JPS6223808B2 - - Google Patents
Info
- Publication number
- JPS6223808B2 JPS6223808B2 JP55109247A JP10924780A JPS6223808B2 JP S6223808 B2 JPS6223808 B2 JP S6223808B2 JP 55109247 A JP55109247 A JP 55109247A JP 10924780 A JP10924780 A JP 10924780A JP S6223808 B2 JPS6223808 B2 JP S6223808B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- piston
- cylinder chamber
- dissolved gas
- reciprocating piston
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000605 extraction Methods 0.000 claims description 17
- 238000007872 degassing Methods 0.000 claims description 12
- 238000001035 drying Methods 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 4
- 239000000284 extract Substances 0.000 claims description 2
- 239000000945 filler Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 65
- 239000010735 electrical insulating oil Substances 0.000 description 18
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 10
- 239000003921 oil Substances 0.000 description 8
- 239000011521 glass Substances 0.000 description 7
- 229910052753 mercury Inorganic materials 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 239000012159 carrier gas Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Sampling And Sample Adjustment (AREA)
- Devices For Use In Laboratory Experiments (AREA)
- Housings And Mounting Of Transformers (AREA)
Description
【発明の詳細な説明】
本発明は、電気絶縁油を使用している変圧器、
リアクトル等の電力用電気機器の早期異常診断を
行なうために必要な電気絶縁油中の溶存ガスの分
析または水車や冷却用機器に供給される水中の溶
存ガスの分析等に使用するガス抽出装置に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a transformer using electrical insulating oil;
Concerning gas extraction equipment used for analysis of dissolved gas in electrical insulating oil necessary for early abnormality diagnosis of electric power equipment such as reactors, or analysis of dissolved gas in water supplied to water turbines and cooling equipment. .
例えば、電気絶縁油の場合について記述する
と、一般に、電気絶縁油の溶存ガスのガス抽出装
置としてはトリチエリー真空によるガス抽出装
置、水銀拡散ポンプとテプラーポンプの併用によ
るガス抽出装置、および真空ポンプと移動弁を用
いるガス抽出装置等がある。ところが、上記トリ
チエリー真空によるガス抽出装置は、水銀の入つ
たガラス整の水準びんを用いていわゆるトリチエ
リー真空を作り、その真空状態のガラス製の容器
の中に電気絶縁油中の溶存ガスを放出させる方法
であり、水銀とガラス製容器を用いるために、水
銀蒸気の逸散とガラス製容器の破損の危険性が伴
なう等の不都合がある。また、水銀拡散ポンプと
テプラーポンプの併用によるガス抽出装置は、油
回転ポンプと水銀拡散ポンプおよびテプラーポン
プを用いてガラス製の脱気容器内を真空状態に保
ち、その脱気容器内に電気絶縁油を注入して溶存
ガスを放出させてガス溜容器に蓄積する方法であ
るが、前述のトリチエリー真空方式と同様に水銀
蒸気の逸散とガラス製容器の配損の危険性があ
る。さらに真空ポンプと移動弁を用いるガス抽出
装置は、真空ポンプによつてシリンダー内を真空
状態に保ち、その中に溶存ガスを放出させ、電気
絶縁油から脱ガスが完了した時点で移動弁を作動
させて抽出した溶存ガスをガス試料管に装入する
方式であるが、これまた同一試料について抽出操
作を一回しか行なえないので、溶解の高い溶存ガ
スを十分に抽出することが困難であり、精度よく
溶存ガス量の測定を行なうことがむつかしい等の
欠点がある。 For example, in the case of electrical insulating oil, the gas extraction equipment for dissolved gas in electrical insulating oil is generally a gas extraction equipment using a Trithierly vacuum, a gas extraction equipment using a combination of a mercury diffusion pump and a Teppler pump, and a gas extraction equipment using a vacuum pump and a transfer pump. There are gas extraction devices that use valves. However, the gas extraction device using the Trithierly vacuum uses a level glass bottle containing mercury to create a so-called Trithierly vacuum, and releases the dissolved gas in the electrical insulating oil into the vacuumed glass container. This method uses mercury and a glass container, which has disadvantages such as the risk of mercury vapor escaping and the glass container being damaged. In addition, a gas extraction device that uses a combination of a mercury diffusion pump and a Teppler pump uses an oil rotary pump, a mercury diffusion pump, and a Teppler pump to maintain a vacuum inside a glass degassing container, and there is electrical insulation inside the degassing container. This is a method in which oil is injected to release dissolved gas and accumulate it in a gas storage container, but like the Trithiery vacuum method described above, there is a risk of mercury vapor escaping and damage to the glass container. In addition, a gas extraction device that uses a vacuum pump and a moving valve uses a vacuum pump to maintain a vacuum inside the cylinder, releases dissolved gas into the cylinder, and operates the moving valve when degassing is completed from the electrical insulating oil. This method involves charging the extracted dissolved gas into a gas sample tube, but since the extraction operation can only be performed once on the same sample, it is difficult to sufficiently extract highly dissolved dissolved gas. There are drawbacks such as difficulty in measuring the amount of dissolved gas with high accuracy.
