JPS62287919A - Electric discharge machine - Google Patents
Electric discharge machineInfo
- Publication number
- JPS62287919A JPS62287919A JP61128728A JP12872886A JPS62287919A JP S62287919 A JPS62287919 A JP S62287919A JP 61128728 A JP61128728 A JP 61128728A JP 12872886 A JP12872886 A JP 12872886A JP S62287919 A JPS62287919 A JP S62287919A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- machining
- workpiece
- wire
- tension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003754 machining Methods 0.000 claims abstract description 43
- 238000009413 insulation Methods 0.000 claims abstract description 15
- 239000012530 fluid Substances 0.000 claims abstract description 7
- 238000001514 detection method Methods 0.000 claims description 11
- 238000009760 electrical discharge machining Methods 0.000 claims description 3
- 230000002159 abnormal effect Effects 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 238000005553 drilling Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 101100289995 Caenorhabditis elegans mac-1 gene Proteins 0.000 description 1
- 235000019227 E-number Nutrition 0.000 description 1
- 239000004243 E-number Substances 0.000 description 1
- 101100108446 Mus musculus Aifm3 gene Proteins 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
〔産業上の利用分野〕
この発明は、電極と被加工物間で放電を発生させ、この
放電エネルギで被加工物を切削加工する放電加工装置に
関するものである。Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] This invention relates to electric discharge machining, which generates electrical discharge between an electrode and a workpiece, and uses this discharge energy to cut the workpiece. It is related to the device.
従来、この種の放電加工装置には、被加工物を棒状電極
で穴加工fろものと、被加工物にあらかじめドリルなど
であけ1こ切孔にワイヤ電極を貫通させ、この被加工物
とワイヤ電極を相対的に移動させて被加工物を切断加工
fるものとがある。Conventionally, this type of electrical discharge machining equipment involves drilling a hole in a workpiece using a rod-shaped electrode, and drilling a hole in the workpiece with a drill or the like and passing a wire electrode through it. There is a method in which a workpiece is cut by relatively moving a wire electrode.
以下、この放電加工装置の概要を、第7図に示すワイヤ
電極使用の放電加工装置を例に説明する。The outline of this electric discharge machining apparatus will be explained below, taking as an example the electric discharge machining apparatus using a wire electrode shown in FIG.
第7図において、(1)は被加工物で、その切孔(1a
)に通されたワイヤ電極(2)との間に絶縁性の液(3
)を供給介在させている。In Fig. 7, (1) is the workpiece, and its cut hole (1a
) and an insulating liquid (3) between the wire electrode (2) passed through the
).
上記絶縁性の液(3)を以下加工液と記述する。加工液
は、タンク(4)からポンプ(5)で、被加工物(1)
七ワイヤ電極(2)の間隙し極間間隙)にノズル(6ン
により噴射される。The above-mentioned insulating liquid (3) will be hereinafter referred to as a processing liquid. The machining fluid is pumped from the tank (4) to the workpiece (1) by the pump (5).
It is sprayed by a nozzle (6-inch) into the gap between the seven wire electrodes (2).
被加工物(1)とワイヤ電極(2)との間の相対運動は
、被加工物(1)を載せているテーブル01)の移動に
より行われる。テーブル01)は、Y軸駆動モータQ3
.!:X軸モークα2により駆動される。以下の構成に
より、被加工物(1)、l!:fa極(2)の相対運動
は前述のX、Y軸平面内に於て2次元平面の運動となる
。The relative movement between the workpiece (1) and the wire electrode (2) is performed by moving the table 01) on which the workpiece (1) is placed. Table 01) is driven by Y-axis drive motor Q3
.. ! : Driven by X-axis mork α2. With the following configuration, the workpiece (1), l! :The relative motion of the fa pole (2) is a two-dimensional plane motion within the aforementioned X and Y axis planes.
ワイヤ電極(2)は、ワイヤ供給リール(7))こより
供給され、下部ワ、イNガイド(8A)、被加工物(1
)中を通過して上部ガイド(8B)に達し、電気エネル
ギ給電部(9)を介して、ワイヤ巻取り兼テンションロ
ーラ0Gにより巻取られる。The wire electrode (2) is supplied from the wire supply reel (7), and is connected to the lower wire, the wire guide (8A), and the workpiece (1).
), the wire reaches the upper guide (8B), and is wound up by the wire winding/tension roller 0G via the electric energy feeder (9).
