Nothing Special   »   [go: up one dir, main page]

JPS62274801A - Three-axis control antenna system - Google Patents

Three-axis control antenna system

Info

Publication number
JPS62274801A
JPS62274801A JP11778386A JP11778386A JPS62274801A JP S62274801 A JPS62274801 A JP S62274801A JP 11778386 A JP11778386 A JP 11778386A JP 11778386 A JP11778386 A JP 11778386A JP S62274801 A JPS62274801 A JP S62274801A
Authority
JP
Japan
Prior art keywords
axis
elevation
around
elevating
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11778386A
Other languages
Japanese (ja)
Other versions
JPH0758853B2 (en
Inventor
Makoto Nakayama
誠 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61117783A priority Critical patent/JPH0758853B2/en
Priority to DE3789162T priority patent/DE3789162T2/en
Priority to EP87107347A priority patent/EP0246635B1/en
Publication of JPS62274801A publication Critical patent/JPS62274801A/en
Priority to US07/324,951 priority patent/US4994815A/en
Publication of JPH0758853B2 publication Critical patent/JPH0758853B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To set the maximum turning angular velocity around an orthogonal elevating axis smaller than the eye line angular velocity of a satellite by selecting the turnable range of a three-axis control antenna system around the elevating axis to be nearly 180 deg.. CONSTITUTION:The titled system is provided with an azimuth swing base 2 turned around an azimuth axis 3 fixed vertically, an elevating turning base 4 turnable around an elevating axis provided horizontally on the swing base 2 by nearly 180 deg. and a directivity antenna 6 fiftted to be turned within an angle limited around an orthogonal elevating axis 7 orthogonal to the axis 5 to the turning base 4. A satellite passing by a zenith having a predetermined elevating angle or over is traced by applying the turning around the elevating axis 5 continuously in excess of the elevating angle of 90 deg.. Thus, the antenna is turned by nearly 180 deg. in excess of the elevating angle 90 deg. around the elevating axis so as to limit the maximum turning angular velocity around the orthogonal elevating axis 7 to the eye line angle or below.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は3@制御アンテナ装置に関し、特に方位軸、俯
仰41+および直交俯仰軸の3軸を備え、天頂付近全通
過する中島度衛星の追尾を容易に行える3軸制御アンテ
ナ装置に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a 3@ control antenna device, and in particular, it is equipped with three axes: an azimuth axis, an elevation axis 41+, and an orthogonal elevation axis. The present invention relates to a three-axis control antenna device that can easily track a passing Nakajima satellite.

〔従来の技術〕[Conventional technology]

全天指向型のアンテナの支持方法のうち、垂直に固定さ
れた方位軸(Az軸)のまわシに回転できる方位旋回台
の上に水平な俯仰軸(Ei軸)を設け、この俯仰軸のま
わシにアンテナを水平から天頂まで回転できるように取
付けたAz−Elマウント方式は、構造的に最も有利で
あり広く実用されている。しかしながらこの方式は、天
頂付近を通過する衛星全追尾する場合に方位軸1わりの
N転角速度が非常に大きくなるという難点がある。
Among the methods for supporting an all-sky directional antenna, a horizontal elevation axis (Ei axis) is provided on an azimuth swivel table that can rotate around a vertically fixed azimuth axis (Az axis). The Az-El mount system, in which the antenna is mounted on the mount so that it can rotate from the horizontal to the zenith, is the most structurally advantageous and is widely used. However, this method has a drawback in that when tracking all satellites passing near the zenith, the N rotation angular velocity per azimuth axis becomes very large.

これに対して、水平に固定された固定軸(X軸)と、こ
の固定軸のまわシに回転しこれと直交したiij動軸(
Y軸)とを備えたX−Yマウントは、天頂付近を通過す
る衛星の追尾には支障ないが、低仰角の衛星の追尾に難
点があるほか支持構造が大型となシ、特に直径の人きl
大型アンテナには不向さでわる。
On the other hand, there is a fixed axis (X-axis) fixed horizontally, and an Iij moving axis (
An X-Y mount with a Y-axis) has no problem in tracking satellites passing near the zenith, but it has difficulties in tracking satellites at low elevation angles, and the support structure is large. Ki l
It is unsuitable for large antennas.

