JPS62250094A - Method for separating and purifying aromatic component - Google Patents
Method for separating and purifying aromatic componentInfo
- Publication number
- JPS62250094A JPS62250094A JP9250886A JP9250886A JPS62250094A JP S62250094 A JPS62250094 A JP S62250094A JP 9250886 A JP9250886 A JP 9250886A JP 9250886 A JP9250886 A JP 9250886A JP S62250094 A JPS62250094 A JP S62250094A
- Authority
- JP
- Japan
- Prior art keywords
- fraction
- cyclopentadiene
- aromatic
- distillation
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 125000003118 aryl group Chemical group 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims description 24
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 claims abstract description 53
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 17
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 17
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 14
- 238000005984 hydrogenation reaction Methods 0.000 claims description 41
- 238000004821 distillation Methods 0.000 claims description 30
- 238000000746 purification Methods 0.000 claims description 11
- 239000003502 gasoline Substances 0.000 abstract description 18
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 150000001336 alkenes Chemical class 0.000 abstract description 7
- 239000000047 product Substances 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 5
- 239000006227 byproduct Substances 0.000 abstract description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 abstract description 3
- 238000004227 thermal cracking Methods 0.000 abstract description 2
- 239000003921 oil Substances 0.000 description 24
- 239000010692 aromatic oil Substances 0.000 description 19
- 239000003054 catalyst Substances 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 17
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 16
- 229910052739 hydrogen Inorganic materials 0.000 description 15
- 239000001257 hydrogen Substances 0.000 description 15
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- 238000000926 separation method Methods 0.000 description 11
- 150000001993 dienes Chemical class 0.000 description 10
- 238000009835 boiling Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- -1 cyclopentadiene Chemical class 0.000 description 8
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- 238000007670 refining Methods 0.000 description 7
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910052750 molybdenum Inorganic materials 0.000 description 6
- 239000011733 molybdenum Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000004927 clay Substances 0.000 description 5
- 229910017052 cobalt Inorganic materials 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 150000003464 sulfur compounds Chemical class 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- 239000005909 Kieselgur Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000004508 fractional distillation Methods 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 3
- 229910017464 nitrogen compound Inorganic materials 0.000 description 3
- 150000002830 nitrogen compounds Chemical class 0.000 description 3
- 238000000197 pyrolysis Methods 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 125000003011 styrenyl group Chemical class [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- WHDPTDWLEKQKKX-UHFFFAOYSA-N cobalt molybdenum Chemical compound [Co].[Co].[Mo] WHDPTDWLEKQKKX-UHFFFAOYSA-N 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000000895 extractive distillation Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910052976 metal sulfide Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 150000005673 monoalkenes Chemical class 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 101150052147 ALLC gene Proteins 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910020647 Co-O Inorganic materials 0.000 description 1
- 229910020704 Co—O Inorganic materials 0.000 description 1
- 101100441097 Dictyostelium discoideum crlG gene Proteins 0.000 description 1
- 241000283986 Lepus Species 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 241000220324 Pyrus Species 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 235000021017 pears Nutrition 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は炭化水素油から芳香族成分を分離精製する方法
に関するものである。詳しくは本発明は石油系炭化水素
油、例えばナフサを熱分解λ
してガセ状のオレフィン類を製造する際に副生する分解
ガソリン、から芳香族成分を分離精製する方法に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for separating and refining aromatic components from hydrocarbon oil. Specifically, the present invention relates to a method for separating and refining aromatic components from petroleum-based hydrocarbon oil, such as cracked gasoline, which is a by-product when producing gaseous olefins by thermally cracking naphtha.
近年、化学工業の驚異的発展によシ、その基礎原料とし
て、エチレン、プロピレンなどの低級オレフィンと共に
、ベンゼン、トルエン及ヒキシレン(以下、BTXとい
う)などの芳香族炭化水素の需要が増大した。また、B
TXの品質向上についての需要家の要望はますます厳し
く、例えばベンゼンについてみれば硫黄含有量が数pp
m以下、凝固点が、t、+℃以上という高純度製品が低
価格で供給されるよう要望されている。In recent years, with the amazing development of the chemical industry, demand has increased for aromatic hydrocarbons such as benzene, toluene, and hxylene (hereinafter referred to as BTX) as well as lower olefins such as ethylene and propylene as basic raw materials. Also, B
Demand from customers to improve the quality of TX is becoming increasingly strict; for example, in the case of benzene, the sulfur content is several ppp.
There is a demand for high-purity products with a freezing point of less than m and a freezing point of more than t, +°C to be supplied at a low price.