上記X、Y軸の駆動モータQ2.Q3の駆動及び制御を
行う制御装置0弔は、数値制御装置(NC制御装置)や
倣い装置あるいは、電算機を用いfコ制御装置が用いら
れている。The drive motor Q2 for the X and Y axes mentioned above. The control device for driving and controlling Q3 uses a numerical control device (NC control device), a copying device, or an fco control device using a computer.
電気エネルギを供給する加工電源05は、例えば、直流
電源(158)、スイ・−・チング素子(15b)、電
流制限抵抗(15り及び前記スイ・・・チング素子(1
51りを制御する制御回路(15d)によって構成され
ている。The processing power source 05 that supplies electrical energy includes, for example, a DC power source (158), a switching element (15b), a current limiting resistor (15), and the switching element (158).
The control circuit (15d) controls the control circuit 51.
次に従来装置の動作について説明する。加工電源a5か
らは高周波パルス電圧が被加工物(1)とワイヤ電極(
2)間に印加され、1つのパルス)こよる放電爆発によ
り被加工物(1)の一部を溶融飛散させる、この場合、
極間は高温によってガス化及びイオン化しているため、
次のパルス電圧を印加fろまでには一定の休止時間を必
要とじ、この休止時間かや短か過ぎると砲間が充分に絶
縁回復しないうち;こ、再び同一場所に放電が集中して
ワイヤ電極(2)の溶断を発生させる。Next, the operation of the conventional device will be explained. A high-frequency pulse voltage is applied from the machining power source a5 to the workpiece (1) and the wire electrode (
2) A part of the workpiece (1) is melted and scattered by a discharge explosion caused by one pulse applied during the process, in this case,
Because the space between the poles is gasified and ionized by the high temperature,
A certain pause time is required before the next pulse voltage is applied, and if this pause time is too short, the insulation between the guns will not be fully recovered; This causes the electrode (2) to melt.
従って、通常の加工電源では被加工物の種類。Therefore, with normal machining power supplies, the type of workpiece.
板厚等に依り加工電源α9の休止時間等の電気条件をワ
イヤ電極切れを生じさせない程度の充分余裕を持った条
件で加工するのが普通である。従って、加工速度は理論
的限界値より相当低くならざるを得ない。更にワイヤ電
極(2)が均一でなく太さが変化する場合、もしくはワ
イヤ電極の一部に突起やキズ等があり放電が集中し1こ
場合にはワイヤ電極(2)の溶断は避けられない。Depending on the thickness of the plate, etc., the electrical conditions such as the downtime of the processing power source α9 are normally set to a sufficient margin to prevent wire electrode breakage. Therefore, the machining speed must be considerably lower than the theoretical limit value. Furthermore, if the wire electrode (2) is not uniform and its thickness changes, or if there are protrusions or scratches on a part of the wire electrode, the discharge will be concentrated.1 In this case, fusing of the wire electrode (2) is inevitable. .
以上のように従来のワイヤ力・・・ト放電加工装置では
、ワイヤ電極(2)の断線を引き起さないように才ろた
め、加工電源α9の出力エネルギを少くする等、仮に放
電の集中がワイヤ電極(2)の一点に集中しても断線し
ないようにしていjこため、加工速度が著しく低いおい
う問題点があった。As mentioned above, in the conventional wire force discharge machining equipment, in order to prevent the wire electrode (2) from breaking, the output energy of the machining power supply α9 is reduced, etc. Since the wire electrode (2) is prevented from breaking even if it is concentrated at one point, there is a problem in that the processing speed is extremely low.
そこで、従来、加工状態の良否あるいは電極の損傷直前
状態を判別し、この判別結果に基づいて自動的に正常加
工状態に復帰させあるいは電極の損傷を回避させろよう
な安全対策を施して、加工速度を低下させないようにす
ることが行なわれている。Therefore, conventionally, safety measures have been taken to determine whether the machining condition is good or bad or whether the electrode is about to be damaged, and based on the determination results, automatically return to the normal machining condition or avoid damage to the electrode, thereby increasing the machining speed. Efforts are being made to prevent this from decreasing.