上記の問題を解決する一方法として、Ax−Elマウン
トの上に俯仰軸と直交した直交俯仰軸を設け、この直交
俯仰軸のまわりにアンテナを限定された範囲だけ回転可
能とした3軸制御アンテナ装置から9、直交俯仰軸まわ
シの回転可能範囲を小さくできる駆動制御方法が特開昭
60−22803号公報に提案されている。この方法は
天頂付近を通過する衛星全追尾するとき、衛星が最大仰
角に達する以前にアンテナを方位軸まわ夛に先行して駆
動させることにより、先行駆動を行わない場合に比べて
直交俯仰軸まわシの回転可能範囲を半分以下に限定でき
るものでめる。
One way to solve the above problem is to provide a 3-axis control antenna with an orthogonal elevation axis perpendicular to the elevation axis on the Ax-El mount, and the antenna can be rotated within a limited range around this orthogonal elevation axis. 9. A drive control method capable of reducing the rotatable range of the orthogonal elevation shaft rotor is proposed in Japanese Patent Laid-Open No. 60-22803. In this method, when tracking all satellites passing near the zenith, by driving the antenna in advance around the azimuth axis before the satellite reaches its maximum elevation angle, the antenna can be moved around the orthogonal elevation axis more easily than when no advance drive is performed. Choose something that can limit the rotatable range of the wheel to less than half.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述した駆動制御方法によっても、直交
俯仰軸1わシの回転に要求される最大回転角速度は、詳
しくは後述するようにアンテナから衛星を見た視線角速
度以上となるという問題点が、残されている。
However, even with the drive control method described above, there remains the problem that the maximum rotational angular velocity required for the rotation of the orthogonal elevation axis is greater than or equal to the line-of-sight angular velocity when looking at the satellite from the antenna, as will be described in detail later. has been done.

本発明の目的は、アンテナを俯仰軸まわシに俯仰角90
°(本明細蕾においては、俯仰軸1わりの回転角度表示
を俯仰角として通常の仰角と区別して使用し、直交俯仰
軸まわ夛の(ロ)転角度がOのときアンテナが天頂を指
向する状態を俯仰角90とする)を越えてほぼ180°
まで回転可能とし、上述した直交俯仰軸まわシの最大回
転角速度を視線角速度以下に制限することができる3軸
制御アンテナ装置全提供することでおる。
The object of the present invention is to rotate the antenna around the vertical axis by a vertical angle of 90°.
(In this specification, the angle of rotation per 1 axis of elevation is used as the angle of elevation to distinguish it from the normal angle of elevation, and when the rotation angle of the orthogonal axis of elevation is O, the antenna points toward the zenith. The state is approximately 180° beyond the elevation angle of 90.
An object of the present invention is to provide a complete three-axis control antenna device that can rotate up to 300 degrees and can limit the maximum rotational angular velocity of the above-mentioned orthogonal elevation and elevation axes rotation to below the line-of-sight angular velocity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の3軸制御アンテナ装置は、垂直に固定された方
位軸のまわルに回転できる方位旋回台と、この方位旋回
台上に水平に設けられた俯仰軸のまわシにほぼ180°
回転可能な俯仰回転架台と、この俯仰回転架台に前記俯
仰軸と直交する直交俯仰軸のまわりに限定された角度範
囲内で回転できるように取付けられた指向性アンテナと
を備え、めらかじめ足められた一定の仰角以上の天頂領
域會通過する衛星は前記俯仰軸まわりの回転を仰仰角9
0゜を越えて連続的に行って追尾するよう構成されてい
る。
The three-axis control antenna device of the present invention includes an azimuth swivel base that can rotate around a vertically fixed azimuth axis, and an elevation axis that is horizontally provided on the azimuth swivel base and rotates approximately 180 degrees.
It is equipped with a rotatable elevating and elevating rotating pedestal, and a directional antenna attached to the elevating and elevating rotating mount so that it can rotate within a limited angular range around an orthogonal elevating and elevating axis that is orthogonal to the elevating and elevating axis. A satellite passing through the zenith region with a certain elevation angle or more will rotate around the elevation axis with an elevation angle of 9.
It is configured to continuously move and track beyond 0 degrees.

〔作用〕[Effect]

次に図面を径照して本発明の詳細な説明する。 Next, the present invention will be explained in detail with reference to the drawings.