既存のBTX製造技術についてみれば、一般にコークス
炉軽油、オイルガス軽油、分解ガソリン、改質油などの
各種の芳香族成分含有炭化水素油を原料とし、該炭化水
素油から芳香族成分を分離精製してBTXを取得するプ
ロセスであり、特殊なケースではBTX生産比率を調整
するだめの工程が付加される。既存のBTX製造技術の
典型的なプロセスとして、分解ガソリンからのBTX製
造について説明すると、分解ガソリンを予備蒸留に付し
て0.以下の留分および0゜以上の留分を分離しく芳香
族成分の濃縮)、06〜C8留分を2段水添精製に付し
て不飽和成分の水添と硫黄化合物などの水素化分解を行
ない(汚染物の除去)、ついで水添油を芳香族成分に対
して溶媒となるような溶剤(例えばスルホラン、NMP
等)を用いる溶媒抽出に付して芳香族成分のみを抽出し
く非芳香族成分の分離)、最後に抽出物を分留に付して
BTX各成分に分別することからなるプロセス(以下、
抽出プロセスという)である。Existing BTX production technology generally uses various aromatic component-containing hydrocarbon oils such as coke oven light oil, oil gas light oil, cracked gasoline, and reformed oil as raw materials, and separates and refines the aromatic components from the hydrocarbon oil. This is the process of acquiring BTX through the process, and in special cases, an additional step is added to adjust the BTX production ratio. To explain the production of BTX from cracked gasoline as a typical process of existing BTX production technology, cracked gasoline is subjected to preliminary distillation to obtain 0. The following fractions and the fractions above 0° are separated and aromatic components are concentrated), and the 06 to C8 fractions are subjected to two-stage hydrogenation refining to hydrogenate unsaturated components and hydrogenolyze sulfur compounds, etc. (removal of contaminants), then the hydrogenated oil is treated with a solvent (e.g. sulfolane, NMP) that acts as a solvent for the aromatic components.
etc.) to extract only the aromatic components and separate the non-aromatic components), and finally, the extract is subjected to fractional distillation to separate the BTX components (hereinafter referred to as
extraction process).
上記従来技術においては、上記分解ガソリン等を予備蒸
留して得た06〜C3留分、即ち芳香族成分に富む留分
を一段水添精製して、該留分中のジオレフィン類をモノ
オレフィン類、さラニ飽和炭化水素にまで水添処理して
いるが、該ジオレフィン類、特にシクロペンタジェン等
のジエン類は加熱または蒸発に際して重合して熱交換器
、加熱器または配管などにガム状物質またはコークス状
物質として沈積し、最終的にこれらの機器および配管な
どを閉塞させるという問題がある。また、上記水添精製
に際しては、上記ジオレフィンは多量の水素を消費する
上、ジエン価調節のため、運転操作が煩雑になるという
問題点を有する。In the above conventional technology, the 06-C3 fraction obtained by preliminary distillation of the cracked gasoline, etc., that is, the fraction rich in aromatic components, is subjected to one-step hydrogenation purification, and the diolefins in the fraction are converted into monoolefins. However, these diolefins, especially dienes such as cyclopentadiene, polymerize during heating or evaporation and form a gum-like substance in heat exchangers, heaters, piping, etc. The problem is that it deposits as a substance or a coke-like substance and eventually blocks these equipment and piping. In addition, during the hydrogenation purification, the diolefin consumes a large amount of hydrogen and has the problem that the operation becomes complicated due to diene number adjustment.
本発明者等は、上記した分解ガソリン等の芳香族成分含
有炭化水素油の予備蒸留分の一段水添精製における従来
技術の問題点を解決すべく、鋭意検討を重ねた結果、上
記炭化水素油を予備蒸留して得た06〜C8留分をさら
に蒸留精製して06〜’s M 分中のシクロペンタジ
ェンを分離除去したのち、一段水臨精製処理することに
よシ、上記問題点が大幅に改善され、かつシクロペンタ
ジェンが萬純夏で回収できることを見出し、本発明を完
成するに至った。The present inventors have conducted intensive studies to solve the problems of the conventional technology in the single-stage hydrogenation refining of the pre-distilled fraction of the aromatic component-containing hydrocarbon oil such as cracked gasoline. The 06-C8 fraction obtained by preliminary distillation of the 06-C8 fraction was further distilled and purified to separate and remove cyclopentadiene in the 06-'s M fraction, and then subjected to one-stage water purification treatment, thereby solving the above problems. It was discovered that cyclopentadiene was significantly improved and that cyclopentadiene could be recovered in Manjunka, and the present invention was completed.
即ち、本発明の要旨は、06〜C8の芳香族成分一
を含有する炭化水素油から0.以下の留分存びC0以上
の留分を蒸留分離して得た。 OL+、、JO,留分及
びシクロペンタジェンを含有する留分を蒸留し、シクロ
ペンタジェンを含有する留分を留出させて取得し、一方
、シクロペンタジェンの分離除去された06〜C,留分
を缶出させ、これを一段水添精製処理した後、芳香族成
分を分離するととを特徴とする芳香族成分の分離精製方
法、に存する。That is, the gist of the present invention is to extract 0.0 from a hydrocarbon oil containing 0.6 to C8 aromatic components. The following fractions and fractions of CO or higher were obtained by distillation separation. OL+,, JO, fractions and cyclopentadiene-containing fractions were distilled, and cyclopentadiene-containing fractions were distilled to obtain 06-C, from which cyclopentadiene was separated and removed. The present invention relates to a method for separating and purifying aromatic components, which comprises: distilling a distillate, subjecting it to one-step hydrogenation and purification treatment, and then separating aromatic components.
以下、本発明について詳細に説明する。The present invention will be explained in detail below.
本発明において原料として用いる炭化水素油はOe〜0
@の芳香族成分を含有する炭化水素油であシ、好ましく
は芳香族成分を30重重量以上含有する炭化水素油であ
る。具体的には分解ガソリン、改質油などの石油系軽油
、コークス炉軽油、オイルガス軽油などのタール系軽油
が挙げられるが、特に分解ガソリンが好適である。The hydrocarbon oil used as a raw material in the present invention is Oe ~ 0
It is a hydrocarbon oil containing an aromatic component, preferably a hydrocarbon oil containing an aromatic component of 30% by weight or more. Specific examples include petroleum-based light oils such as cracked gasoline and reformed oil, tar-based light oils such as coke oven light oil, and oil gas light oil, with cracked gasoline being particularly suitable.