また、これらの装置以外に、キヤリヤガスによ
つて電気絶縁油中の溶存ガスと置換させて溶存ガ
スを抽出するキヤリヤガス置換方式の溶存ガス抽
出装置もあるが、この場合溶存ガスの濃度が低い
場合には測定が困難であり、試料としての電気絶
縁油の量が少量のために測定値に誤差を生じ易い
等の欠点がある。 In addition to these devices, there is also a dissolved gas extraction device that uses a carrier gas replacement method to extract dissolved gas by replacing the dissolved gas in electrical insulating oil with a carrier gas, but in this case, when the concentration of dissolved gas is low, It is difficult to measure, and there are drawbacks such as the fact that the amount of electrical insulating oil used as a sample is small, which tends to cause errors in measured values.
本発明はこのような点に鑑み、破損の危険性の
あるガラス製の装置を使用する必要がなく、また
水銀蒸気の逸散の危険性も排除することができ、
しかも溶解度の高い溶存ガスも効率よく十分に脱
気し得るガス抽出装置を提供することを目的とす
る。 In view of these points, the present invention eliminates the need to use a glass device that is at risk of breakage, and also eliminates the risk of mercury vapor escaping.
Moreover, it is an object of the present invention to provide a gas extraction device that can efficiently and sufficiently degas even highly soluble dissolved gases.
以下、添付図面を参照して本発明の実施例につ
いて説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.
第1図において、符号1は撹拌装置2によつて
試料である電気絶縁油を撹拌し、その溶存ガスを
分離せしめるための脱気容器であつて、その脱気
容器1に連設された切換弁3に試料採油器4が接
続可能としてある。また、上記脱気容器1は弁5
を介して往復動式ピストン装置7のシリンダ室7
aに接続してあり、上記シリンダ室7aには弁8
および三方切換弁9を介して真空ポンプ10が連
接されている。 In FIG. 1, reference numeral 1 denotes a deaeration container for stirring electrical insulating oil as a sample with a stirring device 2 and separating its dissolved gas, and a switch connected to the deaeration container 1. A sample oil sampler 4 can be connected to the valve 3. Further, the deaeration container 1 has a valve 5.
The cylinder chamber 7 of the reciprocating piston device 7 via
a, and a valve 8 is connected to the cylinder chamber 7a.
A vacuum pump 10 is connected via a three-way switching valve 9.
一方、上記三方切換弁9に接続された導管11
には複数個(図においては2個)の分岐導管12
a,12bがそれぞれ切換弁13a,13bを介
してガス試料管14a,14bに接続されてい
る。 On the other hand, a conduit 11 connected to the three-way switching valve 9
There are multiple (two in the figure) branch conduits 12.
a, 12b are connected to gas sample tubes 14a, 14b via switching valves 13a, 13b, respectively.
しかして、各切換弁13a,13bが図示位置
の場合には、導管11を経たガスが上記切換弁1
3a,13bを通つてそれぞれガス試料管14
a,14bに供給され、一方上記切換弁13a,
13bを所定角度回動するとともに、その切換弁
13a,13bに接続されたキヤリヤガスによつ
てガス試料管14a,14b内のガスが上記切換
弁13a,13bを経、さらに導管16a,16
bを介してガスクロマトグラフ等の分析装置(図
示せず)に送給されるようにしてある。 Therefore, when each of the switching valves 13a and 13b is in the illustrated position, the gas passing through the conduit 11 is transferred to the switching valve 1.
