【発明の詳細な説明】
本発明は面状発熱体用導電性樹脂組成物に関す
るものである。
近年導電性カーボンブラツクを高分子材料に配
合せしめた導電性素材に電気を導通して発熱させ
る所謂面状発熱体が暖房用器具として普及するよ
うになつた。
このような面状発熱体はニクロム線を使用した
発熱体のように屈曲による断線などのトラブルが
なく、折り曲げが自在で安全性があり、維持費が
安いという利点がある。
しかしながら、従来市場に出ている面状発熱体
用の導電素材は、その全体の厚さを薄くして発熱
効果を出そうとした場合、特に合成樹脂中に導電
性フイラーを混練したタイプのものにおいて、
100〜200ミクロンの厚さのフイルムで発熱効果を
出そうとすると、フイルム加工が困難であるばか
りでなく、フイルムの薄肉化により、十分発熱せ
しめるための低い抵抗値が得られない。
かかる理由により、現在薄物の面状発熱体を製
造する場合、ポリエステルやナイロン織布に導電
性塗料を塗布する方法がとられている。
前記の織布に導電性塗料を塗布する方法による
と、4〜5回の塗布・乾燥を繰返して行なわなけ
ればならず、作業時間が長く、製造コスト高とな
つて好ましくなかつた。
本発明者等は前記に鑑みて種々研究を進めた結
果、担体樹脂として直鎖低密度ポリエチレン(以
下L―LDPEという)とポリプロピレン若しくは
高密度ポリエチレンを使用し、これに導電性カー
ボンブラツクとグラフアイトを配合せしめた導電
性樹脂組成物が100〜150ミクロンの薄いフイルム
に成形しても表面抵抗値が80〜120Ωと極めて低
いものであることを知見して本発明に到達した。
すなわち本発明は、直鎖低密度ポリエチレンとポ
リプロピレン若しくは高密度ポリエチレンとから
成る担体樹脂に導電性カーボンブラツク及びグラ
フアイトを配合して成ることを特徴とする面状発
熱体用導電性樹脂組成物である。
本発明で使用するL―LDPEとは、例えば密度
0.92〜0.935(g/cm3)で、メルトインデツクス
1.0〜20(g/10分)のものが用いられるが好ま
しくは1.0〜2.5(g/10分)のものがよい。なお
L―LDPEの配合量は組成物中5〜50重量%の範
囲内で使用できるが、好ましくは5〜30重量%で
ある。
また本発明で使用するポリプロピレン及び高密
度ポリエチレンは通常フイルムやモノフイラメン
ト用に使用されるものならばいずれでもよく好ま
しくはメルトインデツクスが0.6〜10(g/10
分)のものである。
前記のL―LDPEに対するポリプロピレン若し
くは高密度ポリエチレンの割合はL―LDPE100
重量部に対しポリプロピレン若しくは高密度ポリ
エチレン20〜300重量部であり、好ましくは50〜
200重量部である。
本発明で使用される導電性カーボンブラツクは
フアネス系のカーボンブラツクであり、その中で
も加工時の抵抗変化率が少ない。(表面積が200〜
1000cm2/g)ものが好ましい。
前記導電性カーボンブラツクの配合量は担体樹
脂に対し10〜40重量%であり好ましくは10〜35重
量%である。
また前記導電性カーボンブラツクと併用される
グラフアイトは抵抗値を更に低下せしめるための
もので、天然産・人工製造品のいずれでもよく、
その配合量は担体樹脂に対して5〜15重量%であ
り、好ましくは5〜10重量%である。
なお、本発明の組成物は前記の各成分のほかに
酸化防止剤、滑剤等を配合することができる。
前述の配合組成よりなる導電性樹脂組成物を使
用してインフレーシヨンフイルムを成形すると加
工温度下でのバブルの安定性がよく、均一な厚み
のフイルムが得られた。
かくのごとくして得られたフイルムの物性を測
定してみると、フイルムの厚さが100〜150ミクロ
ンのもので表面抵抗値が90〜120オームの範囲内
にあり、薄肉であるにもかかわらず非常に低い抵
抗値を有する導電性フイルムが得られた。
そして前記の導電性フイルムを利用して電極間
距離150m/mの面状発熱体を作成して、その発
熱性を調べたところ表面温度が60℃に達し、安定
な発熱状態を呈した。
かかる本発明の導電性樹脂組成物に対して従来
の導電性樹脂組成物は溶融成形時における伸びが
悪く、インフレーシヨンフイルム成形が不可能で
あつた。又その他のものにおいてはインフレーシ
ヨンフイルム加工は良好であるが、樹脂及びカー
ボンブラツクの選択が不十分であつたり、グラフ
アイトが配合されていないため、150ミクロンの
厚さに成膜した際に抵抗値が高く十分な発熱を示
さなかつた。
以下実施例により本発明を具体的に説明する。
なお実施例、比較例中の部は重量部である。
実施例 1
L―LDPE(密度0.92、MI=2.0商品名:ウル
トゼツクス2020L 三井石油化学社製品)
15.0部
高密度ポリエチレン(密度0.95、MI=0.9商品
名:ハイゼツクス5000S 三井石油化学社製
品) 48.0部
導電性カーボンブラツク(商品名:コンダクテ
ツクス975 コロンビアカーボン社製品)
30.0部
天然グラフアイト(商品名:CSP 日本黒鉛社
製品) 7.0部
実施例 2
L―LDPE(密度0.93、MI=1.3商品名:ウル
トゼツクス3010F 三井石油化学社製品)
15.0部
ポリプロピレン(密度0.93、MI=1.2商品名:
出光ポリプロE250G 出光石油化学社製品)
48.0部
導電性カーボンブラツク(商品名:バルカン
XC―72 キヤボツト社製品) 30.0部
天然グラフアイト(商品名:CSP 日本黒鉛社
製品) 7.0部
実施例 3
L―LDPE(密度0.935、MI=2.1商品名:ウル
トゼツクス3520L 三井石油化学社製品)
15.0部
高密度ポリエチレン(密度0.95、MI=0.9商品
名:ハイゼツクス3300F 三井石油化学社製
品) 60.0部
導電性カーボンブラツク(商品名:ケツチエン
EC ライオン社製品) 18.0部
天然グラフアイト(商品名:CSP 日本黒鉛社
製品) 7.0部
比較例 1
L―LDPE(実施例1と同一品) 63.0部
導電性カーボンブラツク(実施例1と同一品)
30.0部
天然グラフアイト(実施例2と同一品) 7.0部
比較例 2
L―LDPE(実施例1と同一品) 15.0部
低密度ポリエチレン(密度0.92、MI=7.0商品
名:シヨーレツクスF171 昭和電工社製品)
48.0部
導電性カーボンブラツク(実施例2と同一品)
30.0部
天然グラフアイト(実施例1と同一品) 7.0部
比較例 3
L―LDPE(実施例1と同一品) 15.0部
高密度ポリエチレン(実施例1と同一品)
48.0部
導電性カーボンブラツク(アセチレンブラツク
表面積100cm2/g電気化学工業社製品) 30.0部
天然グラフアイト(実施例1と同一品) 7.0部
比較例 4