分解ガソリンは石油系炭化水素油、例えばナフサの熱分
解又は接触分解に由来するものであシ、その組成、性状
は、製造プロセス、原料油、分解条件、分解プロセス、
分離条件などKよってかなシ異なる。代表的な分解ガソ
リンとしてはエチレン、プロピレンなどの低級オレフィ
ン製造プラントから副生ずる分解ガソリンがあげられる
。Cracking gasoline is derived from the thermal cracking or catalytic cracking of petroleum-based hydrocarbon oils, such as naphtha, and its composition and properties vary depending on the manufacturing process, feedstock oil, cracking conditions, cracking process,
It varies depending on the separation conditions etc. A typical example of cracked gasoline is cracked gasoline that is produced as a by-product from plants that produce lower olefins such as ethylene and propylene.
以下、分解ガソリンを原料として用いた場合につきよシ
具体的に説明する。通常の低級オレフィン製造プラント
、例えばエチレンプラントでは、約230”C以下の終
留点を有する石油系炭化水素油、例えばナフサ、灯軽油
等を水蒸気ピレン等の低級オレフィン類と共に沸点範囲
が30−コ30℃にある分解ガソリン留分を含tr熱分
解生成物が得られる。核熱分解生成物からC6以下の留
分を分留して得られた011以上の留分を含有する分解
ガソリンは、通常、その沸点が30−230℃の範囲で
、芳香族成分含有量が約、? 0− f 、!を重量%
の範囲のものである。Hereinafter, the case where cracked gasoline is used as a raw material will be specifically explained. In a typical lower olefin production plant, such as an ethylene plant, a petroleum hydrocarbon oil having a final boiling point of about 230"C or less, such as naphtha, kerosene, etc., is used together with lower olefins such as steam pyrene with a boiling point range of 30"C or less. A tr pyrolysis product containing a cracked gasoline fraction at 30° C. is obtained.The cracked gasoline containing a 011 or higher fraction obtained by fractionating a C6 or lower fraction from a nuclear pyrolysis product is Usually, its boiling point is in the range of 30-230 °C, and the aromatic component content is about ?0-f,!% by weight
It is within the range of .
この場合、まず、上記分解ガソリンを第1蒸留塔、即ち
軽沸分離塔に供給してC3以下の留分を蒸留分離し、塔
頂よプイソプレン及びシクロペンタジェン等のC1以下
の留分な留出させて分離し、一方塔底からジシクロペン
タジェン及ヒ06以上の留分を含有する缶出液を抜き出
す。該第1蒸留塔はC6以下の留分と06以上の留分が
蒸留分離できる条件下、即ち、理論段数10段以上の蒸
留塔を用いて、塔底温度1oo−iz。In this case, first, the above-mentioned cracked gasoline is fed to the first distillation column, that is, a light boiling separation column, and the C3 or lower fractions are distilled and separated, and the C1 or lower fractions such as isoprene and cyclopentadiene are removed from the top of the column. The bottoms containing dicyclopentadiene and 06 or higher fractions are extracted from the bottom of the column. The first distillation column is operated under conditions that allow distillation separation of C6 or lower fractions and C06 or higher fractions, that is, a distillation column with 10 or more theoretical plates is used, and the bottom temperature is 1 OO-IZ.
℃、塔頂圧力がやや減圧〜やや加圧の条件下で操作され
る。℃, and the tower top pressure is operated under conditions of slightly reduced pressure to slightly increased pressure.
第1蒸留塔の缶出液を、次いで第コ蒸留塔、即ち高沸蒸
留塔に供給して、00以上の留分を蒸留分離し、塔頂よ
ジシクロペンタジェン及びo6〜Oa留分を含有する留
分を留出させ、一方、梧底から0゜以上の留分を含有す
る缶出液を抜き出す。該M、2蒸留塔はC6〜O,留分
と00以上の留分が蒸留分離できる条件下、すなわち、
理論段数10段以上の蒸留塔を用いて、かつ、ジシクロ
ペンタジェンがシクロベンタジエンニ優先的にi÷4”
C%4頂圧力がやや減圧〜加圧の条件下で操作される。The bottoms from the first distillation column are then fed to the second distillation column, that is, the high-boiling distillation column, and the fractions of 00 and above are separated by distillation, and the dicyclopentadiene and o6 to Oa fractions are separated from the top of the column. The contained fraction is distilled out, and on the other hand, the bottoms containing the fraction of 0° or more is extracted from the bottom. The M,2 distillation column is operated under conditions where the C6-O, fraction and the 00 or more fraction can be separated by distillation, that is,
Using a distillation column with the number of theoretical plates of 10 or more, dicyclopentadiene is preferentially converted to cyclobentadiene by i÷4''
The C%4 top pressure is operated under conditions of slightly reduced to elevated pressure.