第1図(a)及び(b)は天頂付近を通過する衛星に対
する直交俯仰軸まわりの回転角の変化を示すベクトル図
である。第1図(a)は方位角0°方向から180゜方
向に視線角速度1.56/猷で天頂を通過する衛星を追
尾する場合を示し、図中の黒丸は1秒ごとの衛星の位置
を示している。この衛星を俯仰角の可動範囲が90°程
度までの従来の3軸制御アンテナ装置を用い、特開昭6
0−22803号公報記載の先行駆動方式で追尾する場
合には、衛星が天頂点に達したとき方位角が90となる
ように、天頂点に達する9秒前から方位軸まわシに最大
の角速度lO°/=で先行駆動させて追尾を行うが、こ
のときのアンテナ方位角および俯仰角の軌跡は破線とな
り、直交俯仰軸まわ9の回転角は矢印のベクトルの長さ
で示される。これから衛星が天頂点を通過するとき、視
線角速度とはは同速度で直交俯仰軸まわ9に回転させる
必要があることが分かる。
FIGS. 1(a) and 1(b) are vector diagrams showing changes in the rotation angle around the orthogonal elevation axis for a satellite passing near the zenith. Figure 1 (a) shows the case of tracking a satellite passing through the zenith from an azimuth angle of 0° to a direction of 180° at a line-of-sight angular velocity of 1.56/w. The black circles in the figure indicate the satellite's position every second. It shows. This satellite was installed using a conventional three-axis control antenna device with a movable range of elevation angle of up to about 90 degrees.
When tracking using the advance drive method described in Publication No. 0-22803, the maximum angular velocity is set on the azimuth axis from 9 seconds before the satellite reaches the zenith, so that the azimuth angle is 90 when the satellite reaches the zenith. Tracking is performed by advance driving at lO°/=, and the trajectory of the antenna azimuth and elevation angle at this time becomes a broken line, and the rotation angle about the orthogonal elevation axis 9 is shown by the length of the arrow vector. From this, it can be seen that when the satellite passes the zenith, it needs to be rotated around the orthogonal elevation axis 9 at the same speed as the line-of-sight angular velocity.

これに対して、俯仰軸まわシにはは180回転可能な本
発明の3軸制御アンテナ装置で同じ衛星會追尾する場合
は、方位角をθ°に固足したまま俯仰軸まわシのみに俯
仰角90を越えて回転させればよく、方位軸および直交
俯仰軸まわ夛の回転を行わずに追尾することができる。
On the other hand, when tracking the same satellite group with the 3-axis control antenna device of the present invention, which can rotate the elevation axis by 180 degrees, the azimuth angle is fixed at θ° and the elevation angle is fixed at θ°. It is only necessary to rotate it beyond the angle 90, and tracking can be performed without rotating around the azimuth axis and the orthogonal elevation axis.

第1図(b)は方位角が90°の方向で最大仰角87゜
を通過する衛星を本発明の3軸制御アンテナ装置で追尾
する一例でメジ、方位角がlOoに達するまでの低仰角
では方位軸と俯仰軸とで通常の追尾を行い、方位角がl
Ooに達したとき方位角を固足して俯仰軸と直交俯仰軸
とによシ追尾し、衛星位置が最大仰角に達する2秒前か
ら2秒後までの4秒間に方位軸まわシに最大角速度のl
/2に相当する5°/511Cで負方向に回転し、方位
角が一10’に達したとき再び方位角を固足して追尾す
る場合を示している。この図から明らかなように、直交
俯仰軸まわシの回転角は徐々に増加し、衛星が最大仰角
を通過すると再び徐々に減少する。従りて、直交俯仰軸
まわ9の回転角速度は衛星の視線角速度に比べて小さく
てよいことが分かる。なお、衛星を捕捉するときから直
交俯仰角まわシの回転角を傾けておけは、この回転角の
変化は更に遅くてもよく、主に俯仰軸まわシの回転で追
尾することができる。
Figure 1(b) is an example of tracking a satellite passing through a maximum elevation angle of 87° in a direction with an azimuth angle of 90° using the three-axis control antenna device of the present invention. Normal tracking is performed using the azimuth axis and the elevation axis, and the azimuth angle is l.
When the satellite position reaches the maximum elevation angle, the azimuth angle is fixed and tracking is performed using the elevation axis and the orthogonal elevation axis, and the maximum angular velocity is set around the azimuth axis for 4 seconds from 2 seconds before the satellite position reaches the maximum elevation angle to 2 seconds after the satellite position reaches the maximum elevation angle. l of
The case is shown in which the azimuth angle is rotated in the negative direction by 5°/511C, which corresponds to /2, and when the azimuth angle reaches 110', the azimuth angle is fixed again and tracking is performed. As is clear from this figure, the rotation angle of the orthogonal elevation axis gradually increases, and once the satellite passes through the maximum elevation angle, it gradually decreases again. Therefore, it can be seen that the rotational angular velocity about the orthogonal elevation axis 9 may be smaller than the radial angular velocity of the satellite. Note that if the rotation angle of the orthogonal elevation and elevation angle rotation is tilted from the time of acquiring the satellite, the rotation angle may change even more slowly, and tracking can be performed mainly by rotation of the elevation and elevation axis rotation.