L―LDPE(実施例1と同一品) 15.0部
低密度ポリエチレン(比較例2.と同一品)
48.0部
導電性カーボンブラツク(実施例3と同一品)
30.0部
天然グラフアイト(実施例2と同一品) 7.0部
比較例 5
L―LDPE(実施例1と同一品) 15.0部
高密度ポリエチレン(実施例1と同一品)
55.0部
導電性カーボンブラツク(実施例1と同一品)
30.0部
前記の実施例及び比較例の配合物を各々70の
バンバリーミキサーに入れ、180〜200℃で5分間
混練する。次いで、この混練物を温度130〜150℃
のミキシングロールに供して5分間混練して厚さ
約2m/m幅約300m/mの板状に引き出し、こ
れを角ペレタイザーにより角ペレツトとする。
前記角ペレツトを更に90m/mφ温度180〜200
℃のペント式押出機にて押出して2.5〜3.0m/m
の円筒形ペレツトを得る。
この円筒形ペレツトを65m/m、L/D=20の
インフレーシヨン押出成形機に供して温度210〜
250℃で厚さ150ミクロンのフイルムを作成する。
このフイルムを表面抵抗の測定片とし、デジタ
ルマルチメーター及びテスターで表面抵抗を測定
した。その結果を第1表に示す。更にこのフイル
ムを利用して電極間距離が150m/mである面状
発熱体を作成し、交流電源の100Vを通じた時の
温度を表面温度計で測定した。その結果を第1表
に示す。
【表】DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a conductive resin composition for a planar heating element. In recent years, so-called sheet heating elements, which generate heat by conducting electricity through a conductive material in which conductive carbon black is blended with a polymer material, have become popular as heating appliances. Such a planar heating element has the advantage that it does not suffer from problems such as wire breakage due to bending, unlike heating elements using nichrome wire, is bendable, is safe, and has low maintenance costs. However, when trying to reduce the overall thickness of the conductive materials for planar heating elements on the market to produce a heat-generating effect, it is difficult to use conductive materials for planar heating elements that are currently available on the market, especially those that are made by kneading conductive filler into synthetic resin. In,
If a film with a thickness of 100 to 200 microns is used to produce a heat generating effect, it is not only difficult to process the film, but also the resistance value low enough to generate heat cannot be obtained due to the thinness of the film. For this reason, when producing a thin planar heating element, a method is currently used in which a conductive paint is applied to a polyester or nylon fabric. According to the above-mentioned method of applying a conductive paint to a woven fabric, it is necessary to repeat the application and drying process 4 to 5 times, which is not preferable because the working time is long and the manufacturing cost is high. In view of the above, the present inventors have carried out various studies, and as a result, they have used linear low-density polyethylene (hereinafter referred to as L-LDPE) and polypropylene or high-density polyethylene as carrier resins, and added conductive carbon black and graphite to the carrier resin. The present invention was achieved based on the finding that even when a conductive resin composition containing the above is formed into a thin film of 100 to 150 microns, the surface resistance value is extremely low at 80 to 120 Ω.