Gas sample tubes 14 are passed through 3a and 13b, respectively.
a, 14b, while the switching valves 13a,
13b is rotated by a predetermined angle, the gas in the gas sample tubes 14a, 14b passes through the switching valves 13a, 13b by the carrier gas connected to the switching valves 13a, 13b, and is further transferred to the conduits 16a, 16.
b to an analytical device (not shown) such as a gas chromatograph.
また、前記導管11には圧力センサ17が設け
られており、その導管11を通つてガス試料管1
4a,14bに供給されたガス量の測定が行なわ
れ得るようにしてある。 Further, the conduit 11 is provided with a pressure sensor 17, and a gas sample tube 1 is passed through the conduit 11.
It is arranged so that the amount of gas supplied to 4a, 14b can be measured.
ところで、前記往復動式ピストン装置7は差圧
ピストン装置20によつて駆動される。すなわ
ち、上記往復動式ピストン装置7は第2図に示す
ように、シリンダ室7aおよびこのシリンダ室7
a内を摺動するピストン7bを有し、このピスト
ン7bの軸方向両端部外周面にそれぞれゴム状パ
ツキン25,25を設けると共に、これらゴム状
パツキン25,25間の外周面には周方向の条溝
を5条乃至7条形成し、これら条溝の空間部に液
体ガスケツトあるいはグリース等の不乾性半固体
状充填物26をそれぞれ充填する。これは気密性
を不乾性半固体状充填物26によつて保持し、不
乾性半固体状充填物26の漏出を一対のゴム状パ
ツキン25,25で防止するようにしたものであ
る。このピストン7bにはピストンロツド21を
介して大径ピストン22が連結されており、その
大径ピストン22のピストン7b側シリンダ室2
0aは切換弁23を介して真空ポンプ10に接続
され、また大径ピストン21の他方側シリンダ室
20bは切換弁24を介して上記真空ポンプ10
に接続されている。 Incidentally, the reciprocating piston device 7 is driven by a differential pressure piston device 20. That is, the reciprocating piston device 7 has a cylinder chamber 7a and a cylinder chamber 7, as shown in FIG.
The piston 7b has a piston 7b that slides inside a, and rubber gaskets 25, 25 are provided on the outer peripheral surface of both ends of the piston 7b in the axial direction, and the outer peripheral surface between these rubber gaskets 25, 25 has a circumferential surface. Five to seven grooves are formed, and the spaces between these grooves are filled with a non-drying semi-solid filler 26 such as a liquid gasket or grease. The airtightness is maintained by the non-drying semi-solid filling 26, and leakage of the non-drying semi-solid filling 26 is prevented by a pair of rubber gaskets 25, 25. A large-diameter piston 22 is connected to this piston 7b via a piston rod 21, and a cylinder chamber 2 of the large-diameter piston 22 on the piston 7b side
0a is connected to the vacuum pump 10 via a switching valve 23, and the other side cylinder chamber 20b of the large diameter piston 21 is connected to the vacuum pump 10 via a switching valve 24.
It is connected to the.
したがつて、切換弁24を切換えてシリンダ室
20bを真空ポンプ10と接続するとともに、切
換弁23によつて他方のシリンダ室20aを大気
側に開放すると、大径ピストン22はその両側の
差圧によつて図において右方に移動し、それに応
じてピストン7bが後退する。一方、切換弁23
を介してシリンダ室20aを真空ポンプ10に接
続するとともに、切換弁24を介してシリンダ室
20bを大気側に開放すると、大径ピストン22
とともにピストン7bが左動し、前述のように溶
存ガスのガス試料管14a,14bへの移送を行
なうことができる。 Therefore, when the switching valve 24 is switched to connect the cylinder chamber 20b to the vacuum pump 10, and the other cylinder chamber 20a is opened to the atmosphere by the switching valve 23, the large-diameter piston 22 is moved by the differential pressure on both sides thereof. As a result, the piston 7b moves to the right in the figure, and the piston 7b retreats accordingly. On the other hand, the switching valve 23
When the cylinder chamber 20a is connected to the vacuum pump 10 through the switching valve 24 and the cylinder chamber 20b is opened to the atmosphere through the switching valve 24, the large diameter piston 22
At the same time, the piston 7b moves to the left, and the dissolved gas can be transferred to the gas sample tubes 14a and 14b as described above.
