JPS62262022A - Device utilizing electro-optical effect - Google Patents
Device utilizing electro-optical effectInfo
- Publication number
- JPS62262022A JPS62262022A JP10387386A JP10387386A JPS62262022A JP S62262022 A JPS62262022 A JP S62262022A JP 10387386 A JP10387386 A JP 10387386A JP 10387386 A JP10387386 A JP 10387386A JP S62262022 A JPS62262022 A JP S62262022A
- Authority
- JP
- Japan
- Prior art keywords
- electro
- pair
- conductive films
- liquid crystal
- dielectric film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005693 optoelectronics Effects 0.000 title claims abstract description 6
- 239000000463 material Substances 0.000 claims abstract description 31
- 230000005684 electric field Effects 0.000 claims abstract description 9
- 230000000694 effects Effects 0.000 claims description 18
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 19
- 238000002834 transmittance Methods 0.000 description 14
- 230000003287 optical effect Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000003086 colorant Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133371—Cells with varying thickness of the liquid crystal layer
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/30—Gray scale
Landscapes
- Physics & Mathematics (AREA)
- Liquid Crystal (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、液晶、EL、LEDなどの表示装置や、光シ
ャッタおよびセンサなど電気光学効果を利用した装置に
関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to display devices such as liquid crystal, EL, and LED, and devices that utilize electro-optic effects such as optical shutters and sensors.
(従来の技術)
従来の液晶装置は、第5図に示すように、ガラス基板1
上に透明導電膜2a、2b+ 2cを被着し酸化シリコ
ンなどの絶縁膜3を被着し、液晶4を配向させるための
配向膜Sを被着し、ラッピングした基板を用いていた。(Prior Art) A conventional liquid crystal device has a glass substrate 1 as shown in FIG.
A substrate was used which was coated with transparent conductive films 2a, 2b+2c, an insulating film 3 made of silicon oxide or the like, an alignment film S for aligning the liquid crystal 4, and wrapped.
(発明が解決しようとする問題点)
上記の装置では、平行な一対の透明導電膜間に一定の電
圧振幅を印加した場合、この一対の透明導電膜間の表示
面内の透過率分布は基本的には一定であり、異なること
はなかった。(Problems to be Solved by the Invention) In the above device, when a constant voltage amplitude is applied between a pair of parallel transparent conductive films, the transmittance distribution within the display surface between the pair of transparent conductive films is basically It remained constant and did not vary.
本発明の目的は、電気光学効果を有する材料を挾持した
一対の導電膜による表示面内において、電気光学特性(
たとえば透過率)を複数種類具ならせ得る装置を提供す
ることである。An object of the present invention is to provide electro-optical properties (
For example, it is an object of the present invention to provide a device that can have multiple types of transmittance.
(問題点を解決するための手段)
本発明の電気光学効果を利用した装置は、一対の導電膜
間に電気光学効果を有する材料を挾持し、この材料と導
電膜間に厚さの異なった複数の部分を有する誘電体膜を
形成し、前記一対の導電膜間に適当な駆動電圧を印加し
て、厚さの異なった複数の部分に対応した、前記材料の
各部に印加される電界の強さを異ならせ、この材料の各
部に応じた電気光学特性を得るものである。(Means for Solving the Problems) A device using the electro-optic effect of the present invention includes a material having an electro-optic effect sandwiched between a pair of conductive films, and a material having a different thickness between the material and the conductive film. A dielectric film having a plurality of parts is formed, and an appropriate driving voltage is applied between the pair of conductive films to create an electric field applied to each part of the material corresponding to the plurality of parts with different thicknesses. By varying the strength, electro-optical properties can be obtained depending on each part of the material.
また、電気光学効果を有する材料を強誘電性液晶とする
ものであり、さらに、アクティブマトリックス駆動にお
ける1ピクセルの表示有効領域を一対の導電膜とするも
のである。Further, the material having an electro-optic effect is a ferroelectric liquid crystal, and the effective display area of one pixel in active matrix driving is a pair of conductive films.