以上の説明によシ、3軸制御アンテナ装置において俯仰
軸まわ9の回転可能範囲をt’JtY180°とするこ
とにより、直交俯仰軸まわシの最大回転角速度は衛星の
視線角速度よシも小さく設定できることが明らかである
According to the above explanation, by setting the rotatable range of the 3-axis control antenna device around the elevation axis 9 to t'JtY180°, the maximum rotational angular velocity of the orthogonal elevation axis rotation is set to be smaller than the line-of-sight angular velocity of the satellite. It is clear that it can be done.

〔実施例〕〔Example〕

第2図(al及び(b)は本発明の一実施例の俯仰角θ
FIG. 2 (al and (b)) shows the elevation angle θ of an embodiment of the present invention.
.

の状態の側面図および俯仰角90°の状態の正面図であ
る。第1図ta+及び(b)において、lは地上に固定
された支持塔、2は支持塔lに支持され垂面な方位軸3
のまわシに±270°回転ロ■能な方位旋回台、4ti
方位旋回台2の上に水平に設けられている俯仰軸5のま
わシに180°Ig1転可能で水平方向から逆の水平方
向筐でアンテナを指向できる俯仰回転架台、6はこの俯
仰回転架台4の上に俯仰軸5に直交して設けられた直交
俯仰軸7のまわシに±58同転可能に取付けられたアン
テナである。方位旋回および俯仰回転はそれぞれ支持塔
lに固定された大歯車8及び俯仰回転架台4に取付けら
れた半円状の大歯車9を介して行われるが、直交俯仰軸
1わシの回転は直線上で伸縮するスクリュージヤツキ1
0によシ行われる。
FIG. 2 is a side view of the vehicle at an angle of elevation of 90°, and a front view of the vehicle at an elevation angle of 90°. In Fig. 1 ta+ and (b), l is a support tower fixed on the ground, and 2 is a vertical azimuth axis 3 supported by the support tower l.
A 4ti azimuth swivel base with ±270° rotation
An elevation/rotation mount 4 that can rotate an elevation axis 5 horizontally on the azimuth swivel base 2 by 180°Ig1 and can direct the antenna in a horizontal direction opposite to the horizontal direction. The antenna is mounted so as to be rotatable by ±58 on the orthogonal elevation axis 7 which is provided above the elevation axis 5 and perpendicular to the elevation axis 5. Azimuth rotation and elevation rotation are performed via a large gear 8 fixed to the support tower 1 and a semicircular large gear 9 attached to the elevation rotation frame 4, respectively, but rotation of the orthogonal elevation axis 1 is performed in a straight line. Screwjacket that expands and contracts at the top 1
It is executed by 0.

方位旋回の最大角速度全lO°/式、俯仰回転の最大角
速度を5°/lecとすると、視線角速度1.5°/弐
の衛星に対しては、最大仰角が約80以下の場合は通常
のA z −E Lマウントの場合と同様に直交俯仰軸
まわりの回転なしで追尾することができる。一方、最大
仰角が85°を越える衛星については前述したようにo
−tsooの俯仰回転を行えは追尾可能でおシ、80〜
85°の衛星に前述の特開昭60−22803号公報記
載の追尾方式を採用するとすれは直交俯仰軸まわシの最
大回転角速度は視線角速度の約半分の0.8°/截で充
分追尾できる(第1図に最大仰角85¥r通過する衛星
の最大仰角通過1秒前の位置會書けは容易に分かる)こ
ととなシ、機禍設計および駆動装置の設計上の利点は大
きい。
Assuming that the maximum angular velocity of azimuth rotation is 10°/lec and the maximum angular velocity of elevation rotation is 5°/lec, for a satellite with a line-of-sight angular velocity of 1.5°/2, if the maximum elevation angle is about 80 or less, the normal Similar to the case of the Az-E L mount, tracking can be performed without rotation around the orthogonal elevation axis. On the other hand, as mentioned above, for satellites whose maximum elevation angle exceeds 85°,
-Tsoo's elevation and rotation can be tracked, 80~
If the tracking method described in the above-mentioned Japanese Patent Application Laid-Open No. 60-22803 is adopted for an 85° satellite, the maximum rotational angular velocity of the orthogonal elevation axis rotation is 0.8°/cut, which is about half of the line-of-sight angular velocity, which is sufficient for tracking. (In Figure 1, it is easy to see the position of a satellite passing at a maximum elevation angle of 85\r, one second before passing the maximum elevation angle.) In addition, there are great advantages in terms of disaster design and drive device design.

上記の実施例は方位旋回台を地上に固定した支持塔に軸
受を介して取付けた場合を示しているが、方位旋(ロ)
合音地上に敷設した円形レール上車輪全弁して設置され
る台形の骨組構造とすることもできる。又、直交俯仰軸
まわりの回転可能範囲を±5°に設定し、特開昭60−
22803号公報記載の先行駆動方式を採用した例を示
したが、回転可能範囲を±10°として先行駆動方式を
併用しなくても差支えない。
The above embodiment shows a case where the azimuth swivel table is attached to a support tower fixed on the ground via a bearing, but the azimuth swivel
It is also possible to have a trapezoidal frame structure installed with all wheels on a circular rail laid on the ground. In addition, the rotatable range around the orthogonal elevation axis is set to ±5°, and the
Although an example is shown in which the advance drive method described in JP-A No. 22803 is adopted, there is no problem even if the rotatable range is set to ±10° and the advance drive method is not used in combination.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明の3軸制御アンテナ
装置によれば、直交俯仰軸まわシの回転h」能範囲を限
定し、その回転角速度を衛星の視線角速度よりも低く設
定できる効果があり、構造体および駆動装置の設計上有
オ0となる。
As explained in detail above, the three-axis control antenna device of the present invention has the effect of limiting the rotational range of the orthogonal elevation axis rotation and setting the rotational angular velocity lower than the line-of-sight angular velocity of the satellite. Yes, this is a problem due to the design of the structure and drive device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)及び(blは天頂付近ケ通過する衛星ケ追
尾する場合の直交俯仰4141わシの回転角の変化を示
すベクトル図、第2図(8)及び(blは本発明の一実
−9= 施例の側面図および正面図である。 l・・・・・・支持塔、2・・・・・・方位旋回台、3
・・・・・・方位軸、4・・・・・・俯仰回転架台、訃
・・・・・俯仰軸、6・・・・・・アンテナ、7・・・
・・・直交俯仰軸、8.9・・・・・・大歯車、IO・
・・・・・スクリュージヤツキ。 =lO−
Figures 1 (a) and (bl) are vector diagrams showing changes in the rotation angle of the orthogonal elevation 4141 eagle when tracking a satellite passing near the zenith; Example-9 = A side view and a front view of the example. l...Support tower, 2...Azimuth swivel table, 3
...Azimuth axis, 4...Elevation rotation mount, ...Elevation axis, 6...Antenna, 7...
... Orthogonal elevation axis, 8.9 ... Large gear, IO.
...Screwjack guy. =lO−

Claims (1)

【特許請求の範囲】[Claims] 垂直に固定された方位軸のまわりに回転できる方位旋回
台と、この方位旋回台上に水平に設けられた俯仰軸のま
わりにほぼ180°回転可能な俯仰回転架台と、この俯
仰回転架台に前記俯仰軸と直交する直交俯仰軸のまわり
に限定された角度範囲内で回転できるように取付けられ
た指向性アンテナとを備え、あらかじめ定められた一定
の仰角以上の天頂領域を通過する衛星は前記俯仰軸まわ
りの回転を俯仰角90°を越えて連続的に行って追尾す
ることを特徴とする3軸制御アンテナ装置。
An azimuth swivel base that can rotate around a vertically fixed azimuth axis, an elevation rotation mount that can rotate approximately 180° around an elevation axis provided horizontally on the azimuth swivel base, and the above-mentioned elevation rotation mount. A satellite is equipped with a directional antenna mounted so as to be able to rotate within a limited angular range around an orthogonal elevation axis that is orthogonal to the elevation axis, and a satellite passing through a zenith region having a predetermined elevation angle or more is A three-axis control antenna device characterized by tracking by continuously rotating around an axis at an elevation angle exceeding 90°.
JP61117783A 1986-05-21 1986-05-21 3-axis control antenna device Expired - Lifetime JPH0758853B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61117783A JPH0758853B2 (en) 1986-05-21 1986-05-21 3-axis control antenna device
DE3789162T DE3789162T2 (en) 1986-05-21 1987-05-20 Tracking control device for triaxial antenna support systems.
EP87107347A EP0246635B1 (en) 1986-05-21 1987-05-20 Tracking controller for three-axis mount antenna systems
US07/324,951 US4994815A (en) 1986-05-21 1989-03-16 Tracking controller for three-axis mount antenna systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61117783A JPH0758853B2 (en) 1986-05-21 1986-05-21 3-axis control antenna device