この場合、加工状態の良否あるいはワイヤ電極の断線の
直前状態を判別するのに最も一般的な手段は、上記の極
間電圧値の平均値を観測才ろこ♂である。才なわち、平
均電圧値が低い時は、極間インピーダンスが低い場合で
あって、短絡あるいはスラ・ジとか加工粉の滞留により
、放電のための絶縁破壊が起りやすくなり放電集中(ワ
イヤ切断の最大要因少が発生しているこさを示す。In this case, the most common means for determining whether the machining condition is good or not or whether the wire electrode is about to break is to observe the average value of the voltage between the electrodes. In other words, when the average voltage value is low, the inter-electrode impedance is low, and dielectric breakdown due to discharge is likely to occur due to short circuit or retention of sludge or machining powder, resulting in discharge concentration (wire cutting). Indicates the severity of the occurrence of the biggest factor.
しかし、狭ギヤ、・・プでの加工(精度の良い加工に不
可大月こおいては、正常な極間状態でも短絡が頻発する
ので、この短絡を検知して安全対策を施していtコので
は、やはり加工能率が著るしく低下するという問題点が
あった。However, when machining with narrow gears (not suitable for high-precision machining), short circuits occur frequently even under normal machining conditions, so safety measures are taken to detect these short circuits. However, there was still a problem in that the processing efficiency was significantly reduced.
この発明はかかる問題点を解決するため(こなされ1こ
もので、加工速度を低下させることなく適確に加工状態
の良否を判別し、電極の損傷事故を未然に防止すること
のできる放電加工装置を得ることを目的きする。In order to solve these problems, this invention is an electric discharge machining device that can accurately determine whether the machining condition is good or bad without reducing the machining speed, and can prevent electrode damage accidents. The purpose is to obtain.
この発明にかかる放電加工装置は、電極と被加工物間に
印加するパルス電圧の「休止時間」(加工に寄与しない
、オンタイムきオンタイムの間の値から極間間隙におけ
る加工液の絶縁度を検出する検出手段および該検出手段
で検出されjコミ極と被加工物の極間間隙の絶縁度と、
あらかじめ設定し1こ基萌値七の比軟結果りこ基づいて
極間状態を判別する極間間隙状態判別手段を設(j、こ
の判別手段の出力に基づいてワイヤの張力(テンンヨン
ノを減じてワイヤの消耗;こより耐張力の弱くなったワ
イヤを切断から守る。まtこ良好となつtこら、除々に
張力を増加させろように制御する制御手段とを備えfこ
ものである。The electrical discharge machining apparatus according to the present invention is characterized by the degree of insulation of the machining fluid in the gap between the machining electrodes, based on the "rest time" of the pulse voltage applied between the electrode and the workpiece (the value during on-time that does not contribute to machining). Detection means for detecting, and insulation degree of the gap between the poles and the workpiece detected by the detection means;
An inter-electrode gap state discriminating means is provided for discriminating the inter-electrode gap state based on the relative softness result of the preset moe value of 7. Based on the output of this discriminating means, the wire tension is This protects the wire whose tension resistance has weakened from being cut.The wire is equipped with a control means to gradually increase the tension.
本発明においては、パルス電圧印加の休止時間中)こ、
高周波交流電圧を印加して、イオン濃度き独立した、純
然tこる絶縁度を検出できる。すなわち、高周波交流電
圧を加工粉(スラ・ジノや電解イオンの共存している電
極と被加工物の極間に印加するき、電解イオンの移動度
は高周波に対しにぷいため、加工粉による絶縁度のみを
独立して検出できる。一般に、加工中における事故要因
は、放電点の集中によるものであり、これによってワイ
ヤ断線が発生する。放電点の集中は、加工粉排除が悪い
時、加工粉により極間インピーダンスが低下して起るが
、従来の検出方式では単極性電圧を印加していたため、
電解金属イオンによる絶縁度低下も区別されずに検出し
ていた。これにより、電解金属イオンの濃度は、放電集
中の要因ではないにもかかわらず、不必要)こ極間状態
悪化きみなして回復手段を頻繁に動作させ、加工能率を
低下させていtコ。しかし、本発明の検出手段によって
真の放電集中要因が検出され、この検出手段の検出結果
を、予め設定された基鵡値♂比較手段で比較し、この出
校結果に基づいて極間間隙状態判別手段で極間状態を判
別し、制御手段は上記判別手段から異常判別信号を受け
fコときには、極間間隙状態を回復させるよう【こ制御
する制御手段を備え。In the present invention, during the rest time of pulse voltage application)
By applying a high-frequency alternating current voltage, it is possible to detect the pure insulation degree independent of the ion concentration. In other words, when a high-frequency AC voltage is applied between the electrode and the workpiece where processed powder (sura zino) or electrolytic ions coexist, the mobility of the electrolytic ions is resistant to high frequencies, so the insulation by the processed powder is In general, the cause of accidents during machining is the concentration of discharge points, which causes wire breakage.The concentration of discharge points is caused by poor removal of machining powder, machining powder This occurs due to a decrease in impedance between the poles, but in the conventional detection method, a unipolar voltage was applied, so
Deterioration in insulation due to electrolytic metal ions was also detected without distinction. As a result, although the concentration of electrolytic metal ions is not a factor in the discharge concentration, the inter-electrode condition is unnecessarily aggravated and the recovery means is operated frequently, reducing machining efficiency. However, the true discharge concentration factor is detected by the detection means of the present invention, and the detection result of this detection means is compared with a preset reference value ♂ comparison means, and the inter-electrode gap condition is determined based on this detection result. The determining means determines the inter-electrode gap state, and the control means receives an abnormality determination signal from the discriminating means and controls the inter-electrode gap state so as to restore the inter-electrode gap state.