従来技術においてはこの第コ蒸留塔の留出液を2段水添
精製処理に付していたのであるが、本発明方法において
は該留出液を第3蒸留塔に供給して、シクロペンタジェ
ンを蒸留分離し、塔頂よp高純度のシクロペンタジェン
留分を留出させて取得し、一方、塔底よりC6〜O3留
分、王としてベンゼン、トルエン及びキシレン等の芳香
族炭化水素を含有する缶出液を抜き出す。In the prior art, the distillate from this co-distillation column was subjected to a two-stage hydrogenation purification treatment, but in the method of the present invention, the distillate is supplied to the third distillation column to convert cyclopentadiene. Distillation separation is performed, and a high-purity cyclopentadiene fraction is distilled out from the top of the column, while a C6-O3 fraction is obtained from the bottom, which contains aromatic hydrocarbons such as benzene, toluene, and xylene. Remove the bottom liquid.
該第3然留塔れシクロペンタジェンと06〜0.留分と
が蒸留分離できる条件下、すなわち理論段数io段以上
の蒸留塔を用いて、塔底温度g。The third distillation column contains cyclopentadiene and 06-0. Under conditions where the fraction can be separated by distillation, that is, using a distillation column with the number of theoretical plates of io or more, the bottom temperature of the column is g.
〜/ 、20℃、塔頂圧力がやや減圧〜加圧の条件下で
操作される。~/, 20°C, and the tower top pressure is operated under conditions of slightly reduced pressure to increased pressure.
第3蒸留塔の留出液として得られるシクロペンタジェン
の純度は通常95重量%以上、特に蒸留条件の選択によ
っては99重量%以上のものが得られ、特に精製するこ
となくそのまま合成&4豚、医梨、私架等の原料として
使用することができる。The purity of cyclopentadiene obtained as the distillate of the third distillation column is usually 95% by weight or more, and depending on the selection of distillation conditions, 99% by weight or more can be obtained. It can be used as raw material for medical pears, private shelves, etc.
第3蒸留塔の缶出液は次いで、一段階の水添精製処理に
付して缶出液、即ち06〜08留分の芳香族成分を含有
する留分(以下、芳香族油という)中に含有される不飽
和分、例えばシクロペンタジェンを除くジエン化合物、
スチレン型化合物も含めたモノオレフィン化合物、硫黄
化合物、窒素化合物等を水添精製する処理を行々う。The bottoms from the third distillation column are then subjected to a one-step hydrogenation refining process to form bottoms, i.e., the fractions containing aromatic components of the 06-08 fractions (hereinafter referred to as aromatic oil). unsaturation contained in, for example, diene compounds excluding cyclopentadiene,
Hydrogenation and purification of monoolefin compounds, sulfur compounds, nitrogen compounds, etc. including styrene type compounds will be carried out.
上記芳香族油中の不飽和成分、特にジオレフィン類を含
有していると該芳香族油の加熱、蒸発、接触に際して、
ジオレフィン類が重合して熱交換器、蒸発器、加熱器、
反応器または配管内などにガム状物質、または炭素質と
して沈積し、最終的にこれらの機器、配管などを閉塞さ
せる。ジオレフィン類の除去法としては水添法、重合法
、白土処理法などが提案されているが、水添脱硫と同時
に行なうことができろ水添処理によってジオレフィン類
をモノオレフィン類へ転換させる方法が簡単である。If the aromatic oil contains unsaturated components, especially diolefins, when the aromatic oil is heated, evaporated, or contacted,
Diolefins are polymerized and used in heat exchangers, evaporators, heaters,
It deposits as a gum-like substance or carbonaceous substance in reactors or piping, etc., eventually clogging these equipment and piping. Hydrogenation methods, polymerization methods, clay treatment methods, etc. have been proposed as methods for removing diolefins, but they can be carried out simultaneously with hydrodesulfurization. The method is simple.
第1次の水添精製処理は、上記芳香族油中に含まれるジ
オレフィン類、即ち、ジエン化合物及びスチレン型化合
物をそれぞれモノオレフィン及び芳香族成分に水添処理
する。この反応は選択水添用高活性触媒を用い、ジエン
化合物及びスチレン化合物の重合、縮合等を極力最小に
押さえるような操作条件が採用される。In the first hydrogenation refining treatment, diolefins contained in the aromatic oil, that is, diene compounds and styrene type compounds, are hydrogenated to monoolefins and aromatic components, respectively. In this reaction, a highly active catalyst for selective hydrogenation is used, and operating conditions are adopted to minimize polymerization, condensation, etc. of diene compounds and styrene compounds.