That is, the present invention provides a conductive resin composition for a planar heating element, which is characterized in that it is made by blending conductive carbon black and graphite with a carrier resin consisting of linear low-density polyethylene and polypropylene or high-density polyethylene. be. The L-LDPE used in the present invention has a density of, for example,
0.92 to 0.935 (g/cm 3 ), melt index
1.0 to 20 (g/10 minutes) is used, preferably 1.0 to 2.5 (g/10 minutes). The amount of L-LDPE used in the composition can range from 5 to 50% by weight, preferably from 5 to 30% by weight. Furthermore, the polypropylene and high-density polyethylene used in the present invention may be any of those normally used for films and monofilaments, and preferably have a melt index of 0.6 to 10 (g/10
minutes). The ratio of polypropylene or high density polyethylene to the above L-LDPE is L-LDPE 100
20 to 300 parts by weight of polypropylene or high density polyethylene, preferably 50 to 300 parts by weight
It is 200 parts by weight. The conductive carbon black used in the present invention is a furnace type carbon black, and among them, the rate of change in resistance during processing is small. (Surface area is 200~
1000cm 2 /g) is preferred. The content of the conductive carbon black is 10 to 40% by weight, preferably 10 to 35% by weight, based on the carrier resin. Furthermore, the graphite used in combination with the conductive carbon black is used to further lower the resistance value, and may be either naturally produced or artificially manufactured.
The blending amount is 5 to 15% by weight, preferably 5 to 10% by weight, based on the carrier resin. The composition of the present invention may contain an antioxidant, a lubricant, etc. in addition to the above-mentioned components. When a blown film was molded using the conductive resin composition having the above-mentioned composition, bubble stability under the processing temperature was good and a film with a uniform thickness was obtained. When we measured the physical properties of the film thus obtained, we found that the film had a thickness of 100 to 150 microns and a surface resistance value in the range of 90 to 120 ohms. A conductive film having a very low resistance value was obtained. A planar heating element with an inter-electrode distance of 150 m/m was prepared using the conductive film, and its heating properties were examined. The surface temperature reached 60° C. and a stable heating state was observed. In contrast to the conductive resin composition of the present invention, conventional conductive resin compositions have poor elongation during melt molding and cannot be molded into inflation films. In other cases, the inflation film processing is good, but due to insufficient selection of resin and carbon black, or lack of graphite, it is difficult to process when the film is formed to a thickness of 150 microns. The resistance value was high and it did not generate enough heat. The present invention will be specifically explained below using Examples.