しかして、上記装置によつて電気絶縁油中の溶
存ガスを抽出するには、まず切換弁3に試料採油
器4を接続するとともにその試料採油器4が大気
側に連通するように切換弁3を切換え、試料の電
気絶縁油の一部を排油しながら接続部の空気を排
除する。次に、差圧ピストン装置20によつて往
復動式ピストン装置7のピストン7bを図におい
て右方に作動させそのシリンダ室7aの容積を広
くする。そこで、弁5,8を開くとともに三方切
換弁9を作動して上記シリンダ室7aおよび各ガ
ス試料管14a,14bを真空ポンプ10に連通
せしめ、上記真空ポンプ10を運転することによ
り、シリンダ室7a、脱気容器1、およびガス試
料管14a,14b等の内部を所定の真空状態と
する。 Therefore, in order to extract dissolved gas in electrical insulating oil using the above device, first connect the sample oil sampler 4 to the switching valve 3, and connect the sample oil sampler 4 to the atmosphere side by connecting the sample oil sampler 4 to the switching valve 3. Switch to drain some of the electrical insulating oil from the sample and eliminate air from the connection. Next, the piston 7b of the reciprocating piston device 7 is actuated rightward in the figure by the differential pressure piston device 20 to increase the volume of the cylinder chamber 7a. Therefore, by opening the valves 5 and 8 and operating the three-way switching valve 9 to connect the cylinder chamber 7a and each gas sample tube 14a, 14b to the vacuum pump 10, and operating the vacuum pump 10, the cylinder chamber 7a , the degassing container 1, the gas sample tubes 14a, 14b, etc. are brought into a predetermined vacuum state.
このようにしてシリンダ室7a等の内部が所定
の真空状態となると、三方切換弁9を切換え、シ
リンダ室7aおよびガス試料管14a,14b等
と真空ポンプ10との連通を断つとともに切換弁
3を開放して試料採油器4内の電気絶縁油を脱気
容器1内に流入させ撹拌装置2を作動させて上記
電気絶縁油を撹拌する。 When the inside of the cylinder chamber 7a etc. reaches a predetermined vacuum state in this way, the three-way switching valve 9 is switched to cut off the communication between the cylinder chamber 7a, gas sample tubes 14a, 14b, etc. and the vacuum pump 10, and the switching valve 3 is switched off. When opened, the electrical insulating oil in the sample oil sampler 4 flows into the degassing container 1, and the stirring device 2 is operated to stir the electrical insulating oil.
上記撹拌によつて電気絶縁油の溶存ガスはその
電気絶縁油から分離放出され、その放出された溶
存ガスは真空状態に保たれているシリンダ室7a
およびガス試料管14a,14bへと流入し蓄積
される。 By the stirring, the dissolved gas in the electrical insulating oil is separated and released from the electrical insulating oil, and the released dissolved gas is kept in the cylinder chamber 7a in a vacuum state.
The gas also flows into the gas sample tubes 14a and 14b and is accumulated therein.
そこで、弁5を閉じるとともにシリンダ室7a
とガス試料管14a,14bとが連通するような
状態に三方切換弁9を維持させたまま、差圧ピス
トン装置20を作動させ往復動式ピストン装置7
のピストン7bを左方に移動せしめる。したがつ
て、上記ピストン7bの移動によつてシリンダ室
7a内の溶存ガスは強制的にガス試料管14a,
14bへと移送装入される。 Therefore, the valve 5 is closed and the cylinder chamber 7a is closed.
The reciprocating piston device 7 is activated by operating the differential pressure piston device 20 while maintaining the three-way switching valve 9 in a state where the gas sample tubes 14a and 14b communicate with each other.
The piston 7b of is moved to the left. Therefore, the movement of the piston 7b forces the dissolved gas in the cylinder chamber 7a into the gas sample tubes 14a,
14b.