1次水添処理に使用する触媒としては、周期律表第■族
a1第■族a及び第■族に属する元素群から選ばれた少
なくとも1種の金属、金属酸化物または金属硫化物を基
本的活性成分として、これらをアルミナ、珪藻土、焼成
粘土などの担体に担持させたものがよい。例えば、パラ
ジウムは還元状態で優れた水添触媒であシ、ニッケル、
モリブデン、コバルト−モリブデン、ニッケルーモリブ
デンは酸化状態または硫化状態で優れた触媒である。特
に、コバルト−モリブデン触媒、ニッケルーモリブデン
触媒はelR化状態または硫化状態で選択性が優れてお
シ、しかも長時間の連続使用に耐える極めて良好な1次
水添触媒である。かかるコバルトまたはニッケルーモリ
ブデン触媒はアルミナ、珪藻土または焼成粘土などの担
体に、コバルトまたはニッケル対モリブデンのモル比が
/ : o、r〜3になるように、コバルト又はニッケ
ル及びモリブデンを担持させたものであ)、コバルト又
ハニッケル及びモリブデンの担持量の合計は金属として
最終触媒に対し、−〜20重量S、好ましくは3〜13
重量X重量る。The catalyst used in the primary hydrogenation treatment is basically at least one metal, metal oxide, or metal sulfide selected from the group of elements belonging to Group (a), Group (a) and Group (III) of the Periodic Table. As active ingredients, these are preferably supported on a carrier such as alumina, diatomaceous earth, or calcined clay. For example, palladium is an excellent hydrogenation catalyst in the reduced state, nickel,
Molybdenum, cobalt-molybdenum, and nickel-molybdenum are excellent catalysts in the oxidized or sulfurized state. In particular, cobalt-molybdenum catalysts and nickel-molybdenum catalysts have excellent selectivity in the elR state or sulfided state, and are extremely good primary hydrogenation catalysts that can withstand continuous use for long periods of time. Such a cobalt or nickel-molybdenum catalyst is one in which cobalt or nickel and molybdenum are supported on a carrier such as alumina, diatomaceous earth or calcined clay such that the molar ratio of cobalt or nickel to molybdenum is /: o, r ~ 3. ), the total supported amount of cobalt or nickel and molybdenum is -20 weight S, preferably 3 to 13
Weight x weight.
1次水添処理は反応温度230℃以下、好ましくはts
θ〜ココO℃、反応圧力1ONs:0kg7dlc+、
液空間速度(LIISV) / −/ Ohr″″11
水素の存在下で上記芳香族油を上記触媒に接触させるこ
とにより行なわれる。いずれにしても反応系が少まくと
も一部分液相を保ち得る反応温度及び反応圧力に設定す
るのがよい。1次水添処理に使用する水素源としては、
改質ガス、低級オレフィン製造プラントオフガス、又は
それらの水素濃縮物が、あるいは天然ガス、石油などの
炭化水素を水蒸気改質法又は部分酸化法で処理して得ら
れた水素ガスがあげられる。1次水添処理における水素
濃度は約gos以上、好ましくは10X以上がよい。1
次水添処理に硫化物系触媒を使用する場合には、水素の
予備精製は特に要求されないが、パラジウム系触媒を使
用する場合に紘該触媒の被毒性物質である一酸化炭素、
硫化水素などを水素から予め除去式
しておく必要がある。1次水添処理の反応形成は固定床
反応を採用するのが好ましい。固定床反応を液相ないし
気液混相で行なうには、降下流式又は上昇流式のいずれ
も採用できる。The primary hydrogenation treatment is carried out at a reaction temperature of 230°C or lower, preferably ts
θ~Here O℃, reaction pressure 1ONs: 0kg7dlc+,
Liquid hourly space velocity (LIISV) / -/ Ohr″″11
This is carried out by contacting the aromatic oil with the catalyst in the presence of hydrogen. In any case, the reaction temperature and pressure are preferably set so that the reaction system can at least partially maintain a liquid phase. As a hydrogen source used for primary hydrogenation treatment,
Examples include reformed gas, off-gas from a lower olefin production plant, or hydrogen concentrate thereof, or hydrogen gas obtained by treating hydrocarbons such as natural gas and petroleum by a steam reforming method or a partial oxidation method. The hydrogen concentration in the primary hydrogenation treatment is preferably about gos or higher, preferably 10X or higher. 1
When using a sulfide-based catalyst for the subsequent hydrogenation treatment, preliminary purification of hydrogen is not particularly required, but when using a palladium-based catalyst, carbon monoxide, which is a poisonous substance of the catalyst,
It is necessary to remove hydrogen sulfide etc. from hydrogen in advance. It is preferable to employ a fixed bed reaction for reaction formation in the primary hydrogenation treatment. In order to carry out the fixed bed reaction in a liquid phase or a gas-liquid mixed phase, either a downflow type or an upflow type can be adopted.
上記1次水添処理によって得られる芳香族油中には、モ
ノオレフィン化合物、硫黄化合物、窒素化合物ガどの不
純物が含有されている。これらの不純物を水添精製によ
って除去するために、第2次の水添精製処理を行なう。The aromatic oil obtained by the above primary hydrogenation treatment contains impurities such as monoolefin compounds, sulfur compounds, and nitrogen compounds. In order to remove these impurities by hydrogenation purification, a second hydrogenation purification treatment is performed.
群から選ばれた少なくとも1種の金属、金属酸化物又は
金属硫化物であシ、これらをアルミナ、珪藻土、焼成粘
土などに担持させたものが好ましい。特にモリブデン−
アルミナ、コバル)−モリブデン−アルミナ、およびニ
ッケルーモリブデン−アルミナ触媒を硫化状態で使用す
るのが有利である。a次水添処理拡反応温度コ!O〜ダ
15℃、反応圧力t o Nt ojtg /dG 。At least one metal, metal oxide, or metal sulfide selected from the group is preferably supported on alumina, diatomaceous earth, fired clay, or the like. Especially molybdenum
Preference is given to using alumina, cobal)-molybdenum-alumina and nickel-molybdenum-alumina catalysts in the sulfided state. A-th hydrogen treatment expansion reaction temperature! O ~ 15°C, reaction pressure t o Nt ojtg /dG.