加工速度を低下させないようにしたものである。This is to avoid reducing the machining speed.
第1図はこの発明の一実施例を示す概要図であり、符号
(1)〜09は上記従来装置と全く同一のものである。FIG. 1 is a schematic diagram showing an embodiment of the present invention, and reference numerals (1) to 09 are the same as those of the conventional device described above.
αGは高周波交流電源α引こよる極間もれ電流(加工粉
起因による絶縁低下のr、−め流れる電流)を検出する
ための電流検出器、0りは制御指令信号発生装置で、前
記電流検出器αGからの検出電流受入れ手段、極間電圧
検出手段および検出電圧を基命値と比較する比較手段、
この比較手段の出力に基づいて極間状態を判別する極間
間隙状態判別手段などを有し、制御装置041.加工電
源09などに制御指令信号を供給するように構成されて
いる。αG is a current detector for detecting the interpole leakage current (r, - current flowing through the insulation caused by processing powder) drawn by the high-frequency AC power supply α, and 0 is a control command signal generator; means for receiving a detected current from the detector αG, means for detecting voltage between electrodes, and comparing means for comparing the detected voltage with a reference value;
The control device 041. has an inter-electrode gap condition determining means for determining the inter-electrode condition based on the output of the comparison means. It is configured to supply control command signals to the processing power source 09 and the like.
尚高周波交流電源0υは10〜25V1周e数l M
Hz(100K−H7〜20 AiFl、 z使用可)
の交流発生器(18aJと、直列の電流制限インピーダ
ンス素子(18b)とから成り、加工電源09がパルス
電圧を発生しtこ時には、上記インピータンス素子(1
8h)により、極間に対し何等影viを与えず、加工電
源09のスイ・チング素子(151)Jがオフの時、f
なわち休止時間中のみ、交流電圧が極間に印加される。High frequency AC power supply 0υ is 10~25V 1 cycle e number l M
Hz (100K-H7~20 AiFl, z available)
It consists of an alternating current generator (18aJ) and a current limiting impedance element (18b) connected in series, and when the processing power source 09 generates a pulse voltage, the impedance element (18aJ)
8h), when the switching element (151) J of the machining power source 09 is off, without giving any shadow vi to the machining gap, f
That is, an alternating current voltage is applied between the poles only during the rest time.
第2図は、第1図記載の構成によるところの極間電圧V
gの波形と(休止時間中)こ高周波交流印加ノ、上記電
流検出器QQより得られた電流信号■及び、加工電源0
9のパルス電圧がオンきなっている時の信号SP、及び
このS pで休止時間中のみの電流信号を取り出し1コ
S D、更;ここのSoを工へ:′ 7゜
ンYロー叉検波してそのレベルを3段階さし、極間イン
ピータンスが低く、多大′fもれ電流が流れている■1
以上(200Ω以下に相当)、これより低いレベルV2
(1,5にΩ程度相当〕より犬で、レベルVlより低い
レベル及び■2以下(加工しない時の液の比抵抗で定ま
る程度のレペルノに分け、’f:fLツレV +<、
V + −V 2 、 V 2〉)信号fgトしている
。FIG. 2 shows the interelectrode voltage V according to the configuration shown in FIG.
The waveform of g (during the pause time), the current signal obtained from the above-mentioned current detector QQ, and the processing power source 0.
