Nothing Special   »   [go: up one dir, main page]

JPS62249408A - Ferromagnetic thin film - Google Patents

Ferromagnetic thin film

Info

Publication number
JPS62249408A
JPS62249408A JP9214486A JP9214486A JPS62249408A JP S62249408 A JPS62249408 A JP S62249408A JP 9214486 A JP9214486 A JP 9214486A JP 9214486 A JP9214486 A JP 9214486A JP S62249408 A JPS62249408 A JP S62249408A
Authority
JP
Japan
Prior art keywords
thin film
ferromagnetic thin
magnetic anisotropy
stress
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9214486A
Other languages
Japanese (ja)
Inventor
Ryoichi Nakatani
亮一 中谷
Moichi Otomo
茂一 大友
Takayuki Kumasaka
登行 熊坂
Noritoshi Saitou
斉藤 法利
Takeo Yamashita
武夫 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9214486A priority Critical patent/JPS62249408A/en
Publication of JPS62249408A publication Critical patent/JPS62249408A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To facilitate a control of magnetic anisotropy by impressing stress upon a ferromagnetic thin film and providing the thin film with magnetic anisotropy after forming such thin film. CONSTITUTION:When uniaxial stress sigma is impressed inside a film face of ferromagnetic thin film, uniaxial magnetic anisotropy K is given in parallel with sigma. If a magnetostrictive constant of ferromagnetic thin film is lambdas, K is shown by =3lambdassigma/2. In addition, lambdas of Fe-Co-Si system alloy thin film which is vacuum deposited with a photoceram substrate is -0.5X10<-6> and its easy magnetizing direction is in parallel with a longitudinal direction and then its magnetic anisotropic constant K is shown by K=6.25X102erg/cm<3>. Subsequently, when a substrate 13 is bent by using a jig 11 and stress such as sigma=1.20X10<9>g/cm<3>is impressed upon the ferromagnetic thin film 14, the magnetic anisotropic constant is shown by K=-2.30X10<2>erg/cm<3>. Moreover, variation of magnetic anisotropy K is -9.0X10<2>erg/cm<3> and is shown by K=-2.5X10<2>erg/cm<3>. Magnetic anisotropy, therefore, is given in an optional direction by impressing stress upon the ferromagnetic thin film after forming such ferromagnetic thin film and its degree can be controlled by that of stress sigma.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気異方性の方向および大きさが制御された
強磁性薄膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ferromagnetic thin film in which the direction and magnitude of magnetic anisotropy are controlled.

〔従来の技術〕[Conventional technology]

磁気記録の高密度化に伴ない、高飽和磁束密度ならびに
高誘磁率を有する強磁性薄膜を用いた磁気ヘッドが強く
望まれている。一般に上記のような強磁性薄膜のうち一
軸磁気異方性を有する薄膜の高周波における透磁率は磁
化容易方向が小さく、磁化容易方向に直角な方向(磁化
困難方向)が大きいという性質がある。したがって基板
に付着した強磁性薄膜の面内方向に磁束が流れることに
よって作動する磁気ヘッドにおいては、この磁束の流れ
る方向を磁化困難方向とすることが望ましい。
BACKGROUND OF THE INVENTION With the increasing density of magnetic recording, a magnetic head using a ferromagnetic thin film having a high saturation magnetic flux density and a high dielectric constant is strongly desired. Generally, among the above-mentioned ferromagnetic thin films, the magnetic permeability of a thin film having uniaxial magnetic anisotropy at high frequencies is small in the direction of easy magnetization and large in the direction perpendicular to the direction of easy magnetization (direction of difficult magnetization). Therefore, in a magnetic head that operates by a magnetic flux flowing in the in-plane direction of a ferromagnetic thin film attached to a substrate, it is desirable that the direction in which this magnetic flux flows is the direction in which magnetization is difficult.

したがって強磁性薄膜の磁気異方性の方向および大きさ
を制御することは磁気ヘッドを作製する上で非常に重要
となっている。
Therefore, controlling the direction and magnitude of the magnetic anisotropy of a ferromagnetic thin film is extremely important in manufacturing a magnetic head.

従来、磁気異方性を制御する方法としては、特開昭59
−63706に示されるように、磁性膜表面の所定の方
向に縞状の凹凸を形成するか、あるいは特開昭59−6
3707に示されるように、磁性膜の組成を周期的に変
化させるという方法があった。しかし、上記従来方法で
はいずれもフォトレジスト工程が必要で、そのプロセス
は多くの時間を要し。
Conventionally, as a method for controlling magnetic anisotropy, Japanese Patent Application Laid-Open No. 59
As shown in Japanese Patent Laid-Open No. 59-63706, striped unevenness is formed in a predetermined direction on the magnetic film surface, or
As shown in No. 3707, there was a method of periodically changing the composition of the magnetic film. However, all of the above conventional methods require a photoresist process, which takes a lot of time.

また技術的にもむずかしい方法であった。It was also a technically difficult method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、フォトレジスト工程などの、技術的にむずか
しくまた多くの時間を要するプロセスを必要としない磁
気異方性制御技術を提供するものである。
The present invention provides a magnetic anisotropy control technique that does not require a technically difficult and time-consuming process such as a photoresist process.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では1強磁性薄膜の膜面内の任意の方向に任意の
大きさの磁気異方性を付与するために、強磁性薄膜の逆
磁歪効果を利用する。
In the present invention, the inverse magnetostriction effect of a ferromagnetic thin film is utilized in order to impart magnetic anisotropy of any magnitude in any direction within the film plane of the ferromagnetic thin film.

強磁性薄膜の膜面内に一軸応力σを印加すると一軸磁気
異方性ΔKがσと平行に付与される。強磁性薄膜の磁歪
定数をλSとするとΔには3λSσ Δに=− という関係式で表わされる。したがって、上式に示され
るように印加する一軸応力σの大きさを変えることによ
り付与される一軸磁気異方性の大きさΔKを制御するこ
とができ、また、印加するσの方向により一軸磁気異方
性の方向を制御することができる。
When a uniaxial stress σ is applied within the film plane of a ferromagnetic thin film, a uniaxial magnetic anisotropy ΔK is imparted parallel to σ. If the magnetostriction constant of the ferromagnetic thin film is λS, then Δ is expressed by the following relation: 3λSσ Δ=−. Therefore, as shown in the above equation, the magnitude of the uniaxial magnetic anisotropy ΔK can be controlled by changing the magnitude of the uniaxial stress σ applied, and the uniaxial magnetic anisotropy ΔK can be controlled by changing the direction of the uniaxial stress σ applied. The direction of anisotropy can be controlled.

〔作用〕[Effect]

すなわち、例えばあらかじめ基板を湾曲させるなどの方
法で基板に歪みを与えておき、その基板上に強磁性薄膜
を成膜すると、成膜後に基板の歪みを除去した際、強磁
性薄膜に応力σが印加される。そのσの方向、大きさを
制御することにより。
In other words, if a ferromagnetic thin film is deposited on a substrate with a strain applied to it by, for example, curving the substrate in advance, then when the strain on the substrate is removed after film formation, stress σ will be applied to the ferromagnetic thin film. applied. By controlling the direction and magnitude of σ.

強磁性薄膜の任意の方向に任意の大きさの磁気異方性を
付与することができる。したがって本発明の方法は非常
に簡便で、プロセスに要する時間も短い。
Magnetic anisotropy of any magnitude can be imparted to a ferromagnetic thin film in any direction. Therefore, the method of the present invention is very simple and the time required for the process is short.

〔実施例〕〔Example〕

以下に本発明の一実施例を挙げ、図面を参照しながら説
明する。
An embodiment of the present invention will be described below with reference to the drawings.

〔実施例1〕 10 yn X 3 mm X 0 、3 m t  
の大きさのコーニング社製ホトセラム基板にF e −
G o −S i系合金を真空蒸着した。Fa−Go−
8i系合金薄膜の組成は重量%で、F e 5za7c
 o o、ss i te、aであり、膜厚しは1.8
0μm、磁歪定数λSは−o、5x10−sであった。
[Example 1] 10 yn X 3 mm X 0, 3 m t
Fe −
A Go-Si alloy was vacuum deposited. Fa-Go-
The composition of the 8i alloy thin film is F e 5za7c in weight%.
o o, ss i te, a, and the film thickness is 1.8
0 μm, and the magnetostriction constant λS was −o, 5×10 −s.