Note that parts in Examples and Comparative Examples are parts by weight. Example 1 L-LDPE (density 0.92, MI=2.0 product name: Urtozex 2020L Mitsui Petrochemicals product)
15.0 parts High-density polyethylene (density 0.95, MI=0.9 Product name: Hi-Zex 5000S, Mitsui Petrochemicals product) 48.0 parts Conductive carbon black (Product name: Conductex 975, Columbia Carbon product)
30.0 parts natural graphite (product name: CSP, product of Nippon Graphite Co., Ltd.) 7.0 parts Example 2 L-LDPE (density 0.93, MI=1.3 product name: Urtozex 3010F, product of Mitsui Petrochemicals Co., Ltd.)
15.0 parts polypropylene (density 0.93, MI=1.2 Product name:
Idemitsu Polypro E250G Idemitsu Petrochemical Co., Ltd. product)
48.0 parts Conductive carbon black (Product name: Vulcan
XC-72 (Kyabot Co., Ltd. product) 30.0 parts Natural graphite (Product name: CSP Nippon Graphite Co., Ltd. product) 7.0 parts Example 3 L-LDPE (Density 0.935, MI=2.1 Product name: Urtozex 3520L Mitsui Petrochemical Co., Ltd. product)
15.0 parts High-density polyethylene (density 0.95, MI = 0.9 Product name: Hi-Zex 3300F Mitsui Petrochemicals product) 60.0 parts Conductive carbon black (Product name: Ketsutien)
EC Lion Company product) 18.0 parts Natural graphite (product name: CSP Nippon Graphite Company product) 7.0 parts Comparative example 1 L-LDPE (same product as Example 1) 63.0 parts Conductive carbon black (same product as Example 1)
30.0 parts natural graphite (same product as Example 2) 7.0 parts Comparative example 2 L-LDPE (same product as Example 1) 15.0 parts low-density polyethylene (density 0.92, MI = 7.0 Product name: Shorex F171 Showa Denko product) )
48.0 parts conductive carbon black (same product as Example 2)
30.0 parts natural graphite (same product as Example 1) 7.0 parts Comparative Example 3 L-LDPE (same product as Example 1) 15.0 parts High-density polyethylene (same product as Example 1)
48.0 parts Conductive carbon black (acetylene black surface area 100 cm 2 /g Denki Kagaku Kogyo product) 30.0 parts Natural graphite (same product as Example 1) 7.0 parts Comparative example 4 L-LDPE (same product as Example 1) 15.0 Low-density polyethylene (same product as Comparative Example 2)
48.0 parts conductive carbon black (same product as Example 3)
30.0 parts natural graphite (same product as Example 2) 7.0 parts Comparative Example 5 L-LDPE (same product as Example 1) 15.0 parts High-density polyethylene (same product as Example 1)
55.0 parts conductive carbon black (same product as Example 1)
30.0 parts The formulations of the above Examples and Comparative Examples were each placed in a 70° Banbury mixer and kneaded for 5 minutes at 180-200°C. Next, this kneaded material is heated to a temperature of 130 to 150℃.
The mixture is kneaded for 5 minutes using a mixing roll, and then drawn out into a plate shape with a thickness of about 2 m/m and a width of about 300 m/m, which is made into square pellets using a square pelletizer. The square pellets are further heated to 90m/mφ at a temperature of 180 to 200.
2.5-3.0m/m by extruding with a pent extruder at ℃
A cylindrical pellet is obtained. This cylindrical pellet was subjected to an inflation extrusion molding machine of 65 m/m and L/D = 20 at a temperature of 210 to
Create a 150 micron thick film at 250℃. This film was used as a measurement piece for surface resistance, and the surface resistance was measured using a digital multimeter and a tester. The results are shown in Table 1. Furthermore, a planar heating element with an inter-electrode distance of 150 m/m was prepared using this film, and the temperature was measured using a surface thermometer when 100 V of an AC power source was applied. The results are shown in Table 1. 【table】