Take out the signal SP when the pulse voltage of 9 is on, and the current signal only during the rest time with this SP, 1coSD, further; Detect the wave and set the level in 3 levels. The impedance between the electrodes is low and a large amount of leakage current is flowing.■1
or higher (equivalent to 200Ω or lower), lower level V2
(corresponding to about Ω to 1,5), and is divided into levels lower than level Vl and ■2 or less (determined by the specific resistance of the liquid when not processed), 'f: fL tre V + <,
V + −V 2 , V 2〉) Signal fg is active.
第3図は第2図の信号群を得るための回路例で、電流検
出器OGの電流信号は、増幅回路(117)により増幅
され信号■としてアナログスイ・・・チ(118)の入
力きなる。アナログスイ・jチ(118Jの開閉は加工
電源09のパルス信号の休止側信号であるSpで制御さ
れ、本例では休止時間の時のみ信号16;商
イオードD、抵抗R,コンデンサCで構成されている。Fig. 3 is an example of a circuit for obtaining the signal group shown in Fig. 2. The current signal of the current detector OG is amplified by the amplifier circuit (117) and input to the analog switch (118) as the signal ■. Become. The opening/closing of analog switch J (118J) is controlled by Sp, which is the pause side signal of the pulse signal of processing power supply 09, and in this example, the signal 16 is activated only during the pause time; ing.
該(119)の出力SEは、電圧比較器m、21);こ
供給される。上記電圧比較器翰は入力された信号SDが
■1より大である場合出力が1となり、電圧比較器Qυ
は■2より小である場合出力が1.!:なる。アンドゲ
ート(イ)はvlより犬でvlより小である信号を七つ
だすためのものである。The output SE of (119) is supplied to a voltage comparator m, 21). When the input signal SD is larger than ■1, the output of the voltage comparator is 1, and the voltage comparator Qυ
■If smaller than 2, the output is 1. ! :Become. The AND gate (A) is for outputting seven signals that are greater than vl and smaller than vl.
実験によれば、極間インピーダンスが500〜700Ω
以上の場合においては放電そのものが液中におけるアー
ク柱の発生とこれに伴う高熱の発生(5000〜700
0°C)及びピンチ効果のあられれが順調に行列われて
いる場合であり、被加工物側に充分なエネルギ分配がな
されていることを示していることがわかった。According to experiments, the impedance between poles is 500-700Ω
In the above cases, the discharge itself generates an arc column in the liquid and generates high heat (5000 to 700
0°C) and the pinch effect hail is arranged smoothly, indicating that sufficient energy is distributed to the workpiece side.
また、200Ω以下の場合には火花放電は確かに極間シ
こ存在するが、電極と被加工物間に直接存在しているの
ではなく、電極−スラ・lレー被加工物占か電極−金属
イオン−被加工物といっrコ放電しjことしても、十分
に被加工物シこエネルキが分配されず単にワイヤを損傷
させるような放電状態であるこ♂が判明した。従って、
このような放電状態は直ちに除去しないさ、ワイヤ電極
の損傷断線が発生することになってしまう。In addition, when the resistance is 200Ω or less, spark discharge does exist between the electrodes, but it does not exist directly between the electrode and the workpiece, but rather between the electrodes and the workpiece. It has been found that even when the metal ions and the workpiece are discharged together, the energy is not sufficiently distributed to the workpiece, resulting in a discharge state that simply damages the wire. Therefore,
If such a discharge state is not removed immediately, the wire electrode will be damaged and disconnected.
よって、■1〈であるか、■1〜V2であるかによって
加工状態を制御すれば、ワイヤ電極の損傷断線を防ぐこ
とができる。第4図は、上記電圧比較器■、勾の出力に
基づいて極間間隙状態を判別する判別手段(イ)の構成
例を示すものであって、絶縁度劣化信号(Vl<、)は
ゲート(至)を介してカウンタ四によりカウントされる
。また、正常絶縁度信号(vI〜V2)は上記カウンタ
(至)をリセ・y l−L、、異常放電が連続しないか
ぎりカウントしつづけないようにしている。Therefore, if the machining state is controlled depending on whether it is (1) or (1) to (V2), damage and disconnection of the wire electrode can be prevented. FIG. 4 shows an example of the configuration of the discriminating means (A) for discriminating the state of the gap between the electrodes based on the output of the voltage comparator (2) and the slope. (to) is counted by counter 4. Further, the normal insulation degree signal (vI to V2) is arranged so that the counter (to) does not continue counting unless abnormal discharge continues.