上記強磁性薄膜の形状磁気異方性および膜自体の磁気異
方性の合計をトルクメータを用いて測定したところ、容
易磁化方向は強磁性薄膜の長手方向に平行であり、その
磁気異方性定数には に=6.25X10”erg/a+? であった。
When the sum of the shape magnetic anisotropy of the above ferromagnetic thin film and the magnetic anisotropy of the film itself was measured using a torque meter, the easy magnetization direction was parallel to the longitudinal direction of the ferromagnetic thin film, and the magnetic anisotropy The constant was 6.25×10”erg/a+?

さらに第1図に示すような治具11を用い、ネジ12で
基板13を湾曲させ、上記強磁性薄膜14に応力を印加
した。この場合、印加した応力の方向は第1図中の15
で示される方向である。
Further, using a jig 11 as shown in FIG. 1, the substrate 13 was bent with screws 12, and stress was applied to the ferromagnetic thin film 14. In this case, the direction of the applied stress is 15 in Figure 1.
This is the direction indicated by .

本実施例においてこの方向15にσ=1.20X10g
g/cJなる応力を印加したところ、上記強磁性薄膜の
磁気異方性定数は に=−2,30X10”erg/ad となった。すなわち1強磁性薄膜に応力を印加する以前
、薄膜の長手方向が磁化容易方向であったが、応力を印
加したため、薄膜の長手方向が磁化困難方向となった。
In this example, σ=1.20X10g in this direction 15
When a stress of g/cJ was applied, the magnetic anisotropy constant of the ferromagnetic thin film was -2,30 The direction was the direction of easy magnetization, but because stress was applied, the longitudinal direction of the thin film became the direction of difficult magnetization.

一方、Δに=3λSσ/2 より計算した磁気異方性の
変化量Δには−9,0×10”erg/fflであり、
したがってKは計算的には に=−2,5X10”erg/ci となり、この値は実験結果とほぼ一致する。
On the other hand, the amount of change Δ in magnetic anisotropy calculated from Δ=3λSσ/2 is −9.0×10”erg/ffl,
Therefore, K is calculated to be = -2.5 x 10'' erg/ci, and this value almost agrees with the experimental results.

上述したとおり、強磁性薄膜成膜後に強磁性薄膜に応力
を印加することによって、上記強磁性薄膜の任意の方向
に磁気異方性を付与することができ、またその大きさは
印加する応力σの大きさによって制御することができる
As mentioned above, by applying stress to the ferromagnetic thin film after forming the ferromagnetic thin film, magnetic anisotropy can be imparted to the ferromagnetic thin film in any direction, and the magnitude thereof depends on the applied stress σ can be controlled by the size of the

〔実施例2〕 10nnφX 0 、3 tm t  の大きさのコー
ニング社製ホトラセム基板上に8rmφの穴のあいた厚
さ50μmのTa薄板をかぶせ、この状態でFe−G 
o −S i系合金をスパッタリング法で基板上に成f
luした。膜厚は1.52μmで、組成および磁歪定数
は実施例1と同じ値であった。このようにして作製した
8Imφのスパッタ暎の磁気異方性定数をトルクメータ
より副室した結果、 K=53erg/aJ であった。
[Example 2] A Ta thin plate with a thickness of 50 μm with a hole of 8 rmφ was placed on a Photolasem substrate manufactured by Corning Inc. with a size of 10 nnφX 0 and 3 tm t , and in this state Fe-G
o -Si alloy is formed on the substrate by sputtering method.
I did it. The film thickness was 1.52 μm, and the composition and magnetostriction constant were the same as in Example 1. The magnetic anisotropy constant of the 8 Imφ sputtered sample thus produced was measured using a torque meter and was found to be K=53 erg/aJ.

