブイ
オンで全面をエツチングすることにより、ゲート電極の
側壁部の入に高融点金属ケイ化物の側壁(以下シリナイ
ドサイドウオールと記す)107が形成される!次に9
00〜1000’Cの酸素雰囲気中で7二−ルを行う。
Step (3) fit 1 Figure (b)-3 By etching the entire surface with reactive ions, a high melting point metal silicide sidewall (hereinafter referred to as silicide sidewall) 107 is formed at the entrance of the sidewall of the gate electrode. It will be done! Next 9
A 7-year reaction is carried out in an oxygen atmosphere at 00-1000'C.

その後、高濃度リンのイオン注入を行いN型高濃度拡散
層108を形成する。
Thereafter, high concentration phosphorus ions are implanted to form an N-type high concentration diffusion layer 108.

工程(4)第1図の)−4 熱アニールを行い前記y型低濃度拡散11105及び、
Nm、高濃度拡散層108を活性し次後、層間絶縁用酸
化膜109を化学的気相成長法で4000〜6000λ
形成し、レジストパターンをマスクに前記層間絶縁用酸
化膜109をエツチングし、コンタクトホールを形成し
比後配線材料用A/:  110を形成する。
Step (4) in FIG. 1)-4 Thermal annealing is performed to remove the y-type low concentration diffusion 11105 and
After activating the high concentration diffusion layer 108, an oxide film 109 for interlayer insulation is formed with a thickness of 4000 to 6000λ by chemical vapor deposition.
Then, using the resist pattern as a mask, the interlayer insulating oxide film 109 is etched to form a contact hole, and then a wiring material A/: 110 is formed.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、木発eAKよればゲート配線材料は
側壁のシリサイドにより低抵抗化がはかられるtめ、従
来のようなゲート電極による段差はかなり低減される。
As described above, according to the Kihoku eAK, the resistance of the gate wiring material is lowered by the silicide on the side walls, so the step difference caused by the gate electrode as in the conventional method is considerably reduced.

これにより上層配線の断線の発生h;おさ先られるとい
う効果を有する。
This has the effect of preventing the occurrence of disconnection in the upper layer wiring.

さらに従来の2DDp造をもつトランジスタ製造工程に
比較し、工程を削減できるという効果も有する。
Furthermore, it has the effect of reducing the number of steps compared to the conventional 2DDp transistor manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図れ)は本発明の半導体装置の構造を表わす断面図
、1111図(b)の(1)〜(4)F′iその製造方
法を表わす主要l!F1面図。 第2図は、従来の半導体装置の構造を表わす断面図。 101・・・・・・P型半導体基板 102・・・・・・素子分離用酸化膜 103・・・・・・ゲート酸化膜 104・−・・・・ゲート1!極 105・・・・・・N型低濃度拡散層 106・・・・・・高融点金属ケイ化物107・・・・
・・シリナイドサイドウオール108・・・・・・N型
高濃度拡散層 109・・・・・・層間絶縁用酸化膜 110・・・・・・配線材料用a 201・・・・・・P型半導体基板 202・・・・・・素子分離用酸化膜 203・・・・・・ゲート酸化膜 204・・・・・・ゲート電極算1層(多結晶シリコン
)205・・・・・・ゲート1!甑第2層(高融点金属
ケイ化物)206・・・・・・酸化膜サイドウオール2
07・・・・・・N型低濃度不純物拡散層208・・・
・・・N型高濃度不純物拡散屡209・・・・・・層間
絶縁用酸化膜 210・・・・・・配線材料用a 以  上 出願人  セイコーエプソン株式会社 X1ol (1ン 7゜7 す0 第1図(b)
FIG. 1) is a cross-sectional view showing the structure of the semiconductor device of the present invention, and (1) to (4) F'i in FIG. F1 view. FIG. 2 is a cross-sectional view showing the structure of a conventional semiconductor device. 101...P-type semiconductor substrate 102...Element isolation oxide film 103...Gate oxide film 104...Gate 1! Pole 105...N-type low concentration diffusion layer 106...High melting point metal silicide 107...
... Silinide sidewall 108 ... N-type high concentration diffusion layer 109 ... Oxide film for interlayer insulation 110 ... Wiring material a 201 ... P Type semiconductor substrate 202...Element isolation oxide film 203...Gate oxide film 204...Gate electrode total 1 layer (polycrystalline silicon) 205...Gate 1! Second layer (high melting point metal silicide) 206... Oxide film side wall 2
07... N-type low concentration impurity diffusion layer 208...
...N-type high concentration impurity diffusion layer 209...Oxide film for interlayer insulation 210...For wiring material a Applicant: Seiko Epson Corporation Figure 1(b)