LH8V O,J −t hr−’、水素の存在下に実
質的に気相下で芳香族油を上記触媒に接触させるととK
よシ行われる。2次水添処理に必要な水素は1次水添処
理のそれと同様でよい。反応条件における1次水添処理
と一次水添処理の本質的な差異は反応温度にあるので、
1次水添処理で得られた生成物を気液分離することなく
、−次水添処理に必要な温度、すなわち2kO−1/、
1℃の温度に予熱して一次水添処理を行なうのが望まし
い。LH8V O,J -t hr-', when an aromatic oil is contacted with the above catalyst in the presence of hydrogen and substantially in the gas phase, K
It's done well. The hydrogen required for the secondary hydrogenation treatment may be the same as that for the primary hydrogenation treatment. The essential difference between primary hydrogenation treatment and primary hydrogenation treatment in reaction conditions is the reaction temperature.
Without gas-liquid separation of the product obtained in the first hydrogenation treatment, the temperature required for the second hydrogenation treatment, that is, 2 kO-1/,
It is desirable to perform the primary hydrogenation treatment by preheating to a temperature of 1°C.
一次水添処理によって、芳香族油中のモノオレフィン化
合・物は飽和炭化水素に、硫黄化合物は炭化水素及び硫
化水素に1窒素化合物はアンモニアにそれぞれ転換され
る。By the primary hydrogenation treatment, monoolefin compounds in the aromatic oil are converted into saturated hydrocarbons, sulfur compounds are converted into hydrocarbons and hydrogen sulfide, and nitrogen compounds are converted into ammonia.
上記二次水添処理後の芳香族油は次いでストリッパーへ
送入されて、硫化水素、アンモニア等の軽質ガスが分離
される。次いで、芳香族油を芳香族成分に対する選択的
溶剤(例えば、スルホラン、N−メチルピロリドン、グ
リコール糸溶剤、ジメチルスルホキシドなど)による溶
剤抽出操作に付して、芳香族成分のみを抽出し、得られ
た抽出物を抽出蒸留に付して芳香族成分を分離し、該芳
香族成分を所望によシ白土処理を施した後、これを分留
操作に付して、高品質のBTJI成分に分別する。この
分留操作は精密蒸留、共沸蒸留及び抽出蒸留などのいず
れも採用できるが、エネルギーが最も低順な精密蒸留に
よって高純度のBTX、例えば凝固点が、!l−1’C
以上の高純度ベンゼンを容易に収得しうるものである。The aromatic oil after the secondary hydrogenation treatment is then sent to a stripper to separate light gases such as hydrogen sulfide and ammonia. Next, the aromatic oil is subjected to a solvent extraction operation using a selective solvent for aromatic components (for example, sulfolane, N-methylpyrrolidone, glycol thread solvent, dimethyl sulfoxide, etc.) to extract only the aromatic components. The extracted extract is subjected to extractive distillation to separate aromatic components, and the aromatic components are subjected to a clay treatment as desired, and then subjected to a fractional distillation operation to separate high-quality BTJI components. do. This fractional distillation operation can be performed using precision distillation, azeotropic distillation, extractive distillation, etc., but precision distillation, which has the lowest energy, produces high-purity BTX, such as freezing point! l-1'C
The above-mentioned high purity benzene can be easily obtained.
〔実施例」
次に本発明の具体的態様を実施例によシ更に詳細に説明
するが、本発明は、その要旨を越えない限シ、以下の実
施例によって限定されるものではない。[Examples] Next, specific aspects of the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.
実施例!
ナフサを水蒸気の存在下で熱分解して得られた熱分解生
成物からC3以下の留分を蒸留分離し、得られたC3以
上の留分を含有する分解ガソリンヲ使用した。該分解ガ
ソリン(シクロペンタジェン(OPD)i3X、ジシク
ロペンタジェン(DOPD)1./λを含む○、〜C,
留分の炭化水素)を約30段の軽沸分離塔のほぼ中央部
に送入して、塔底温度/、tO℃、還流比−で運転して
、塔頂からC6以下の留分を留出させ、塔底から06以
上の留分(シクロペンタジェンθ%及びジシクロペンタ
ジェン!、+%を含有する)を缶出させた。06以上の
留分を引続き30段の高沸分離塔のほぼ中央部に送入し
て、塔底温度iqo℃、還流比0.4で運転して、塔頂
からC6〜C畠留分及びシクロペンタジェン6−4tX
を含有する留分を留出させ、塔底から09以上の留分を
留出させた。Example! A C3 or lower fraction was separated by distillation from a pyrolysis product obtained by thermally decomposing naphtha in the presence of steam, and the resulting cracked gasoline containing a C3 or higher fraction was used. The cracked gasoline (containing cyclopentadiene (OPD) i3X, dicyclopentadiene (DOPD) 1./λ, ~C,
The hydrocarbons in the fraction are fed into the center of a 30-stage light-boiling separation column, and the column is operated at a bottom temperature of /, tO ℃, and a reflux ratio of -, and the C6 or lower fraction is removed from the top of the column. The distillate was distilled, and a fraction of 0.6 or higher (containing cyclopentadiene θ% and dicyclopentadiene !, +%) was taken out from the bottom of the column. The C6 to C Hatake fractions and C6 to C Hatake fractions are subsequently fed into the 30-stage high-boiling separation column, which is operated at a bottom temperature of iqo°C and a reflux ratio of 0.4, from the top of the column. Cyclopentadiene 6-4tX
A fraction containing 0.09 and above was distilled out from the bottom of the column.