一方、8−φの穴のあいたTa薄板をかぶせたホトセラ
ム基板を第1図に示すような治具11に装着し、この状
態でスパッタリングし、スパッタリング終了後に基板を
治具11からはずした。すなわちこの場合上記強磁性薄
膜は一軸の圧縮応力を印加されることになる。このよう
にした作製した強磁性薄膜の磁気異方性定数にとスパッ
タリング時の基板の曲率半径Rの関係を第1表および第
2図に示す。
On the other hand, a photoceram substrate covered with a Ta thin plate with an 8-φ hole was mounted on a jig 11 as shown in FIG. 1, sputtering was performed in this state, and the substrate was removed from the jig 11 after sputtering was completed. That is, in this case, a uniaxial compressive stress is applied to the ferromagnetic thin film. Table 1 and FIG. 2 show the relationship between the magnetic anisotropy constant of the ferromagnetic thin film thus produced and the radius of curvature R of the substrate during sputtering.

第   1   表 第2図に示すように、基板曲率径の逆数1/RとKの間
にはほぼ直線的な関係があり、Rを変えることにより任
意のKが得られることがわかる。
As shown in Table 1 and FIG. 2, there is a nearly linear relationship between the reciprocal 1/R of the substrate curvature diameter and K, and it can be seen that by changing R, any K can be obtained.

また、本実施例の場合λSは負であるため、圧縮応力印
加方向と平行な方向が磁化容易方向となった。
Further, in this example, since λS is negative, the direction parallel to the compressive stress application direction was the easy magnetization direction.

上述したとおり、強磁性薄膜成膜後に強磁性薄膜に応力
を印加することによって、上記強磁性薄膜の任意の方向
に磁気異方性を付与することができ、またその大きさは
基板の曲率半径Rの大きさによって制御することができ
る。
As mentioned above, by applying stress to the ferromagnetic thin film after forming the ferromagnetic thin film, magnetic anisotropy can be imparted to the ferromagnetic thin film in any direction, and the magnitude of the magnetic anisotropy depends on the radius of curvature of the substrate. It can be controlled by the magnitude of R.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したごとく、本発明の強磁性薄膜は任意
の方向に任意の大きさの磁気異方性を付与されている。
As explained above in detail, the ferromagnetic thin film of the present invention is provided with magnetic anisotropy of an arbitrary magnitude in an arbitrary direction.

また本発明の強磁性薄膜の作製には、従来磁気異方性を
付与するために必要としたフォトレジスト工程などの多
くの時間を要するプロセスを必要とせず、したがって本
発明の強磁性薄膜は短時間に作製することができる。
Furthermore, the production of the ferromagnetic thin film of the present invention does not require a time-consuming process such as a photoresist process, which was conventionally required to impart magnetic anisotropy. Can be made in time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の強磁性薄膜における応力印加方法を示
す斜視図、第2図は本発明の実施例2における基板の曲
率半径の逆数と磁気異方性定数との関係を示すグラフで
ある。 11・・・治具、12・・・ネジ、13・・・基板、1
4・・・強磁性薄膜、15・・・応力の方向。 VJ、  図 T 2 図 ’/R(cm、−リ
FIG. 1 is a perspective view showing the stress application method in the ferromagnetic thin film of the present invention, and FIG. 2 is a graph showing the relationship between the reciprocal of the radius of curvature of the substrate and the magnetic anisotropy constant in Example 2 of the present invention. . 11... Jig, 12... Screw, 13... Board, 1
4...Ferromagnetic thin film, 15...Stress direction. VJ, Figure T 2 Figure'/R (cm, -ri)

Claims (1)

