JPS62294104A - Production of porous metallic body - Google Patents
Production of porous metallic bodyInfo
- Publication number
- JPS62294104A JPS62294104A JP13865486A JP13865486A JPS62294104A JP S62294104 A JPS62294104 A JP S62294104A JP 13865486 A JP13865486 A JP 13865486A JP 13865486 A JP13865486 A JP 13865486A JP S62294104 A JPS62294104 A JP S62294104A
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- belt conveyor
- porosity
- porous
- aspect ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 229910052751 metal Inorganic materials 0.000 claims abstract description 27
- 239000002184 metal Substances 0.000 claims abstract description 27
- 239000000835 fiber Substances 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000002074 melt spinning Methods 0.000 claims abstract 2
- 238000003825 pressing Methods 0.000 abstract description 3
- 229920000914 Metallic fiber Polymers 0.000 abstract 4
- 238000000151 deposition Methods 0.000 abstract 1
- 229910052782 aluminium Inorganic materials 0.000 description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 16
- 239000000463 material Substances 0.000 description 4
- 239000011358 absorbing material Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009770 conventional sintering Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
〈産業上の利用分野〉
本発明は吸音材、電磁波シールド材料等幅広い用途を有
する多孔質金属体の製造方法に関するものである。[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a porous metal body that has a wide range of uses such as sound absorbing materials and electromagnetic shielding materials.
〈従来の技術及びその問題点〉
耐熱性に富み、熱及び電気伝導性が良好な多孔質金属体
は、吸音材や電磁波シールド材を初め多くの用途を有す
る。従来この多孔質金属体は焼結法によって得られてい
た。焼結法による製造にあっては、その出発原料(よ粉
末あるいはアスペクト比の小さい所謂短繊維しか採用す
る事が出来ないので得られる多孔質金属体の空隙率は高
々50%位であまり大きくは出来ず、しかも空隙率の制
御が困難であった。更に焼結法によって得られる多孔質
金属体は半剛体的で屈曲性がないのでその形状を自由に
変えられないので吸音材等に使用する際に不便である。<Prior art and its problems> Porous metal bodies that are highly heat resistant and have good thermal and electrical conductivity have many uses including sound absorbing materials and electromagnetic shielding materials. Conventionally, this porous metal body has been obtained by a sintering method. In manufacturing by the sintering method, only starting materials (such as fine powder or so-called short fibers with a small aspect ratio) can be used, so the porosity of the resulting porous metal body is about 50% at most, and it cannot be too large. Moreover, it was difficult to control the porosity.Furthermore, the porous metal body obtained by the sintering method is semi-rigid and has no flexibility, so its shape cannot be changed freely, so it is used for sound absorbing materials etc. This is extremely inconvenient.
〈問題点を解決する為の手段〉
本発明では上記諸問題を解決する為に金属繊維をプレス
成形のみで成形体となす手段を採用するものであり、そ
の要旨は溶融紡糸法により、直径250μm以下で、ア
スペクト比が1000以上の金属繊維を全体の90%以
上含む長金属繊維群を得、該長金属繊維群をベルトコン
ベアの一端に落下堆積させ、ベルトコンベアの他端に於
いてプレス成形をなし空隙率が30〜90%の多孔質金
属体を製造する方法である。<Means for Solving the Problems> In order to solve the above-mentioned problems, the present invention adopts a method of forming metal fibers into a molded body only by press molding. In the following, a long metal fiber group containing 90% or more of the total metal fibers with an aspect ratio of 1000 or more is obtained, the long metal fiber group is dropped and deposited on one end of a belt conveyor, and press-formed at the other end of the belt conveyor. This is a method for producing a porous metal body having a porosity of 30 to 90%.
本発明方法で用いる金属繊維の素材は、特に限定される
事はないが、通常はアルミニウムや亜鉛及びそれらの合
金の如き低融点のものを用いる。The material for the metal fibers used in the method of the present invention is not particularly limited, but materials with low melting points such as aluminum, zinc, and alloys thereof are usually used.
この金属繊維の製造は先に本件出願人が出願した特開昭
59−82411号公報で示される方法によって行なう
が、乙の公報に示す様に大気中で急冷凝固させる方法を
採用する場合には、その直径が250μmより大であれ
ばその断面が円形を保持しな(なるので直径を250μ
m以下とする。又金属繊維のアスペクト比(長さ一直径
)は大である程、金属繊維同志がからみつき易く好まし
いものであり、通常のプレス成形のみで十分に成形され
る限度としてアスペクト比が1000以上のものが全体
の90%以上を占める必要がある事を確認した。This metal fiber is manufactured by the method disclosed in Japanese Patent Application Laid-open No. 59-82411 previously filed by the applicant, but when adopting the method of rapid solidification in the atmosphere as shown in the publication of , if its diameter is larger than 250 μm, its cross section will not maintain a circular shape (so the diameter should be set to 250 μm).
m or less. In addition, the larger the aspect ratio (length to diameter) of the metal fibers, the more easily the metal fibers become entangled with each other. It was confirmed that it needs to account for more than 90% of the total.
次に本発明によって得られる多孔質金属体の空隙率につ
いては、それを30%より小とするにはプレス成形時の
圧力が過大になり過ぎるし、逆に90%を越えれば多孔
質金属体それ自体が形を保てなくなるので30〜90%
とした。Next, regarding the porosity of the porous metal body obtained by the present invention, if it is less than 30%, the pressure during press molding will be too excessive, and if it exceeds 90%, the porous metal body will be 30-90% because it cannot keep its shape.
And so.
〈実施例及び作用〉
溶融状のアルミニウムを用いて、特開昭59−8241
1号公報にて示される方法を用い、直径100μm。<Example and operation> Using molten aluminum, JP-A-59-8241
Using the method shown in Publication No. 1, the diameter is 100 μm.
m維の平均長さ64cmのアルミニウム繊維を製造した
。この様にして得たアルミニウム繊維を第1図に示す様
な装置を用いてロールプレスにより多孔質金属体を製造
した。即ち上記アルミニウム繊維(1)を、送り速度1
22cm/winで動いているベルトコンベア(2)上
に、毎分200 gの割合で連続的に落下させ、ベルト
コンベア(2)上に幅45cmのアルミニウム繊維帯を
形成し、ベルトコンベア(2)の終端に於いてプレスロ
ール(3)を用いてプレスし厚さ1mmの多孔質アルミ
ニウム体となした。Aluminum fibers with an average fiber length of 64 cm were produced. A porous metal body was manufactured from the aluminum fiber thus obtained by roll pressing using an apparatus as shown in FIG. That is, the aluminum fiber (1) is fed at a feed rate of 1
It is continuously dropped at a rate of 200 g per minute onto a belt conveyor (2) moving at 22 cm/win to form an aluminum fiber band with a width of 45 cm on the belt conveyor (2). At the end of the process, it was pressed using a press roll (3) to form a porous aluminum body with a thickness of 1 mm.
なお第1図中(4)はガイドロール、(5)は巻取りロ
ールを示す。Note that (4) in FIG. 1 indicates a guide roll, and (5) indicates a winding roll.
この実施例により得られた多孔質アルミニウム体は空隙
率87%、比重0,36であり、フェルトの様なしなや
かさと和紙の様な強さを呈しており、市販のハサミで容
易に切断する事が出来た。この多孔質アルミニウム体(
200X 200X 1mm)とエポキシ樹脂の複合材
(200X 200X 3n+m)の電磁波シールド特
性の測定データを第2図に示す。電界シールド減衰値は
70M[(z以上では40dB以上あり、又磁界シール
ド減衰値は150MHz以上では40dB以上あり共に
淡れている事が判る。The porous aluminum body obtained in this example has a porosity of 87% and a specific gravity of 0.36, exhibits the flexibility of felt and the strength of Japanese paper, and can be easily cut with commercially available scissors. was completed. This porous aluminum body (
Figure 2 shows the measurement data of the electromagnetic shielding characteristics of the composite material (200X 200X 1mm) and epoxy resin (200X 200X 3n+m). It can be seen that the electric field shield attenuation value is 40 dB or more above 70 M[(z), and the magnetic field shield attenuation value is 40 dB or more above 150 MHz, both of which are weak.
又上記アルミニウム繊維(1)を送り速度32cm/m
inで動いているベルトコンベア(2) 上ニ毎分70
0 gの割合で連続的に落下させ、ベルトコンベア(2
)上に幅45cmのアルミニウム繊維帯を形成し、ベル
トコンベア(2)の終端に於いてプレスロール(3)を
用いてプレスし厚さ311I+1の多孔質アルミニウム
体となした。Further, the above aluminum fiber (1) was fed at a feeding speed of 32 cm/m.
Belt conveyor (2) running at 70 per minute
It was dropped continuously at a rate of 0 g, and transferred to a belt conveyor (2
) was formed with an aluminum fiber band having a width of 45 cm and pressed using a press roll (3) at the end of the belt conveyor (2) to form a porous aluminum body having a thickness of 311I+1.
この実施例により得られた多孔質アルミニウム体は、空
隙率40%、比重1.62であった。The porous aluminum body obtained in this example had a porosity of 40% and a specific gravity of 1.62.
この多孔質アルミニウム体についての吸音特性の測定デ
ータを第3図に示す。Figure 3 shows measurement data of the sound absorption properties of this porous aluminum body.
第3図から背面空気層25mmの場合で550〜190
0112域で、背面空気層50mmの場合で350〜1
300)!z域で60%以上の吸音率がある事が判る。From Figure 3, it is 550 to 190 when the back air layer is 25 mm.
0112 area, 350 to 1 when the back air layer is 50 mm
300)! It can be seen that there is a sound absorption coefficient of 60% or more in the z region.
なお上記実施例ではプレス成形にロールプレスを採用し
たが、ロールプレスに限る事なくどの様なプレスを採用
してもよい。In the above embodiments, a roll press was used for press forming, but any type of press may be used without being limited to a roll press.
〈発明の効果〉
以上述べて来た如く、本発明方法によれば従来の焼結法
がバッチ式であったのに比べ、金属繊維の製造から多孔
質金属体の製造までが連続的に行なえるので量産性に向
いている。又本発明ではアスペクト比が大なる長金属繊
維を原料としているので単にプレスをするのみで金属繊
維同志がからみ合って成形体となるので、金属ta維の
直径と長さあるいはプレス成形圧を調整する事で、その
空隙率を容易に制御する事が出来、使用目的に適合した
製品となし得るという効果がある。<Effects of the Invention> As described above, according to the method of the present invention, the process from manufacturing metal fibers to manufacturing porous metal bodies can be carried out continuously, compared to the batch method of conventional sintering methods. Therefore, it is suitable for mass production. In addition, in the present invention, since long metal fibers with a large aspect ratio are used as raw materials, the metal fibers are entangled with each other to form a molded product simply by pressing, so the diameter and length of the metal TA fibers or the press forming pressure can be adjusted. By doing so, the porosity can be easily controlled and the product can be made suitable for the purpose of use.
第1図は本発明の実施例で使用した装置の概要説明図、
第2図及び第3図はそれぞれ同実施例で得た多孔質アル
ミニウム体についての電磁波シールド特性を示すグラフ
及び吸音特性を示すグラフ。
図中、 (1)゛アルミニウム繊維(2)ベル
トコンベア
(3)゛プレスロール
(4)ニガイドロール
(5)巻取りロール
第2図
周波大父 (MHz)
第3図
+25 250 500 1000 2000 4
000中/C,1周波数(HzlFIG. 1 is a schematic explanatory diagram of the apparatus used in the embodiment of the present invention;
FIGS. 2 and 3 are graphs showing electromagnetic shielding characteristics and sound absorption characteristics, respectively, of the porous aluminum body obtained in the same example. In the figure: (1) Aluminum fiber (2) Belt conveyor (3) Press roll (4) Ni guide roll (5) Take-up roll
000/C, 1 frequency (Hzl
Claims (1)
クト比が1000以上の金属繊維を全体の90%以上含
む長金属繊維群を得、該長金属繊維群をベルトコンベア
の一端に落下堆積させ、ベルトコンベアの他端に於いて
プレス成形をなし空隙率が30〜90%の多孔質金属体
を製造する方法。1. A long metal fiber group containing 90% or more of the total metal fibers with a diameter of 250 μm or less and an aspect ratio of 1000 or more is obtained by a melt spinning method, and the long metal fiber group is dropped and deposited on one end of a belt conveyor. A method of manufacturing a porous metal body having a porosity of 30 to 90% by press forming at the other end of the conveyor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13865486A JPS62294104A (en) | 1986-06-13 | 1986-06-13 | Production of porous metallic body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13865486A JPS62294104A (en) | 1986-06-13 | 1986-06-13 | Production of porous metallic body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62294104A true JPS62294104A (en) | 1987-12-21 |
Family
ID=15227030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13865486A Pending JPS62294104A (en) | 1986-06-13 | 1986-06-13 | Production of porous metallic body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62294104A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003008690A1 (en) * | 2001-07-18 | 2003-01-30 | Kabushiki Kaisha Unix | Metallic fiber nonwoven fabric manufacturing apparatus, its manufacturing method, and laminated aluminum material manufacturing method |
EP3367486A4 (en) * | 2015-10-20 | 2019-07-24 | I&T New Materials Co., Ltd. | Aluminum nonwoven fiber member for collector of power storage device, method for manufacturing same, electrode in which aforementioned aluminum nonwoven fiber member is used, and method for manufacturing same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50152198A (en) * | 1974-05-29 | 1975-12-06 | ||
JPS541832A (en) * | 1977-06-07 | 1979-01-09 | Matsushita Electric Ind Co Ltd | Method of making carbon coated electrode for cell |
-
1986
- 1986-06-13 JP JP13865486A patent/JPS62294104A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50152198A (en) * | 1974-05-29 | 1975-12-06 | ||
JPS541832A (en) * | 1977-06-07 | 1979-01-09 | Matsushita Electric Ind Co Ltd | Method of making carbon coated electrode for cell |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003008690A1 (en) * | 2001-07-18 | 2003-01-30 | Kabushiki Kaisha Unix | Metallic fiber nonwoven fabric manufacturing apparatus, its manufacturing method, and laminated aluminum material manufacturing method |
KR100540819B1 (en) * | 2001-07-18 | 2006-01-10 | 가부시끼가이샤유닉스 | metallic fiber nonwoven fabric manufacturing apparatus, its manufacturing method, and laminated aluminum material manufactruing method |
CN1316090C (en) * | 2001-07-18 | 2007-05-16 | 株式会社尤尼克斯 | Metallic fiber nonwoven fabric manufacturing apparatus, its manufacturing method and laminated aluminium material manufacturing method |
US7220292B2 (en) | 2001-07-18 | 2007-05-22 | Kabushiki Kaisha Unix | Metallic fiber nonwoven fabric manufacturing apparatus, its manufacturing method and laminated aluminum material manufacturing method |
EP3367486A4 (en) * | 2015-10-20 | 2019-07-24 | I&T New Materials Co., Ltd. | Aluminum nonwoven fiber member for collector of power storage device, method for manufacturing same, electrode in which aforementioned aluminum nonwoven fiber member is used, and method for manufacturing same |
US10693142B2 (en) | 2015-10-20 | 2020-06-23 | I & T New Materials Co., Ltd. | Aluminum nonwoven fiber material for current collector of electric power storage equipment, manufacturing method thereof, electrode utilizing aluminum nonwoven fiber material and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SU1724019A3 (en) | Paper-making machine press roller | |
US3432295A (en) | Method for making oriented fiber or whisker composites | |
KR0149065B1 (en) | Process for producing an amorphous alloy ribbon | |
JPS62294104A (en) | Production of porous metallic body | |
EP0048571A2 (en) | Pencil lead, and methods and apparatus for its manufacture | |
JPH08283919A (en) | Iron-base amorphous alloy foil and its production | |
JP3179245B2 (en) | Method of manufacturing sendust foil strip | |
CN118668105A (en) | Aluminum-based bulk amorphous alloy and preparation method and application thereof | |
JP2001138013A (en) | Method of manufacturing porous metallic material | |
JPS63104671A (en) | Metal coating nozzle | |
JPH03180401A (en) | Manufacture of fine metallic ball having uniform size | |
JPH07100597A (en) | High toughness amorphous alloy strip and production thereof | |
GB2214459A (en) | Reinforced composites made by spray casting | |
JPH01150444A (en) | Metallic fiber having directional dendritic structure and production thereof | |
JPH01233407A (en) | Ferrule for connecting elliptic through hole type optical fiber | |
JPH01264116A (en) | Manufacture of oxide superconducting wire rod | |
JPS63130733A (en) | Manufacture of copper-base composite material | |
JPH01170554A (en) | Method and nozzle for manufacturing metal thin strip | |
JPS6072647A (en) | Production of clad material | |
JPS6072649A (en) | Producing apparatus for quickly cooled light-gauge metallic strip | |
SU933260A1 (en) | Method of forming powder articles | |
JPS5825847A (en) | Production of composite body | |
JPS61238447A (en) | Production of porous nickel or nickel alloy foil or thin strip | |
KR100415323B1 (en) | Method for Manufacturing Billet Using Salt Solutions | |
JPS6132110B2 (en) |