高沸分離塔の留出液を次いで30段の第3蒸留梧のほぼ
中央部に送入して、塔底温度90℃、還流比コOで運転
して、塔頂から91−3%の純度のシクロペンタジェン
を留出させて回収し、一方、塔底から06〜C8留分及
びジシクロペンタジェンO,t Xを含有する留分(「
芳香族油」)を缶出させた。該芳香族油の組成及び性状
を下記に示す。The distillate from the high-boiling separation column was then fed into the 30-stage third distillation tower, which was operated at a bottom temperature of 90°C and a reflux ratio of 91-3%. Purity cyclopentadiene is recovered by distillation, while the 06-C8 fraction and the fraction containing dicyclopentadiene O,tX ("
"Aromatic oil") was released in a can. The composition and properties of the aromatic oil are shown below.
(1)芳香族成分=りO−ざS重量X (II) ジエン価 :、t−i。(1) Aromatic component = Ri O-za S weight X (II) Diene value: ti.
GID ブロム価 :to−t、。GID Brome number: to-t,.
(IV) 全イオウ分:so−コ00 ppm上記芳
香族油をコバルト−モリブデン−アルミナ触媒による2
段水添精製処理に付した。該Co阿Oへ
触媒は#拘東−ム1−3で表わされる一般式を有し、コ
バルト及びモリブデンの担持率は酸化物としてio重量
%である。(IV) Total sulfur content: so-co 00 ppm The above aromatic oil was treated with cobalt-molybdenum-alumina catalyst
It was subjected to a stage hydrogenation purification treatment. The Co-O catalyst has a general formula represented by #Koto-M1-3, and the supporting ratio of cobalt and molybdenum is io weight % as oxides.
1次水添処理は反応温度199℃、水素分圧II !r
kQ/crlG 、液空間速度/、thr−”、水素/
芳香族油(モル比) t、0なる反応条件下で行なった
。2次水添処理は反応温度310℃、水素分圧J kk
g/allc+ 、水素/芳香族油(モル比)1.0な
る反応条件下で行なった。The primary hydrogenation treatment was performed at a reaction temperature of 199°C and a hydrogen partial pressure of II! r
kQ/crlG, liquid hourly space velocity/, thr-”, hydrogen/
Aromatic oil (molar ratio) The reaction was carried out under the following conditions: t, 0. In the secondary hydrogenation treatment, the reaction temperature is 310°C and the hydrogen partial pressure is J kk.
The reaction was carried out under the following reaction conditions: g/allc+, hydrogen/aromatic oil (molar ratio) 1.0.
上記芳香族油の2段水添精製処理はioo日間の連続運
転を行なったが、予熱器、反応器内にはコークス状物の
生成は認められなかった。The above two-stage hydrogenation refining treatment of aromatic oil was continuously operated for 100 days, but no coke-like material was observed in the preheater or reactor.
水添処理前後の芳香族油の組成、性状及び効果を第1表
に示す。Table 1 shows the composition, properties, and effects of the aromatic oil before and after hydrogenation treatment.
比較例1
実施例1において、水添処理に供する芳香族油として、
高沸分離塔の留出液(シクロペンタジェン6、q%を含
有する)を用いたこと以外は実施例1と同様にして行な
った。該水添処理はりO日間連続運転したところ、反応
器内の入口部ニおいてコークス状物の生成が認められた
。Comparative Example 1 In Example 1, as aromatic oil to be subjected to hydrogenation treatment,
The same procedure as in Example 1 was carried out except that the distillate from the high-boiling separation column (containing 6, q% of cyclopentadiene) was used. When the hydrogenation treatment beam was operated continuously for 0 days, formation of coke-like material was observed at the inlet of the reactor.
水添処理後の芳香族油の組成、性状及び実施例1との効
果の比較を第1表に示す。Table 1 shows a comparison of the composition, properties, and effects of the aromatic oil after hydrogenation treatment with Example 1.
本発明方法によυC6〜0.の芳香族成分を含有する炭
化水素油から効率的かつ経済的に芳香族成分を分sag
することができる。本発明方法においては反応器内での
ガム状物質及びコークス状物質の生成が抑制され、また
水添精製処理に際しての水素消費量の低減が達成される
。By the method of the present invention, υC6~0. Efficient and economical separation of aromatic components from hydrocarbon oil containing aromatic components
can do. In the method of the present invention, the formation of gummy substances and coke-like substances in the reactor is suppressed, and a reduction in hydrogen consumption during the hydrorefining process is achieved.
また水添負荷が下がるのでSTYの相対活性が向上する
。本発明方法においては触媒の劣化が抑制され、触媒の
再生頻度が下がる。また本発明方法においては合成原料
として有用なシクロペンタジェンを高い純度で回収する
ことができる。Furthermore, since the hydrogenation load is reduced, the relative activity of STY is improved. In the method of the present invention, deterioration of the catalyst is suppressed and the frequency of regeneration of the catalyst is reduced. Furthermore, in the method of the present invention, cyclopentadiene, which is useful as a raw material for synthesis, can be recovered with high purity.