(作 用)
本発明により、厚さの異なった複数の部分に対応し、電
気光学効果を有する材料の各部に印加される電界の強さ
が異な゛ってくる。したがって、一対の導電膜による表
示面内において、材料の各部に応じた電気光学特性を得
ることができる。(Function) According to the present invention, the strength of the electric field applied to each part of the material having an electro-optic effect becomes different, corresponding to a plurality of parts having different thicknesses. Therefore, electro-optical characteristics depending on each part of the material can be obtained within the display surface formed by the pair of conductive films.
(実施例)
本発明の実施例を第1図ないし第4図に基づいて説明す
る。(Example) An example of the present invention will be described based on FIGS. 1 to 4.
同図において、第5図に示した従来例と同じ部分につい
ては同一符号を付し、その説明を省略する。In this figure, the same parts as those in the conventional example shown in FIG. 5 are designated by the same reference numerals, and the explanation thereof will be omitted.
第1図(a)は本発明を電気光学効果を有する材料を用
いた表示装置に適用した一実施例を示している。同図に
おいて一対の導電膜間にある電気光学効果を有する材料
に実効的に印加される電界の強さを変化させるために、
1’R体膜6を用いており、誘電体膜6の厚さに変化を
もたせている。FIG. 1(a) shows an embodiment in which the present invention is applied to a display device using a material having an electro-optic effect. In the figure, in order to change the strength of the electric field that is effectively applied to the material that has an electro-optic effect between a pair of conductive films,
A 1'R body film 6 is used, and the thickness of the dielectric film 6 is varied.
第1図(b)に電気光学効果を有する材料(たとえば強
誘電性液晶)を用いた場合、第1図(a)のABCの部
分に対応する透過率と一対の透明導電膜2a、2d間に
印加された電圧(あるいは電圧Xパルス時間などの駆動
条件)との関係を示している。このような電気光学特性
を示す材料の場合。When a material having an electro-optic effect (for example, ferroelectric liquid crystal) is used in FIG. 1(b), the transmittance corresponding to the portion ABC in FIG. 1(a) and the distance between the pair of transparent conductive films 2a and 2d It shows the relationship with the voltage applied to (or drive conditions such as voltage x pulse time). For materials that exhibit such electro-optical properties.
従来の第5図に示す構造では一対の導′市膜に印加する
電圧によって透過率が0%あるいは100%しか選択す
ることができなかった。しかし本実施例においては、印
加電圧をVとすると、V<V、。In the conventional structure shown in FIG. 5, the transmittance could only be selected from 0% or 100% depending on the voltage applied to the pair of conductive films. However, in this embodiment, when the applied voltage is V, V<V.
VA<V<V、、Vn<V<Vc+ va<vの範囲の
印加電圧で面積の異なる4種類の透過率を表示すること
ができる。Four types of transmittances having different areas can be displayed by applying voltages in the range of VA<V<V, Vn<V<Vc+ va<v.
一般的に一対の導電膜間に、誘電体膜6の厚さDlをN
種類(膜厚の薄い部分から順番に1からNまでの添字を
つけることにする)作り、i番目の厚さの部分を透過率
100%にする最小の電圧をV。Generally, the thickness Dl of the dielectric film 6 is N between a pair of conductive films.
The minimum voltage that makes the i-th thick part 100% transmittance is V.
とし、またそのi番目の厚さの部分の面積をS。And the area of the i-th thickness part is S.
とすると、第1図(c)に示すTIは次のようになる。Then, the TI shown in FIG. 1(c) becomes as follows.
Σ れ
TI= −
Σ SJ
したがって1表示装置や光シャッタの場合、その設計思
想に合わせたV、およびT、が得られるようなり、およ
びSlを決定すればよい。Σ ReTI=−Σ SJ Therefore, in the case of a display device or an optical shutter, it is sufficient to determine V and T that match the design concept and SL.