【特許請求の範囲】 1、強磁性薄膜成膜後に、上記強磁性薄膜に応力を印加
することにより、磁気異方性を付与したことを特徴とす
る強磁性薄膜。 2、強磁性薄膜がスパッタリング法あるいは蒸着法にて
成膜されてなることを特徴とする特許請求の範囲第1項
に記載の強磁性薄膜。 3、予め歪みを与えた基板上に上記強磁性薄膜を形成し
、成膜後に基板の歪みを除去することにより上記強磁性
薄膜に応力を加えたことを特徴とする特許請求の範囲第
2項に記載の強磁性薄膜。 4、湾曲させることにより歪みを与えた基板上に成膜し
、成膜後上記基板に与えられた歪みを除去してなること
を特徴とする特許請求の範囲第3項に記載の強磁性薄膜
[Scope of Claims] 1. A ferromagnetic thin film characterized in that magnetic anisotropy is imparted to the ferromagnetic thin film by applying stress to the ferromagnetic thin film after forming the ferromagnetic thin film. 2. The ferromagnetic thin film according to claim 1, wherein the ferromagnetic thin film is formed by a sputtering method or a vapor deposition method. 3. Claim 2, characterized in that the ferromagnetic thin film is formed on a substrate that has been previously strained, and stress is applied to the ferromagnetic thin film by removing the strain on the substrate after film formation. The ferromagnetic thin film described in . 4. The ferromagnetic thin film according to claim 3, wherein the film is formed on a substrate that has been strained by curving it, and after the film formation, the strain applied to the substrate is removed. .
JP9214486A 1986-04-23 1986-04-23 Ferromagnetic thin film Pending JPS62249408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9214486A JPS62249408A (en) 1986-04-23 1986-04-23 Ferromagnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9214486A JPS62249408A (en) 1986-04-23 1986-04-23 Ferromagnetic thin film

Publications (1)

Publication Number Publication Date
JPS62249408A true JPS62249408A (en) 1987-10-30

Family

ID=14046239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9214486A Pending JPS62249408A (en) 1986-04-23 1986-04-23 Ferromagnetic thin film

Country Status (1)

Country Link
JP (1) JPS62249408A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239504A (en) * 1991-04-12 1993-08-24 International Business Machines Corporation Magnetostrictive/electrostrictive thin film memory
JPH11158617A (en) * 1997-11-28 1999-06-15 Miyagi Oki Denki Kk Sputtering method and sputtering device
US8119265B2 (en) 2005-04-01 2012-02-21 Seagate Technology Llc Magneto-elastic anisotropy assisted thin film structure
CN113088894A (en) * 2021-03-26 2021-07-09 电子科技大学 Film preparation method for improving film application frequency through stress induction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239504A (en) * 1991-04-12 1993-08-24 International Business Machines Corporation Magnetostrictive/electrostrictive thin film memory
JPH11158617A (en) * 1997-11-28 1999-06-15 Miyagi Oki Denki Kk Sputtering method and sputtering device
US8119265B2 (en) 2005-04-01 2012-02-21 Seagate Technology Llc Magneto-elastic anisotropy assisted thin film structure
US8503126B2 (en) 2005-11-02 2013-08-06 Seagate Technology Llc Magneto-elastic anisotropy assisted thin film structure
CN113088894A (en) * 2021-03-26 2021-07-09 电子科技大学 Film preparation method for improving film application frequency through stress induction

Similar Documents

Publication Publication Date Title
JPH0268906A (en) Highly saturated flux density soft magnetic film and magnetic head
JPS62249408A (en) Ferromagnetic thin film
JPH05209263A (en) Manufacture of sputtered alloy film and apparatus therefor
Jeong et al. Origins of perpendicular magnetic anisotropy in Ni/Pd multilayer films
JPS5917222A (en) Manufacture of multilayer magnetic thin-film
JPH0727822B2 (en) Fe-Co magnetic multilayer film and magnetic head
JPS5963706A (en) Magnetic thin film body
JPS63210264A (en) Formation of film
JP3817029B2 (en) Method for forming magnetic thin film pattern
JPH06207270A (en) Magnetic film forming device
JP3132254B2 (en) Soft magnetic film and method for manufacturing soft magnetic multilayer film
JPH0664730B2 (en) Magnetic recording body
Puppin et al. Coercive force variations in externally stressed Ni films
JPS6182308A (en) Production for thin film magnetic head
JP3399899B2 (en) Thin film magnetic device
JPS60231911A (en) Magnetic recording medium
Yu Magnetic domain structure control in patterned iron cobalt thin films using intrinsic and externally applied stresses
JPS58137134A (en) Manufacture of magnetic recording medium
JPS63247914A (en) Flexible disk
JPH02185712A (en) Manufacture of magnetic recording carrier for vertical recording
Kim et al. Magnetic properties of CoZrNb thin films deposited on amorphous SmCo
JPH02226704A (en) Single-layer magnetic film
JPS60236118A (en) Production of thin film magnetic recording medium
JPS61240612A (en) Soft magnetic thin film
JPH0766035A (en) Magnetic thin film