Publications (2)

Publication Number Publication Date
JPS62274801A true JPS62274801A (en) 1987-11-28
JPH0758853B2 JPH0758853B2 (en) 1995-06-21

Family

ID=14720205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61117783A Expired - Lifetime JPH0758853B2 (en) 1986-05-21 1986-05-21 3-axis control antenna device

Country Status (1)

Country Link
JP (1) JPH0758853B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202541A (en) * 1993-12-28 1995-08-04 Natl Space Dev Agency Japan<Nasda> Three-axis control antenna system
CN106970363A (en) * 2017-05-11 2017-07-21 九江精密测试技术研究所 A kind of triaxial antennas test table system with low reflection characteristic
CN113571904A (en) * 2021-08-16 2021-10-29 中国电子科技集团公司第五十四研究所 Large antenna capable of realizing over-top tracking function
CN113690580A (en) * 2021-08-16 2021-11-23 中国电子科技集团公司第五十四研究所 Combined inclined platform type large antenna

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136854A (en) * 1974-09-25 1976-03-27 Japan Radio Co Ltd SENJOANTEN ASOCHI
JPS6022803A (en) * 1983-07-19 1985-02-05 Nec Corp Controller of satellite tracking antenna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136854A (en) * 1974-09-25 1976-03-27 Japan Radio Co Ltd SENJOANTEN ASOCHI
JPS6022803A (en) * 1983-07-19 1985-02-05 Nec Corp Controller of satellite tracking antenna

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202541A (en) * 1993-12-28 1995-08-04 Natl Space Dev Agency Japan<Nasda> Three-axis control antenna system
CN106970363A (en) * 2017-05-11 2017-07-21 九江精密测试技术研究所 A kind of triaxial antennas test table system with low reflection characteristic
CN106970363B (en) * 2017-05-11 2023-06-16 九江精密测试技术研究所 Triaxial antenna test turntable system with low reflection characteristic
CN113571904A (en) * 2021-08-16 2021-10-29 中国电子科技集团公司第五十四研究所 Large antenna capable of realizing over-top tracking function
CN113690580A (en) * 2021-08-16 2021-11-23 中国电子科技集团公司第五十四研究所 Combined inclined platform type large antenna

Also Published As

Publication number Publication date
JPH0758853B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
CA1165435A (en) Gyro stabilization platform for scanning antenna
KR101841771B1 (en) Triaxial positioner for an antenna
JPS6013321B2 (en) satellite tracking device
US4118707A (en) Gyro stabilized platform for scanning antenna
CN101099264A (en) Antenna positioner system
US4909460A (en) Device and method for aiming a space probe toward a celestial body
JPS62274801A (en) Three-axis control antenna system
JP2806659B2 (en) Direction tracking device
US12074379B2 (en) Pedestal including tilted azimuth axis
US5479181A (en) Antenna tracking mechanism
US20230196946A1 (en) Optical planetarium and planetarium system having same
JP2010049045A (en) Astronomical telescope mount
RU2524838C2 (en) Triaxial rotary support
JPH06132716A (en) Antenna posture controller
JPH0294801A (en) Antenna mount device
JPH0626284B2 (en) 3-axis antenna control method
JPH028411Y2 (en)
KR102547880B1 (en) Antennas and how they work
JPH07307608A (en) Antenna system
JP2842963B2 (en) Mobile antenna device
JPH01266098A (en) Double rotor motor
JPH07176935A (en) Antenna mount for travelling object
JPS5934161Y2 (en) stabilizer device
JPH0738323A (en) Automatic tracking device of antenna installed in moving body
JPH05167328A (en) Antenna mount

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term