ここで一定の電圧を印加された一対の導電膜間にある電
気光学効果を有する材料に実効的に印加される電圧ある
いは電界の強さが複数種類具なるようにする方法例とし
て次のようなものが考えられる。Here, as an example of a method for effectively applying a plurality of voltages or electric field strengths to a material having an electro-optic effect between a pair of conductive films to which a constant voltage is applied, the following method is used. I can think of things.
第1図(d)に示すように一対の導電膜の両方に誘電体
膜6の厚さを変えても作成できる。As shown in FIG. 1(d), the dielectric film 6 can be formed by changing the thickness of the dielectric film 6 on both of the pair of conductive films.
第1図(e)に示すように誘電体16の厚さを連続的に
変化させることにより、電気光学効果を有する材料7に
実効的に印加される電圧あるいは電界の強さを連続的に
変化させることができる。As shown in FIG. 1(e), by continuously changing the thickness of the dielectric 16, the strength of the voltage or electric field effectively applied to the material 7 having an electro-optic effect is continuously changed. can be done.
第1図(f)に示すように複数種類の誘電体膜6゜8.
9を重ね合わせることによっても作成できる。As shown in FIG. 1(f), multiple types of dielectric films 6°8.
It can also be created by overlapping 9.
また、誘電体膜の厚さを変化させた場合、その段差を水
ガラスや配向膜5などで解消させたり、第1図(g)に
示すように、まず第1の誘電体膜6の厚さを変化させて
形成したのち、第1の誘電体膜6とは誘電率の異なる第
2の誘電体膜8を被着し、そののち表面を光学研磨する
ことによって形成された第2の誘電体膜8を用いると平
面な表面が得られ、さらに電気光学効果を有する材料7
の19さが一定となる。In addition, when the thickness of the dielectric film is changed, the difference in level may be eliminated by using water glass or an alignment film 5, or as shown in FIG. 1(g), the thickness of the first dielectric film 6 may be A second dielectric film 8 having a dielectric constant different from that of the first dielectric film 6 is deposited, and then the surface of the second dielectric film 8 is optically polished. A flat surface can be obtained by using the body membrane 8, and a material 7 having an electro-optic effect can be obtained.
19 becomes constant.
以上の考察かられかるように、本発明装置の構造は一対
の導電膜間の電圧を直接表示モードに変換できるセンサ
への応用が有効である。また電気光学効果を有する材料
が厚さによってその応答速度が異なるような場合には、
その駆動周波数などのセンサとしても使用できる。As can be seen from the above considerations, the structure of the device of the present invention can be effectively applied to a sensor that can directly convert the voltage between a pair of conductive films into a display mode. Furthermore, if the response speed of a material with an electro-optic effect differs depending on its thickness,
It can also be used as a sensor for driving frequency, etc.
第2図(a)は本発明を液晶パネルに適用した実施例を
示している。ここでは−表示絵素を構成する一対の導電
膜2a、2d間にある電気光学効果を有する材料(液晶
4)に実効的に印加される電圧あるいは電界の強さを変
化させるために、誘電体膜8の膜厚を3種類に変化させ
ている。なお、ここでは偏光板10を備えた、たとえば
ネガティブ表示のTN液晶パネルを例にとって説明する
が、ポジティブ表示のものや、GH液晶を用いたものに
おいても同様である。FIG. 2(a) shows an embodiment in which the present invention is applied to a liquid crystal panel. Here, in order to change the strength of the voltage or electric field that is effectively applied to the material (liquid crystal 4) having an electro-optical effect between the pair of conductive films 2a and 2d that constitute the display picture element, a dielectric material is used. The thickness of the film 8 is changed into three types. Note that, although a negative display TN liquid crystal panel equipped with the polarizing plate 10 will be explained here as an example, the same applies to a positive display panel or one using GH liquid crystal.
第2図(b)は、ある液晶を適当な厚さで用いた場合、
第2図(a)のA、B、Cの部分に対応する透過率と、
一対の透明導電膜2a、2d間にスタティック駆動によ
り印加された電圧との関係を示している。Figure 2(b) shows that when a certain liquid crystal is used with an appropriate thickness,
Transmittance corresponding to parts A, B, and C in FIG. 2(a),
It shows the relationship with the voltage applied by static driving between the pair of transparent conductive films 2a and 2d.