上述のようにしてガス試料管14a,14bへ
の装入が完了すると、その時点で弁8を閉じ、往
復動式ピストン装置7のピストン7bを再び右方
に移動させる。しかしてシリンダ室7aの内部は
再び高真空度化されるので、弁5の開放によつて
脱気容器1内の電気絶縁油中の溶存ガスがその電
気絶縁油から放出されてシリンダ室7a内に蓄積
され、蓄積された溶存ガスは前述の操作を繰返す
ことによつて順次ガス試料管14a,14bの中
に移送装入される。 When the gas sample tubes 14a, 14b are completely charged as described above, the valve 8 is closed and the piston 7b of the reciprocating piston device 7 is moved to the right again. As a result, the inside of the cylinder chamber 7a is brought to a high degree of vacuum again, so that by opening the valve 5, the dissolved gas in the electrical insulating oil in the degassing container 1 is released from the electrical insulating oil and inside the cylinder chamber 7a. The accumulated dissolved gas is sequentially transferred and charged into the gas sample tubes 14a and 14b by repeating the above-described operation.
このようにして、同一試料の電気絶縁油につい
て溶存ガスの脱気抽出操作を繰返し行なうことに
よつて、溶解度の高い脱気し難い溶存ガスも効率
よく抽出される。 In this way, by repeatedly performing the degassing and extraction operation for dissolved gases on the same sample of electrical insulating oil, dissolved gases that have high solubility and are difficult to degas can also be efficiently extracted.
抽出された溶存ガスは予め校正された圧力セン
サ17により溶存ガス量の測定が行なわれ、一方
ガス試料管14a,14bに装入された溶存ガス
は、切換弁13a,13bをそれぞれ切換えキヤ
リヤガス供給管15からのキヤリヤガスをガス試
料管14a,14bに供給することによつて、切
換弁13a,13bを介して導管16a,16b
を経て適宜ガスクロマトグラフ等の分析装置に送
られる。 The amount of dissolved gas extracted is measured by a pre-calibrated pressure sensor 17, while the dissolved gas charged into the gas sample tubes 14a and 14b is transferred to the carrier gas supply tube by switching the switching valves 13a and 13b, respectively. By supplying carrier gas from 15 to gas sample tubes 14a, 14b, conduits 16a, 16b are supplied via switching valves 13a, 13b.
The sample is then sent to an analytical device such as a gas chromatograph as appropriate.
本発明は上述のように往復動式ピストン装置の
ピストンが一対のゴム状パツキンとその間の5条
乃至7条の条溝内に充填された不乾性半固体状充
填物とによつてシリンダとの間をシールしている
ので、気体の漏洩を皆無にすることができ、また
このピストンの往復によつて液体中から繰返し溶
存ガスの抽出を行なうことができると共に溶解度
が高い溶存ガスでも十分に抽出することができ
る。しかも装置全体が非常に小形で軽量である一
方、溶存ガスの抽出に水銀を用いないため水銀蒸
気の逸散の危険性が皆無となる。さらに、真空と
大気圧の圧力差によつて往復動式ピストン装置の
ピストンが往復動せしめられるので、機械的駆動
装置或は上記往復動式ピストン装置の駆動のため
に特別な加圧装置を設ける必要がなく、脱気容器
内等を真空にするための真空ポンプをその駆動源
としても使用することができる等の効果を奏す
る。 As described above, the present invention allows the piston of the reciprocating piston device to connect to the cylinder by a pair of rubber gaskets and a non-drying semi-solid filling filled in the 5 to 7 grooves between them. Since the space is sealed, there is no gas leakage, and by reciprocating the piston, dissolved gas can be repeatedly extracted from the liquid, and even dissolved gases with high solubility can be extracted sufficiently. can do. Moreover, the entire device is extremely small and lightweight, and since mercury is not used to extract dissolved gas, there is no risk of mercury vapor escaping. Furthermore, since the piston of the reciprocating piston device is caused to reciprocate by the pressure difference between vacuum and atmospheric pressure, a mechanical drive device or a special pressurizing device is provided to drive the reciprocating piston device. This is not necessary, and the vacuum pump for evacuating the inside of the degassing container can also be used as a driving source.
第1図は本発明のガス抽出装置の概略系統図、
第2図は第1図の要部拡大断面図である。
1……脱気容器、2……撹拌装置、4……試料
採油器、5,8……弁、7……往復動式ピストン
装置、9……三方切換弁、10……真空ポンプ、
14a,14b……ガス試料管、20……差圧ピ
ストン装置、25……ゴム状パツキン、26……
充填物。
FIG. 1 is a schematic system diagram of the gas extraction device of the present invention;
FIG. 2 is an enlarged sectional view of the main part of FIG. 1. 1... Deaeration container, 2... Stirring device, 4... Sample oil sampler, 5, 8... Valve, 7... