Nothing Special   »   [go: up one dir, main page]

JPS62281934A - Static magnetic field magnet - Google Patents

Static magnetic field magnet

Info

Publication number
JPS62281934A
JPS62281934A JP61125376A JP12537686A JPS62281934A JP S62281934 A JPS62281934 A JP S62281934A JP 61125376 A JP61125376 A JP 61125376A JP 12537686 A JP12537686 A JP 12537686A JP S62281934 A JPS62281934 A JP S62281934A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
magnetic flux
coil
generating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61125376A
Other languages
Japanese (ja)
Inventor
山口 珪紀
井上 勇二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP61125376A priority Critical patent/JPS62281934A/en
Publication of JPS62281934A publication Critical patent/JPS62281934A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、核磁気共鳴コンピュータトモグラフィ(NM
R−C,Tと略す)に用いられる静磁場発生用のマグネ
ットに関し、更に詳しくは、磁場発生手段に磁気抵抗の
小さい磁性体を組合せて磁気回路を構成してなる静磁場
マグネットに関する。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to nuclear magnetic resonance computed tomography (NM
The present invention relates to a magnet for generating a static magnetic field used in a magnetic field (abbreviated as R-C, T), and more specifically to a static magnetic field magnet in which a magnetic circuit is constructed by combining a magnetic field generating means with a magnetic material having low magnetic resistance.

(従来の技術) NMR−CTは、NMR現象を利用して、被検体におけ
る特定原子核分布等を被検体外部より知るようにした検
査装置である。このようなNMR−CTでは、NMR信
号を生じさせるために、被検体に、0.04〜1.5テ
スラー(Tesla>程度の比較的大きな均一静磁場を
与える必要がある。
(Prior Art) NMR-CT is an inspection device that utilizes NMR phenomena to determine the distribution of specific atomic nuclei in a subject from outside the subject. In such NMR-CT, in order to generate an NMR signal, it is necessary to apply a relatively large uniform static magnetic field of about 0.04 to 1.5 Tesla to the subject.

従来より、このような均一静磁場を発生する磁場発生手
段としては、常伝導形電田石、超伝導形電磁石、永久磁
石等が用いられている。又、これらの磁場発生手段には
、(a、)漏洩磁界を小さく、周囲への影響を軽減する
こと、(b )磁場エンハンス効果によって中心磁場強
度を大きくすること等の目的で、鉄等の磁性体による磁
気シールドを施すことが行われている。
Conventionally, normal conductive electromagnets, superconducting electromagnets, permanent magnets, and the like have been used as magnetic field generating means for generating such a uniform static magnetic field. In addition, these magnetic field generating means include materials such as iron for the purposes of (a) reducing the leakage magnetic field and reducing the influence on the surroundings, and (b) increasing the central magnetic field strength by the magnetic field enhancement effect. Magnetic shielding using a magnetic material is being applied.

この磁気シールドは、これまでイメージングエリア内の
磁場均一性の乱れを最小限に抑えるために、円筒形等、
対称性を考慮してその形状が決められていた。
This magnetic shield has traditionally been designed with a cylindrical shape, etc. to minimize disturbances in the magnetic field homogeneity within the imaging area.
Its shape was determined with symmetry in mind.

(発明が解決しようとする問題点) しかしながら、現在実用化されている磁気シールドの形
状は、漏洩磁界を小さくする面と、磁性体による磁場エ
ンハンス効果を高くする面から必ずしも満足できるもの
ではなかった。
(Problem to be solved by the invention) However, the shape of the magnetic shield currently in practical use is not necessarily satisfactory in terms of reducing the leakage magnetic field and increasing the magnetic field enhancement effect of the magnetic material. .

本発明はこのような事情に鑑みてなされたもので、その
目的は、シールド効果を高めると共に、磁場エンハンス
効果を高くできる静磁場マグネットを実現することにあ
る。
The present invention has been made in view of the above circumstances, and its purpose is to realize a static magnetic field magnet that can enhance the shielding effect and the magnetic field enhancement effect.

(問題点を解決するための手段) 前記した問題点を解決する本発明の静磁場マグネットは
、磁場発生手段と、この磁場発生手段を外側から覆うよ
うに設置され両端に磁気回路を形成するフランジ部を有
する磁気シールド筒部と、前記フランジ部に設けられ先
端部が前記磁場発生手段の内側に入り込むように位置さ
れる磁性体の磁束集束部とから成ることを特徴とするも
のである。
(Means for Solving the Problems) A static magnetic field magnet of the present invention that solves the above-mentioned problems includes a magnetic field generating means and a flange installed to cover the magnetic field generating means from the outside and forming a magnetic circuit at both ends. The present invention is characterized in that it comprises a magnetic shield cylindrical part having a section, and a magnetic flux concentrating part of a magnetic material provided on the flange part and positioned so that its tip end enters inside the magnetic field generating means.

(作用) 磁場発生手段の内側に入り込むように先端部が設置され
る磁束集束部は、磁気回路を形成する磁気シールド筒部
に磁束を効率良く集める作用をし、漏洩磁束を減少させ
、中心磁場強度を強くする働きをする。
(Function) The magnetic flux concentrator whose tip is installed so as to enter inside the magnetic field generating means has the function of efficiently concentrating magnetic flux in the magnetic shield cylinder forming the magnetic circuit, reducing leakage magnetic flux, and increasing the central magnetic field. It works to increase strength.

(実施例) 以下、図面を用いて本発明の実施例を詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明の一実施例を示す概略構成図、第2図
はその斜視図である。ここでは、磁場発生手段として常
伝導型4コイルからなる電磁石を用いると共に、これら
と磁気回路を形成し、且つ、磁気シールド−を行うため
の磁性体を円筒形で構成したものを例示する。
FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention, and FIG. 2 is a perspective view thereof. Here, an example is shown in which an electromagnet consisting of four normally conductive coils is used as the magnetic field generating means, and a cylindrical magnetic body is used to form a magnetic circuit with these and provide magnetic shielding.

これらの図において、1は何れも円環型のコイルで例え
ば銅線をエポキシ樹脂で接着して固化して構成されてお
り、図示してない保持枠等によって保持されている。2
は各コイル1を外側から覆うように設置された磁気回路
を形成する円筒形磁気シールド部である。この円筒形磁
気シールド部2は、鉄のような磁性体で構成されるもの
であって、前述したように漏洩磁界を減らすことと、磁
場強度をエンハンスするために設けられている。
In these figures, 1 is an annular coil made of, for example, copper wire bonded and solidified with epoxy resin, and is held by a holding frame (not shown) or the like. 2
is a cylindrical magnetic shield part that forms a magnetic circuit and is installed so as to cover each coil 1 from the outside. This cylindrical magnetic shield section 2 is made of a magnetic material such as iron, and is provided to reduce leakage magnetic field and enhance magnetic field strength as described above.

3はこの円筒形磁気シールド部2の両端部に設けた磁性
体のフランジ部、4は本発明で特徴としている磁束集束
部で、フランジ部3に設けられており、フランジ部3か
らコイル1の内側にその先端部がΔaだけ入り込んで配
置されている。この磁束集束部4は鉄等の磁性体で構成
されており、ここでは、円環状となっている。
3 is a magnetic flange part provided at both ends of this cylindrical magnetic shield part 2; 4 is a magnetic flux concentrating part, which is a feature of the present invention; The tip thereof is placed inside by a distance Δa. The magnetic flux concentrator 4 is made of a magnetic material such as iron, and has an annular shape here.

このように構成した静磁場マグネットの動作を説明すれ
ば、以下の通りである。
The operation of the static magnetic field magnet configured as described above will be explained as follows.

はじめに、第3図に、常伝導4コイル1が作る磁場の磁
束線図を示す。ここではコイル断面図の1/4象現のみ
の様子を表わすが他の象限は上下。
First, FIG. 3 shows a magnetic flux line diagram of the magnetic field created by the four normally conducting coils 1. Here, only the 1/4 quadrant of the coil cross section is shown, but the other quadrants are above and below.

左右対称となることから容易に理解されよう。This can be easily understood from the fact that it is bilaterally symmetrical.

シールド部材が無い場合、第3図に示すように常伝導4
コイル1が作る!!場の磁束線は、コイルの外側方向に
広く分布している。
If there is no shielding member, normal conduction 4 as shown in Figure 3.
Coil 1 makes it! ! The field flux lines are widely distributed in the outward direction of the coil.

次に、第4図に、磁束集束部4を有する磁気シールド部
2を施した本発明装置における磁束線図を示す。ここで
は磁束集束部4.フランジ部3及び磁気シールド部2は
、何れも鉄で構成される磁性体が用いられている。各コ
イル1から出た磁束線は磁気シールド部2から外部領域
へ出るものは殆どなく、又、コイル1の内側の磁束線は
、磁束集束部4に集まることが認められる。
Next, FIG. 4 shows a magnetic flux line diagram in an apparatus of the present invention provided with a magnetic shield section 2 having a magnetic flux concentrating section 4. Here, the magnetic flux concentrator 4. The flange portion 3 and the magnetic shield portion 2 are both made of magnetic material made of iron. It is recognized that almost none of the magnetic flux lines coming out of each coil 1 exits from the magnetic shield part 2 to the outside area, and the magnetic flux lines inside the coil 1 gather in the magnetic flux concentrating part 4.

第3図と第4図との比較から、磁気シールド部2を配置
させることによる一般的な効果が分かる。
A comparison between FIG. 3 and FIG. 4 shows the general effect of arranging the magnetic shield section 2.

続いて、第5図は、本発明装置における磁束集束部4の
先端部を、フランジ3からコイル1の内側に入り込ませ
る長さΔlを種々変えた場合、コイル1の中心磁場の値
がどれ程エンハンスされたかを示す線図である。ここで
磁束集束部4をコイル1の内側に入り込ませる長さΔ!
は、第6図に示すように、磁気シールド部2の中心半径
をRaとし、このRaを規格化して中心IjI10から
のZ輪方向位諧を2とし、Z/Raで表わしている。
Next, FIG. 5 shows how the value of the central magnetic field of the coil 1 changes when the length Δl of the tip of the magnetic flux concentrator 4 in the device of the present invention that enters the inside of the coil 1 from the flange 3 is varied. FIG. 4 is a diagram showing whether the image is enhanced. Here, the length Δ that allows the magnetic flux concentrator 4 to enter inside the coil 1!
As shown in FIG. 6, the central radius of the magnetic shielding portion 2 is Ra, and this Ra is normalized to set the Z wheel direction scale from the center IjI10 to 2, which is expressed as Z/Ra.

第5図において、Z/Ra−1,0は、磁束集束部4が
無い状態であり、この時のエンハンス度は25%程度で
あるのに対し、磁束集束部4を設け、その先端部をコイ
ル1の内側に入り込ませることによって、エンハンス度
は次第に増大し、Z/Ra =0.4近辺、即ち、磁束
集束部4の先端部をフランジ部3からΔl−0.6Ra
付近まで内側に入り込ませると、エンハンス度は52%
程度にもなり、最も効果が顕著になる。
In FIG. 5, Z/Ra-1,0 is a state without the magnetic flux concentrator 4, and the degree of enhancement at this time is about 25%, whereas the magnetic flux concentrator 4 is provided and its tip is By entering the inside of the coil 1, the degree of enhancement gradually increases, and the degree of enhancement is gradually increased to around Z/Ra = 0.4, that is, the tip of the magnetic flux concentrating part 4 is moved from the flange part 3 to Δl-0.6Ra.
When it goes inward to the vicinity, the enhancement degree is 52%
The effect is most noticeable when it comes to a certain degree.

尚、エンハンス度は、磁性体の無い場合のコイル中心!
i場値をBo、!i磁性体有る場合のコイル中心磁場圃
をBIllとした時、 エンハンス度−1oox (Bit −Bo ) /B
In addition, the enhancement degree is the center of the coil when there is no magnetic material!
The i field value is Bo,! When the coil center magnetic field with magnetic material is BIll, enhancement degree -1oox (Bit -Bo) /B
.

(%) で表わされるものとする。(%) Let it be expressed as .

第7回は、コイル中心磁場を、0.3テスラーとした時
の漏洩EfiPil(ここでは5Gaussライン)を
示す線図である。(イ)は磁気シールド部2が無い場合
、(ロ)は磁気シールド部2及びフランジ部3を設けた
場合、(ハ)は本発明装置の場合であって、磁気シール
ド部2及びフランジ部3を設けると共に、先端部がコイ
ル1の内側に入り込む磁束集束部4を設けた場合である
The seventh is a diagram showing leakage EfiPil (here, 5 Gauss line) when the coil center magnetic field is set to 0.3 Tesla. (A) is the case where the magnetic shield part 2 is not provided, (B) is the case where the magnetic shield part 2 and the flange part 3 are provided, and (C) is the case of the device of the present invention, where the magnetic shield part 2 and the flange part 3 are provided. This is a case in which a magnetic flux concentrator 4 whose tip end enters inside the coil 1 is provided.

コイル1の内側に先端部が入り込む磁束集束部4を設け
たことによって、漏洩磁束が減少していることが良く分
かる。
It is clearly seen that the leakage magnetic flux is reduced by providing the magnetic flux concentrator 4 whose tip end enters inside the coil 1.

尚、上述した実施例は、磁場発生手段として常伝導コイ
ルを用いたが、超伝導コイル或いは永久磁石を用いても
よい。又、磁気シールド部2は円筒型のものを用いたが
、これに限らず角筒型でもよい。
In addition, although the above-mentioned embodiment used a normal conducting coil as a magnetic field generating means, a superconducting coil or a permanent magnet may be used. Moreover, although the magnetic shield part 2 is of a cylindrical shape, it is not limited to this and may be of a rectangular cylinder shape.

(発明の効果) 以上説明したように、本発明によれば、磁場発生手段の
内側に入り込むように先端部が設置される磁束集束部は
、磁気回路を形成しているフランジ部を介して磁気シー
ルド筒部に、磁束を効率良く集める働きをするもので、
磁気シールド効果を高くすることができ、又、磁場エン
ハンス効果を高めることができる。このことは、必要な
大きさの中心磁場を得るために、磁場発生手段として電
磁石の場合であれば、消費電力を少なくすることができ
ることにつながり、又、永久磁石の場合であれば磁極の
重畳を小さくできることにつながるという実用的な効果
がある。
(Effects of the Invention) As explained above, according to the present invention, the magnetic flux concentrating portion whose tip portion is installed so as to enter inside the magnetic field generating means generates a magnetic flux through the flange portion forming the magnetic circuit. It works to efficiently collect magnetic flux in the shield cylinder.
The magnetic shielding effect can be enhanced, and the magnetic field enhancement effect can also be enhanced. This means that in order to obtain a central magnetic field of the required magnitude, if an electromagnet is used as the magnetic field generating means, power consumption can be reduced, and if a permanent magnet is used, the magnetic poles can be superimposed. This has the practical effect of making it smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概略構成図、第2図は
その斜視図、第3図は常伝導4コイルが作る磁場の磁束
線図、第4図は本発明装置における磁束線図、第5図は
本発明¥R置において磁束集束部の先端部位置とエンハ
ンス度との関係を示す線図、第6図は第5図における磁
束集束部の先端部位置の説明図、第7図はコイル中心磁
場を0゜3テスラーとした時の、各場合における漏洩限
界を示す線図である。 1・・・磁束発生コイル  2・・・磁気シールド部3
・・・フランジ部    4・・・磁束集束部特許出願
人 横河メディカルシステム株式会社寥向5 図 ト争ΔL 角蝿65引 −へ ぐ 題 く CIニーe−m− ill” −工クト一一
Fig. 1 is a schematic configuration diagram showing an embodiment of the present invention, Fig. 2 is a perspective view thereof, Fig. 3 is a magnetic flux line diagram of the magnetic field generated by four normally conducting coils, and Fig. 4 is a magnetic flux line diagram in the device of the present invention. Figure 5 is a diagram showing the relationship between the position of the tip of the magnetic flux concentrator and the degree of enhancement in the R position of the present invention, and Figure 6 is an explanatory diagram of the position of the tip of the magnetic flux concentrator in Fig. Figure 7 is a diagram showing the leakage limit in each case when the coil center magnetic field is 0°3 Tesla. 1... Magnetic flux generating coil 2... Magnetic shield section 3
...Flange part 4...Magnetic flux focusing part Patent applicant Yokogawa Medical System Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)磁場発生手段と、この磁場発生手段を外側から覆
うように設置され両端に磁気回路を形成するフランジ部
を有する磁気シールド筒部と、前記フランジ部に設けら
れ先端部が前記磁場発生手段の内側に入り込むように位
置される磁性体の磁束集束部とから成る静磁場マグネッ
ト。
(1) a magnetic field generating means; a magnetic shield cylinder having a flange portion installed to cover the magnetic field generating means from the outside and forming a magnetic circuit at both ends; A static magnetic field magnet consisting of a magnetic flux converging part of a magnetic material positioned so as to penetrate inside the magnet.
(2)磁気シールド筒部は円筒形であり、磁束集束部の
先端部は、フランジ部から磁気シールド筒部の中心半径
Raに対し、0.6Ra付近まで磁束発生部の内側に入
り込ませるようにした特許請求の範囲第1項記載の静磁
場マグネット。
(2) The magnetic shield cylindrical part is cylindrical, and the tip of the magnetic flux converging part is inserted into the magnetic flux generating part from the flange part to around 0.6 Ra with respect to the center radius Ra of the magnetic shield cylindrical part. A static magnetic field magnet according to claim 1.
JP61125376A 1986-05-30 1986-05-30 Static magnetic field magnet Pending JPS62281934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61125376A JPS62281934A (en) 1986-05-30 1986-05-30 Static magnetic field magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61125376A JPS62281934A (en) 1986-05-30 1986-05-30 Static magnetic field magnet

Publications (1)

Publication Number Publication Date
JPS62281934A true JPS62281934A (en) 1987-12-07

Family

ID=14908600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61125376A Pending JPS62281934A (en) 1986-05-30 1986-05-30 Static magnetic field magnet

Country Status (1)

Country Link
JP (1) JPS62281934A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021527459A (en) * 2018-05-16 2021-10-14 ビューレイ・テクノロジーズ・インコーポレイテッドViewRay Technologies, Inc. Normal conduction electromagnet system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021527459A (en) * 2018-05-16 2021-10-14 ビューレイ・テクノロジーズ・インコーポレイテッドViewRay Technologies, Inc. Normal conduction electromagnet system
US12000914B2 (en) 2018-05-16 2024-06-04 Viewray Systems, Inc. Resistive electromagnet systems and methods

Similar Documents

Publication Publication Date Title
FI88078B (en) CYLINDRISK SPOLE
JPS61115958U (en)
JPS6098343A (en) Nuclear magnetic resonance device
GB2199147A (en) Magnetic field generating system for magnetic resonance imaging system
EP0749017A1 (en) Self-shielded gradient coils for nuclear magnetic resonance imaging
US5083085A (en) Compact shielded gradient coil system
US4728895A (en) System of coils for producing additional fields for obtaining polarization fields with constant gradients in a magnet having polarization pole pieces for image production by nuclear magnetic resonance
US5235282A (en) Magnetic resonance apparatus comprising a superconducting shielding magnet
US5825187A (en) Magnetic circuit system with opposite permanent magnets
JPS62281934A (en) Static magnetic field magnet
GB2319844A (en) Prepolarising MRI magnet with powdered iron poles
JPS61159950A (en) Magnet for mri
JPH03139328A (en) Superconductive magnet for mri apparatus
JP2002102205A (en) Magnetic resonace imaging apparatus
JPS6325907A (en) Magnetic field generating apparatus
JPS6387711A (en) Electric coil
JPH03141619A (en) Magnet for generating magnetic field uniform in wide region
JPH073802B2 (en) Magnetic resonance device
JP2500305Y2 (en) Gradient magnetic field generating coil
JPH0280033A (en) Permanent magnet type magnetic resonance imaging device
JPH0510334Y2 (en)
JPS63216552A (en) Mri apparatus
JPH0241591Y2 (en)
JPH03254733A (en) Magnetic resonance imaging device
JPS6012044A (en) Nmr-ct apparatus