ここで、たとえば電圧3ボルトを印加した場合の透過率
を考えると、Aの部分では約90%、Bの部分では約2
2%、Cの部分では約2%となり、一対の透明導電膜2
a、2d間に一定の電圧を印加した場合でも異なる透過
率を示す部分をつくり出すことができる。さらに、第2
図(c)に第2図(b)に示すA、B、Cの部分の光学
特性を示す面積が等しい場合の一対の透明導電膜全体の
光学特性を示している。ここに示しているように透過率
を10%から90%まで変化させる場合、印加電圧を2
.2ボルトから4.5ボルトまで幅広い電圧範囲におい
て変化させればよい、第5図に示す従来のものが。For example, if we consider the transmittance when a voltage of 3 volts is applied, the transmittance is about 90% in the A part and about 2 in the B part.
2%, about 2% in the C part, and the pair of transparent conductive films 2
Even when a constant voltage is applied between a and 2d, parts exhibiting different transmittances can be created. Furthermore, the second
FIG. 2(c) shows the optical characteristics of the entire pair of transparent conductive films when the areas showing the optical characteristics of portions A, B, and C shown in FIG. 2(b) are equal. When changing the transmittance from 10% to 90% as shown here, the applied voltage is changed to 2.
.. The conventional one shown in Fig. 5 can be varied over a wide voltage range from 2 volts to 4.5 volts.
第20図(b)のAで示す光学特性だけで構成されてい
るとすると、透過率を10%から90%まで変化させる
のに1ボルトの印加電圧幅しかないのに対し、本発明に
よるものでは、その倍以上もの大きな印加電圧幅が得ら
れる。しかも従来のものと比べて、はとんど等しい2.
2ボルトという低い電圧より使用できる利点がある。If the optical characteristics were to be composed only of the optical characteristics shown by A in FIG. In this case, an applied voltage width that is more than double that can be obtained. Moreover, compared to the conventional one, 2.
It has the advantage of being able to be used at a voltage as low as 2 volts.
第3図(a)および第3図(d)にカラーフィルタを誘
電体膜9−a、9−b、9−cとして用いた際の液晶パ
ネルの実施例を示している。FIGS. 3(a) and 3(d) show examples of liquid crystal panels in which color filters are used as dielectric films 9-a, 9-b, and 9-c.
第3図(b)は誘電体膜9−cから誘電体膜9−aの順
序でほとんど同じ値λ。のピークをもちながらそのバン
ド幅を広げていくフィルタである。FIG. 3(b) shows almost the same value λ from dielectric film 9-c to dielectric film 9-a. It is a filter that widens the bandwidth while having a peak of .
第3図(c)は誘電体膜9−cから誘電体膜9−aに向
ってそれぞれのピーク値が長波長側にシフトしていくフ
ィルタである。FIG. 3(c) shows a filter in which the respective peak values shift toward longer wavelengths from the dielectric film 9-c to the dielectric film 9-a.
第3図(b)、(c)、(e)に、各種フィルタの分光
特性を示している。FIGS. 3(b), (c), and (e) show the spectral characteristics of various filters.
第3図(a)と(b)を組み合わせると、一対の導電膜
内における色純度の電圧依存性が得られる。By combining FIGS. 3(a) and 3(b), the voltage dependence of color purity within a pair of conductive films can be obtained.
また誘電体膜としてのカラーフィルタの段差による最適
液晶ギャップを考慮しての第3図(a)と(c)の組み
合わせ、第3図(d)と(e)の組み合わせなどが考え
られる。第3図(d)において、3種類の誘電体膜に、
色の三原色を割りあてると次のようになる。Further, the combination of FIGS. 3(a) and 3(c), the combination of FIG. 3(d) and 3(e), etc., taking into consideration the optimum liquid crystal gap due to the step difference of the color filter as a dielectric film, can be considered. In FIG. 3(d), the three types of dielectric films are
When the three primary colors are assigned, the result is as follows.