Claims (1)

【特許請求の範囲】[Claims] 多結晶シリコンをゲート電極に用いているMOS型半導
体装置において、前記多結晶シリコンゲート電極が側壁
に高融点金属ケイ化物を有することを特徴とする半導体
装置。
1. A MOS semiconductor device using polycrystalline silicon as a gate electrode, wherein the polycrystalline silicon gate electrode has a high melting point metal silicide on its sidewalls.
JP13761386A 1986-06-13 1986-06-13 Semiconductor device Pending JPS62293772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13761386A JPS62293772A (en) 1986-06-13 1986-06-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13761386A JPS62293772A (en) 1986-06-13 1986-06-13 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62293772A true JPS62293772A (en) 1987-12-21

Family

ID=15202772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13761386A Pending JPS62293772A (en) 1986-06-13 1986-06-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62293772A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115377A (en) * 1986-11-04 1988-05-19 Matsushita Electronics Corp Manufacture of semiconductor device
US5023679A (en) * 1988-06-30 1991-06-11 Kabushiki Kaisha Toshiba Semiconductor device
US5031008A (en) * 1989-03-10 1991-07-09 Kabushiki Kaisha Toshiba MOSFET transistor
KR20000073372A (en) * 1999-05-10 2000-12-05 김영환 Fabricating method of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115377A (en) * 1986-11-04 1988-05-19 Matsushita Electronics Corp Manufacture of semiconductor device
US5023679A (en) * 1988-06-30 1991-06-11 Kabushiki Kaisha Toshiba Semiconductor device
US5031008A (en) * 1989-03-10 1991-07-09 Kabushiki Kaisha Toshiba MOSFET transistor
KR20000073372A (en) * 1999-05-10 2000-12-05 김영환 Fabricating method of semiconductor device

Similar Documents

Publication Publication Date Title
JPH0297027A (en) Semiconductor device and manufacture thereof
JPS6072272A (en) Manufacture of semiconductor device
JPS61214555A (en) Semiconductor device
JPS607389B2 (en) Manufacturing method of semiconductor device
JPS5826184B2 (en) Zetsuen Gate Denkai Kouka Transistor No.
JPS62293772A (en) Semiconductor device
JPH0653492A (en) Semiconductor device and fabrication thereof
KR100774114B1 (en) Semiconductor device for integrated injection logic cell and process for fabricating the same
JPH039572A (en) Manufacture of semiconductor device
JP2707536B2 (en) Method for manufacturing semiconductor device
JPH0712085B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JPS6028141B2 (en) Manufacturing method for semiconductor devices
KR960011816B1 (en) Method of making a capacitor in semiconductor device
KR960000518B1 (en) Mosfet manufacturing process
JPH06132523A (en) Manufacture of mos transistor
JPH01298758A (en) Manufacture of semiconductor device
JPS6154661A (en) Manufacture of semiconductor device
JPH04125958A (en) Thin film capacitor
JPH01308066A (en) Manufacture of semiconductor device
JPS6188543A (en) Manufacture of semiconductor device
JPH02194653A (en) Mis transistor
JPH0536702A (en) Semiconductor device
JPS61179575A (en) Manufacture of semiconductor device
JPH06104428A (en) Semiconductor device and its manufacture
JPS61251164A (en) Manufacture of bi-mis integrated circuit