特許出願人 三菱化成工業株式会社 代理人 弁理士 長谷用 − ほか1名Patent applicant: Mitsubishi Chemical Industries, Ltd. Agent Patent Attorney Hase - 1 other person
Claims (1)
油からC_5以下の留分及びC_9以上の留分を蒸留分
離して得た、C_6〜C_8留分及びシクロペンタジエ
ンを含有する留分を蒸留し、シクロペンタジエンを含有
する留分を留出させて取得し、一方、シクロペンタジエ
ンの分離除去されたC_6〜C_8留分を缶出させ、こ
れを2段水添精製処理した後、芳香族成分を分離するこ
とを特徴とする芳香族成分の分離精製方法。(1) A C_6 to C_8 fraction and a cyclopentadiene-containing fraction obtained by distilling a C_5 or lower fraction and a C_9 or higher fraction from a hydrocarbon oil containing aromatic components of C_6 to C_8. Distillation is performed to obtain a fraction containing cyclopentadiene, and on the other hand, the C_6 to C_8 fractions from which cyclopentadiene has been separated and removed are distilled, and this is subjected to two-stage hydrogenation purification treatment, and then the aromatic components are removed. A method for separating and purifying aromatic components, characterized by separating them.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9250886A JPS62250094A (en) | 1986-04-22 | 1986-04-22 | Method for separating and purifying aromatic component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9250886A JPS62250094A (en) | 1986-04-22 | 1986-04-22 | Method for separating and purifying aromatic component |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62250094A true JPS62250094A (en) | 1987-10-30 |
Family
ID=14056251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9250886A Pending JPS62250094A (en) | 1986-04-22 | 1986-04-22 | Method for separating and purifying aromatic component |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62250094A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011256156A (en) * | 2010-05-12 | 2011-12-22 | Mitsubishi Chemicals Corp | Temperature control method for distillation column |
JP2012519716A (en) * | 2009-03-11 | 2012-08-30 | ティッセンクルップ・ウーデ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Method for obtaining pure aromatic compounds from hydrocarbon fractions containing aromatic compounds |
JP2013091610A (en) * | 2011-10-25 | 2013-05-16 | Mitsubishi Chemicals Corp | Method for separating and recovering dicyclopentadiene |
JP2021113336A (en) * | 2014-07-01 | 2021-08-05 | アネロテック・インコーポレイテッドAnellotech, Inc. | Process for converting biomass to btx with low sulfur, low nitrogen and low olefin content through catalytic fast thermal decomposition process |
-
1986
- 1986-04-22 JP JP9250886A patent/JPS62250094A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012519716A (en) * | 2009-03-11 | 2012-08-30 | ティッセンクルップ・ウーデ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Method for obtaining pure aromatic compounds from hydrocarbon fractions containing aromatic compounds |
JP2011256156A (en) * | 2010-05-12 | 2011-12-22 | Mitsubishi Chemicals Corp | Temperature control method for distillation column |
JP2013091610A (en) * | 2011-10-25 | 2013-05-16 | Mitsubishi Chemicals Corp | Method for separating and recovering dicyclopentadiene |
JP2021113336A (en) * | 2014-07-01 | 2021-08-05 | アネロテック・インコーポレイテッドAnellotech, Inc. | Process for converting biomass to btx with low sulfur, low nitrogen and low olefin content through catalytic fast thermal decomposition process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4731776B2 (en) | Hydrocarbon reforming method | |
KR20000068280A (en) | Process for Increased Olefin Yields from Heavy Feedstocks | |
CN105473690B (en) | For by converting crude oil into the method and facility of the petrochemical industry product with improved carbon efficiencies | |
KR20160025530A (en) | Method for cracking a hydrocarbon feedstock in a steam cracker unit | |
EA034700B1 (en) | Process and installation for the conversion of crude oil to petrochemicals having an improved ethylene yield | |
KR20160025511A (en) | Method for cracking a hydrocarbon feedstock in a steam cracker unit | |
EA032112B1 (en) | Process for the production of light olefins and aromatics from a hydrocarbon feedstock | |
KR20190103305A (en) | Crude Oil Conversion to Aromatic and Olefin Petrochemicals | |
KR20130096771A (en) | Process for the production of olefins | |
EA030392B1 (en) | Method for converting a high-boiling hydrocarbon feedstock into lighter boiling hydrocarbon products | |
JP5260281B2 (en) | Method for producing dicyclopentadiene | |
US20090183981A1 (en) | Integrated pyrolysis gasoline treatment process | |
KR20160003779A (en) | Method for hydrogenating a hydrocarbon feedstock comprising aromatic compounds | |
JPS62250094A (en) | Method for separating and purifying aromatic component | |
JP6772382B2 (en) | Method for producing hexadecahydropyrene | |
US10689586B2 (en) | Methods and systems for producing olefins and aromatics from coker naphtha | |
WO2004005437A1 (en) | Process for the recovery of an ethylene and propylene containing stream from a cracked gas resulting from hydrocarbon cracking | |
KR20040019984A (en) | A hydrogenation process for removing mercaptan from gasoline | |
JPH05310612A (en) | Purification of oil containing methylnaphthalene | |
JPS6140716B2 (en) | ||
JPS58203923A (en) | Conversion of certain kind of hydrocarbon using silicalite catalyst | |
TWI631211B (en) | Method for producing xylene | |
JPH0288694A (en) | Hydrocracking of hydrocarbon feedstock | |
US20170002276A1 (en) | Process for conversion of hydrocarbons integrating reforming and dehydrocyclodimerization | |
JP2520725B2 (en) | Method for producing dimethylnaphthalene |