それぞれの誘電体膜9の1(Q=a−c)における誘電
率と厚さをε、、D、とし、i=aにレッド。Let the dielectric constant and thickness of each dielectric film 9 at 1 (Q=a-c) be ε,,D, and red for i=a.
1==bにグリーン、i=cにブルーを割りあてる。Assign green to 1==b and blue to i=c.
ε1D、くε1Dゎ〈εe D eの場合、一対の導電
膜間の電圧が増加するにつれてレッド→イエロー→ホワ
イトと変化し、また同様に
εb D b < E e D e <εa D sの
場合、グリーン→シアン→ホワイ1−となり、εcDc
くε1D、〈ε、Dbの場合、ブルー→マゼンタ→ホワ
イトとなる。ここでさらに、D、<Dh<DCとして最
適液晶ギャップを考慮し、固定しておき、E、だけを変
化させ、前記不等式を満たすように設計すれば、新しい
ディスプレイができる。In the case of ε1D, ε1Dゎ〈εe De, as the voltage between the pair of conductive films increases, it changes from red → yellow → white, and similarly, in the case of εb D b < E e De < εa D s, Green → cyan → white 1-, εcDc
In the case of ε1D, <ε, Db, the color becomes blue → magenta → white. Furthermore, if the optimal liquid crystal gap is considered and fixed as D<Dh<DC, and only E is changed and designed to satisfy the above inequality, a new display can be created.
これまでは、一対の導電膜について述べてきたが、これ
らは特にアクティブマトリックス駆動においては1ピク
セルに対応すると考えられ、駆動方法における新しい問
題点はなく、中間調表示に特に有効である。So far, we have described a pair of conductive films, which are considered to correspond to one pixel, especially in active matrix driving, and there are no new problems in the driving method, and they are particularly effective for halftone display.
スタティック駆動においても、中間調表示をする場合に
は有効であり、第3図に用いた実施例を採用すると、1
ピクセル内での多色表示も可能である。また誘電体膜と
しては、絶縁膜、有機物。Static drive is also effective when displaying halftones, and if the embodiment shown in Fig. 3 is adopted, 1
Multicolor display within a pixel is also possible. In addition, dielectric films include insulating films and organic materials.
無機フィルタなどを含むさまざまな誘電体を用いること
かできる。A variety of dielectrics can be used, including inorganic filters and the like.
第4図(a)はドツトマトリックス型におけるダイナミ
ック駆動方式を行なうパネルを示している。FIG. 4(a) shows a panel using a dot matrix type dynamic driving method.
第4図(b)および第4図(C)はそれぞれ第4図(a
)に示したA−B断面の下側基板付近およびB−C断面
の上側基板付近を表わしている。この場合、「一対の導
電膜」を1ピクセルに対応するとして扱う、ここでは4
種類の誘電体膜11が使われており、それぞれ誘電率と
厚さを決定すれば、ピクセル当り×2種類の光学特性を
もつ部分を組み合わせることができる。またそれぞれの
種類の占める面積を決定してやれば、一対の導電膜間の
電圧と透過率との関係が得られる。FIG. 4(b) and FIG. 4(C) are respectively shown in FIG. 4(a).
) shows the vicinity of the lower substrate in the AB cross section and the vicinity of the upper substrate in the B-C cross section. In this case, a "pair of conductive films" is treated as corresponding to one pixel, here 4
Different types of dielectric films 11 are used, and by determining the dielectric constant and thickness of each, it is possible to combine parts with two types of optical characteristics per pixel. Furthermore, by determining the area occupied by each type, the relationship between the voltage between a pair of conductive films and the transmittance can be obtained.