従って、r記カウンタ(5の内容はそのまま極間状態を
示すものであるきいえる。なぜなら、正常な放電であれ
ば、熱論カウノタ(ハ)は10′であるが、王宮放電と
異常放電を繰り返している場合、カウンタ彌の内容の平
均(直は異常になるほど大々なり、正常に・τるほど少
くなる。Therefore, it can be said that the contents of the r-counter (5) directly indicate the state between poles. This is because if the discharge is normal, the thermal counter (c) is 10', but if the royal discharge and abnormal discharge are repeated. If there is, the average of the contents of the counter (the more it becomes abnormal, the larger it becomes, and the more it becomes normal, the less it becomes).
そして、ワイヤ電極(2)の断線に至る直前までの異常
放電の連続があった場合、ディジタルコンパレータ(至
)によって危険信号SAを出力し、この信号に基づいて
状態改善のため制御をすることができる。If there is a series of abnormal discharges immediately before the wire electrode (2) breaks, the digital comparator (to) outputs a danger signal SA, and based on this signal, control can be performed to improve the condition. can.
マ1コ、D/Aコンバータ(5)によるアナログ出力S
、Mを用いてアナログ表示するとか、上記危険倍信号S
Aをモニタ回路例に供給する。このモニタ回路−は否定
アンドゲート(至)1発光ダイオード(LED)■、抵
抗roにより構成されている。Mac 1, analog output S by D/A converter (5)
, M for analog display, or the danger multiplier signal S
A is supplied to the example monitor circuit. This monitor circuit is composed of a negative AND gate, one light emitting diode (LED), and a resistor ro.
第5図は、以上述べた異常放電検出のタイムチャートで
、カウンタ(至)の内容のアナログ(+uS、v。FIG. 5 is a time chart of the abnormal discharge detection described above, and shows the analog content (+uS, v) of the counter (to).
危険信号SA、電流信号 、極間電圧信号Vgの関係を
示したものである。以下、上記カウンタ□□□の内容に
基づいて、極間状態回復手段を作動させ、ワイヤ断線に
至る不具合を解消する具体的方法につき以下詳述する。This figure shows the relationship among the danger signal SA, the current signal, and the interelectrode voltage signal Vg. Hereinafter, a specific method for activating the gap state recovery means based on the contents of the counter □□□ to eliminate the problem leading to wire breakage will be described in detail below.
さて上記出力に基づいてワイヤ電極のテンンヨ・ンを変
化させる方法を、第6図を用いて説明する。Now, a method of changing the tension of the wire electrode based on the above output will be explained with reference to FIG.
ワイヤ送り機構は、第6図のごとく、供給リール(to
a)より出たワイヤはワイヤ張力発生のテンションモー
タ(9)、テンションリール(lot)、補助リール(
102)によって所定テンションを有し、加工間隙を通
って引っばりキャプスタン(103J、キャーfス9ン
ローラ(104)、キャブスタノモーク< 105Jに
より引き出され、巻取りリール(10Iりにより巻き取
られる。The wire feeding mechanism includes a supply reel (to
The wire coming out from a) is connected to a tension motor (9) that generates wire tension, a tension reel (lot), and an auxiliary reel (
The capstan (103J) is pulled out through a machining gap with a predetermined tension by a capstan (102), a capstan roller (104), and a capstan (105J), and is wound up by a take-up reel (10I).
さて、極間状態が悪化して放電集中やワイヤ断線の前駆
状態が検出されると、検出回路(イ)より電圧が出力さ
れ、本電圧は増幅器(106)で増幅され制御トランジ
スタ<LO7)のベース電圧として出力される。エミ・
lり抵抗(108)をRとし、モータを流れる電流を1
とすると
■−V Vs−Vng、Vs
1も−IL it
尚VSは@によるモータ制御11電圧であり、VBEは
約0.6Vと微弱一定であり、はぼ無視でき、モータの
電流はVsにより制御されるが、VSは低下しモータ電
流が減少して、ワイヤテンションは減少しワイヤの消耗
(放電集中による異常消耗)により耐張力の弱まったワ
イヤを切断から守るこさができる。また、良好になっ1
こら除々に張力を増加させる。Now, when the inter-electrode condition deteriorates and a precursor state of discharge concentration or wire breakage is detected, a voltage is output from the detection circuit (a), and this voltage is amplified by the amplifier (106) and the control transistor <LO7) is output. Output as base voltage. Emi・
The resistance (108) is R, and the current flowing through the motor is 1.