本発明を用いた中間色表示は、面積階調をさらに追加利
用するものであり、1ピクセル内での各中間色の占める
面積の配列にも工夫できる。たとえばRGBの1トリオ
を表示するのに、第4図(d)に示すように、中心部は
ど明るい構成にしたり、第4図(e)に示すように1ト
リオの色の中心はど明るくしたりできる。しかし、その
駆動方法に関しては、この場合クロストークを充分に考
慮する必要がある。The intermediate color display using the present invention additionally utilizes area gradation, and the arrangement of areas occupied by each intermediate color within one pixel can also be devised. For example, to display one trio of RGB colors, the center of the color may be bright as shown in Figure 4(d), or the center of the trio of colors must be bright as shown in Figure 4(e). You can do it. However, regarding the driving method, it is necessary to fully consider crosstalk in this case.
(発明の効果)
本発明によれば、一対の導電膜間の表示面内において、
複数の異なる電気光学特性を発揮させることが可能とな
り、強誘電液晶等を用いた中間調表示等にすぐれた効果
がある。(Effects of the Invention) According to the present invention, within the display surface between a pair of conductive films,
It becomes possible to exhibit a plurality of different electro-optical characteristics, and has excellent effects on halftone display using ferroelectric liquid crystals and the like.
第1図(aL (dL (e)、 (f)、(g)は本
発明の一実施例における液晶パネルの断面図、第1図(
b)、(Q)は液晶パネルの印加電圧と透過率との関係
図、第2図(a)は本発明の第2の実施例の液晶パネル
断面図、第2図(b)、(c)は同液晶パネルの印加電
圧と透過率との関係図、第3図(a)。
(d)は本発明の第3実施例の液晶パネルの断面図、第
3図(b)、(c)、(e)は同フィルタの分光特性図
、第4図(a)は本発明を用いた他の液晶パネルの概略
平面図、第4図(b)、(c)は同(a)のA−B、B
−Cの部分断面図、第4図(d)、(e)はRGBトリ
オ内での明暗の配置方法を示す図、第5図は従来の液晶
パネルの断面図である。
1・・・ガラス基板、 2 a 、 2 b 、 2
c 、 2 d −透明導電膜、 3・・・酸化シ
リコン、 4・・・液晶、 5・・・配向膜、 6,8
,9,11・・・誘電体膜、 7・・・材料、 1o・
・・偏光板。
特許出願人 松下電器産業株式会社
第1図
(a)
第1図
(b)
Oく■< VB < VC
第1図
(c)
第1図
(d)
第1図
(e)
第 1 図
(f)
第1図
第2図
(a)
)!1
BC
10−楊I′i5′l辰
第2図
(b)
A B
C第2図
(C)
(’/、)
丘T)jD電L
9−a9−b9−c−−−AfJ、イ本月臭第3図
(b)
第3図
(c)
第3図
(d)
9−a9−b9−c−−aftt傾
第3図
(e)
第4図
(a)
Y+ Y2 Y3Y4 ・・第4図
(b)
(c)
a
第4図
(d)
GB
(e)
G
第5図Figure 1 (aL (dL (e), (f), and (g) are cross-sectional views of a liquid crystal panel in an embodiment of the present invention;
b), (Q) are relationship diagrams between applied voltage and transmittance of the liquid crystal panel, FIG. 2(a) is a cross-sectional view of the liquid crystal panel of the second embodiment of the present invention, and FIG. ) is a diagram showing the relationship between applied voltage and transmittance of the same liquid crystal panel, FIG. 3(a). (d) is a cross-sectional view of a liquid crystal panel according to a third embodiment of the present invention, FIGS. 3(b), (c), and (e) are spectral characteristic diagrams of the same filter, and FIG. Schematic plan views of other liquid crystal panels used, FIGS. 4(b) and 4(c) are A-B and B of the same (a).
-C is a partial sectional view, FIGS. 4(d) and 4(e) are diagrams showing a method of arranging brightness and darkness within an RGB trio, and FIG. 5 is a sectional view of a conventional liquid crystal panel. 1...Glass substrate, 2a, 2b, 2
c, 2d - transparent conductive film, 3... silicon oxide, 4... liquid crystal, 5... alignment film, 6,8
,9,11...Dielectric film, 7...Material, 1o.
··Polarizer. Patent applicant Matsushita Electric Industrial Co., Ltd. Figure 1 (a) Figure 1 (b) Oku ■ < VB < VC Figure 1 (c) Figure 1 (d) Figure 1 (e) Figure 1 (f ) Figure 1 Figure 2 (a) )! 1 BC 10-Yang I'i5'l Dragon Figure 2 (b) A B
CFigure 2 (C) ('/,) Hill T)jD Den L 9-a9-b9-c---AfJ, I Honzuki Figure 3 (b) Figure 3 (c) Figure 3 ( d) 9-a9-b9-c--aftt slope Fig. 3 (e) Fig. 4 (a) Y+ Y2 Y3Y4 ... Fig. 4 (b) (c) a Fig. 4 (d) GB (e) G Figure 5
Claims (3)
持し、該材料と導電膜間に厚さの異なった複数の部分を
有する誘電体膜を形成し、前記一対の導電膜間に適当な
駆動電圧を印加して、前記厚さの異なった複数の部分に
対応した、前記材料の各部に印加される電界の強さを異
ならせ、前記材料の各部に応じた電気光学特性を得るこ
とを特徴とする電気光学効果を利用した装置。(1) A material having an electro-optic effect is sandwiched between a pair of conductive films, a dielectric film having a plurality of parts with different thicknesses is formed between the material and the conductive film, and Applying an appropriate driving voltage to vary the strength of the electric field applied to each part of the material corresponding to the plurality of parts having different thicknesses, thereby obtaining electro-optic characteristics corresponding to each part of the material. A device that utilizes electro-optical effects.
ことを特徴とする特許請求の範囲第(1)項記載の電気
光学効果を利用した装置。(2) A device utilizing an electro-optic effect according to claim (1), wherein the material having an electro-optic effect is a ferroelectric liquid crystal.
の表示有効領域を一対の導電膜とすることを特徴とする
特許請求の範囲第(1)項記載の電気光学効果を利用し
た装置。(3) A device utilizing an electro-optic effect according to claim (1), wherein the effective display area of one pixel in active matrix driving is formed by a pair of conductive films.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10387386A JPS62262022A (en) | 1986-05-08 | 1986-05-08 | Device utilizing electro-optical effect |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10387386A JPS62262022A (en) | 1986-05-08 | 1986-05-08 | Device utilizing electro-optical effect |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62262022A true JPS62262022A (en) | 1987-11-14 |
Family
ID=14365552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10387386A Pending JPS62262022A (en) | 1986-05-08 | 1986-05-08 | Device utilizing electro-optical effect |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62262022A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0212A (en) * | 1987-11-13 | 1990-01-05 | Honeywell Inc | Pixel of liquid crystal display device and method of realizing gray scale thereof for liquid crystal display device |
WO1991015800A1 (en) * | 1990-04-04 | 1991-10-17 | Makow David M | An electro-optic cell for animated displays and indicators |
GB2296810A (en) * | 1994-12-29 | 1996-07-10 | Samsung Display Devices Co Ltd | Ferroelectric liquid crystal display |
JPH10213794A (en) * | 1996-04-30 | 1998-08-11 | Nec Corp | Liquid crystal display device |
US6160602A (en) * | 1996-04-30 | 2000-12-12 | Nec Corporation | TN-mode liquid crystal display apparatus having improved gray scale display characteristics |
JP2005241709A (en) * | 2004-02-24 | 2005-09-08 | Fujitsu Display Technologies Corp | Liquid crystal display device |
GB2419216A (en) * | 2004-10-18 | 2006-04-19 | Hewlett Packard Development Co | Display device with greyscale capability |
WO2012043620A1 (en) * | 2010-09-30 | 2012-04-05 | 凸版印刷株式会社 | Color filter substrate and liquid crystal display device |
WO2015146620A1 (en) * | 2014-03-27 | 2015-10-01 | 日本精機株式会社 | Liquid crystal display element |
US9366895B2 (en) * | 2006-07-28 | 2016-06-14 | Hewlett-Packard Development Company, L.P. | Liquid crystal display with polymer layer of varying thickness and method of producing such a layer |
-
1986