Then, ■-V Vs-Vng, Vs 1 is also -IL it Note that VS is the motor control 11 voltage due to @, VBE is a weak constant of about 0.6V, and can be ignored, and the motor current is dependent on Vs. However, VS decreases, the motor current decreases, and the wire tension decreases, making it possible to protect the wire whose tension resistance has weakened due to wire wear (abnormal wear due to discharge concentration) from being cut. Also, it got better 1
Gradually increase the tension.
ワイヤ張力は強いほうが電極剛性が増し短絡は少なく加
工速度も早いが、本方式では、張力限界まで常にワイヤ
テンションを制御することを目的としている。まtこ、
別効果さして、テンションを減することにより短絡を生
じしめ、ワイヤ断を防ぎつつ、短絡バリクを行わしめ、
他の放電集中防止策(電流減少、バ、・り運動による無
負荷化)りこより、より確実(こ異常加工からの脱出が
可能となる。The stronger the wire tension, the higher the electrode rigidity, the fewer short circuits, and the faster the processing speed; however, in this method, the purpose of this method is to constantly control the wire tension up to the tension limit. Matoko,
Another effect is to reduce the tension to cause a short circuit, prevent wire breakage, and perform a short circuit burr.
This makes it possible to escape from abnormal machining more reliably than other discharge concentration prevention measures (current reduction, unloading by barring motion).
以上のように本発明によれば、極間状態に応動じてワイ
ヤ張力を変化させるという従来にないワイヤ力、・ト放
宣加工機を提供′fるものである。As described above, the present invention provides an unprecedented wire force release processing machine that changes the wire tension in response to the machining gap condition.
第1図はこの発明の一実施例を示す概要図、第2図はこ
の実施例の動作を示すタイムチャート、第3図は極間の
絶縁度の検出手段の一例を示す回路図、第4図は極間間
隙状態判別手段の一例を示す回路図、第5図はその動作
を示すタイムチセード、第6図は制御手段の一例を示す
回路構成図、第7図は従来のワイヤ力・ト放電加工装置
を示す原理図である。
図中、(1)は被刀日工物、(2)はワイヤ電極、α9
は加工電源、0eは電流検出器、α力は制御指令信号発
生装置、08)は高周波交流室υ、@は極間間隙状態を
判別する判別手段である。
なお、図中同一符号は同−又は相当部分を示す。FIG. 1 is a schematic diagram showing an embodiment of the present invention, FIG. 2 is a time chart showing the operation of this embodiment, FIG. 3 is a circuit diagram showing an example of means for detecting the degree of insulation between electrodes, and FIG. The figure is a circuit diagram showing an example of the inter-electrode gap condition determination means, FIG. 5 is a time tsade showing its operation, FIG. 6 is a circuit configuration diagram showing an example of the control means, and FIG. 7 is a conventional wire force/torque discharge. It is a principle diagram showing a processing device. In the figure, (1) is the workpiece to be cut, (2) is the wire electrode, α9
0e is a processing power supply, 0e is a current detector, α force is a control command signal generator, 08) is a high frequency AC chamber υ, and @ is a discrimination means for discriminating the state of the gap between poles. Note that the same reference numerals in the figures indicate the same or equivalent parts.
Claims (1)
、その電極と被加工物間にパルス電圧を印加して両者間
に放電を発生させ、その放電エネルギで上記被加工物を
加工する放電加工装置において、上記電極と被加工物間
に印加するパルス電圧の休止時間に、高周波交流電圧を
重畳させる手段と、この高周波交流電圧により上記電極
と被加工物の間隙に存在する上記絶縁性加工液の絶縁度
を検出する検出手段と、この検出手段により検出される
上記電極と被加工物の間隙の絶縁度を、予め設定した基
準値と比較する比較手段と、上記比較手段の出力信号に
基づいて極間状態を判別して信号を出力する極間間隙状
態判別手段と、この判別手段の出力に基づいてワイヤ電
極の張力を制御する制御手段を具備したことを特徴とす
る放電加工装置。An electrode and a workpiece are placed facing each other with an insulating machining fluid interposed between them, and a pulse voltage is applied between the electrode and the workpiece to generate an electric discharge between the two, and the workpiece is machined using the discharge energy. In the electric discharge machining apparatus, a means for superimposing a high frequency AC voltage during a rest time of the pulse voltage applied between the electrode and the workpiece, and a means for superimposing a high frequency AC voltage on the insulation existing in the gap between the electrode and the workpiece by the high frequency AC voltage. a detection means for detecting the degree of insulation of the processing fluid; a comparison means for comparing the insulation degree of the gap between the electrode and the workpiece detected by the detection means with a preset reference value; and an output of the comparison means. Electrical discharge machining characterized by comprising a gap state determining means for determining the state of the gap based on a signal and outputting a signal, and a control means for controlling the tension of the wire electrode based on the output of the determining means. Device.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61128728A JPS62287919A (en) | 1986-06-03 | 1986-06-03 | Electric discharge machine |
CH2086/87A CH678825A5 (en) | 1986-06-03 | 1987-06-02 | |
DE19873718624 DE3718624A1 (en) | 1986-06-03 | 1987-06-03 | SPARK EDM MACHINE |
US07/057,201 US4798929A (en) | 1986-06-03 | 1987-06-03 | Wire electric discharge machining apparatus |
KR1019870005604A KR920006506B1 (en) | 1986-06-03 | 1987-06-03 | Wire electric discharge machine apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61128728A JPS62287919A (en) | 1986-06-03 | 1986-06-03 | Electric discharge machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62287919A true JPS62287919A (en) | 1987-12-14 |
Family
ID=14991976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61128728A Pending JPS62287919A (en) | 1986-06-03 | 1986-06-03 | Electric discharge machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62287919A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995029031A1 (en) * | 1994-04-26 | 1995-11-02 | Sodick Co., Ltd. | Power supply system for an electric discharge machine |
WO2013085063A1 (en) * | 2011-12-09 | 2013-06-13 | 株式会社ソディック | Wire discharge machining device and method |
JP2013121654A (en) * | 2013-02-08 | 2013-06-20 | Sodick Co Ltd | Wire electric discharge machine and wire electric discharge machining method |
-
1986
- 1986-06-03 JP JP61128728A patent/JPS62287919A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995029031A1 (en) * | 1994-04-26 | 1995-11-02 | Sodick Co., Ltd. | Power supply system for an electric discharge machine |
US5770831A (en) * | 1994-04-26 | 1998-06-23 | Sodick Co. Ltd. | Power supply system for an electric discharge machine |
CN1065796C (en) * | 1994-04-26 | 2001-05-16 | 沙迪克株式会社 | Power supply system for an electric discharge machine |
WO2013085063A1 (en) * | 2011-12-09 | 2013-06-13 | 株式会社ソディック | Wire discharge machining device and method |
US10118239B2 (en) | 2011-12-09 | 2018-11-06 | Sodick Co., Ltd. | Wire electric discharge machining device and method |
JP2013121654A (en) * | 2013-02-08 | 2013-06-20 | Sodick Co Ltd | Wire electric discharge machine and wire electric discharge machining method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62287919A (en) | Electric discharge machine | |
JPS61125734A (en) | Wire cut electric discharge processing device | |
JPS61111841A (en) | Wire-cut electric discharge machinine | |
JPS62287917A (en) | Electric discharge machinine | |
JPS61111813A (en) | Spark erosion apparatus | |
JPS61111842A (en) | Wire-cut electric discharge machinine | |
JPS62287913A (en) | Electric discharge machine | |
JPS61111819A (en) | Spark erosion apparatus | |
JPS62287914A (en) | Electric discharge machine | |
JPS62287928A (en) | Electric discharge machine | |
JPS62287918A (en) | Electric discharge machine | |
JPS62287920A (en) | Electric discharge machine | |
JPS61125721A (en) | Electric discharge machine | |
JPS63120029A (en) | Wire-cut electric discharge machine | |
JPS61125731A (en) | Electric discharge machine | |
JPS61125722A (en) | Electric discharge machine | |
JPS61125736A (en) | Wire cut electric discharge processing device | |
JPS61111811A (en) | Spark erosion apparatus | |
JPS61125725A (en) | Electric discharge machine | |
JPS61111812A (en) | Spark erosion apparatus | |
JPS62287927A (en) | Electric discharge machine | |
JPS61111817A (en) | Spark erosion apparatus | |
JPS61111818A (en) | Spark erosion apparatus | |
JPS62287912A (en) | Electric discharge machine | |
JPS61111843A (en) | Electric discharge machinine |