- 1986-05-08 JP JP10387386A patent/JPS62262022A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0212A (en) * | 1987-11-13 | 1990-01-05 | Honeywell Inc | Pixel of liquid crystal display device and method of realizing gray scale thereof for liquid crystal display device |
WO1991015800A1 (en) * | 1990-04-04 | 1991-10-17 | Makow David M | An electro-optic cell for animated displays and indicators |
GB2296810A (en) * | 1994-12-29 | 1996-07-10 | Samsung Display Devices Co Ltd | Ferroelectric liquid crystal display |
GB2296810B (en) * | 1994-12-29 | 1998-10-07 | Samsung Display Devices Co Ltd | Ferroelectric liquid crystal device for gray scale display,apparatus and method adopting the same |
JPH10213794A (en) * | 1996-04-30 | 1998-08-11 | Nec Corp | Liquid crystal display device |
US6160602A (en) * | 1996-04-30 | 2000-12-12 | Nec Corporation | TN-mode liquid crystal display apparatus having improved gray scale display characteristics |
US6580485B1 (en) | 1996-04-30 | 2003-06-17 | Nec Corporation | Liquid crystal display apparatus having improved gray scale display characteristics |
JP4657613B2 (en) * | 2004-02-24 | 2011-03-23 | 富士通株式会社 | Liquid crystal display device |
JP2005241709A (en) * | 2004-02-24 | 2005-09-08 | Fujitsu Display Technologies Corp | Liquid crystal display device |
GB2419216A (en) * | 2004-10-18 | 2006-04-19 | Hewlett Packard Development Co | Display device with greyscale capability |
US8599326B2 (en) | 2004-10-18 | 2013-12-03 | Hewlett-Packard Development Company, L.P. | Method of manufacturing a display device with greyscale capability |
US9366895B2 (en) * | 2006-07-28 | 2016-06-14 | Hewlett-Packard Development Company, L.P. | Liquid crystal display with polymer layer of varying thickness and method of producing such a layer |
WO2012043620A1 (en) * | 2010-09-30 | 2012-04-05 | 凸版印刷株式会社 | Color filter substrate and liquid crystal display device |
US9223170B2 (en) | 2010-09-30 | 2015-12-29 | Toppan Printing Co., Ltd. | Color filter substrate and liquid crystal display device |
JP5907064B2 (en) * | 2010-09-30 | 2016-04-20 | 凸版印刷株式会社 | Color filter substrate and liquid crystal display device |
WO2015146620A1 (en) * | 2014-03-27 | 2015-10-01 | 日本精機株式会社 | Liquid crystal display element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4653862A (en) | Liquid crystal display device having color filters sized to prevent light leakage between pixels | |
TW581915B (en) | Color filter and optical display device | |
JP2004258616A5 (en) | ||
US4589734A (en) | Polychromatic liquid crystal display with reflective electrode pads | |
US6738119B2 (en) | Liquid crystal display and method for manufacturing the same | |
JPS62262022A (en) | Device utilizing electro-optical effect | |
JPH0454207B2 (en) | ||
JPH0558168B2 (en) | ||
JPS6218917B2 (en) | ||
JPS6112270B2 (en) | ||
JP2008292747A (en) | Display device and image forming apparatus | |
JPH07104283A (en) | Color liquid crystal display device | |
JPH05313158A (en) | Color liquid crystal display | |
JPS6048037B2 (en) | Color LCD display panel for TV | |
JPH08220527A (en) | Color filter substrate and its manufacture, and liquid crystal display device | |
JPS63146019A (en) | Color liquid crystal display element | |
JPS59222818A (en) | Reversal image display device | |
JP3415393B2 (en) | Reflective liquid crystal display | |
JPH06160856A (en) | Liquid crystal display element | |
JPS59147386A (en) | Liquid crystal display | |
JP2674551B2 (en) | Liquid crystal display | |
KR940009165B1 (en) | Multi-color lcd | |
JPH03109525A (en) | Image display device | |
JPH0725776Y2 (en) | Liquid crystal element | |
JPS61143726A (en) | Liquid crystal display element |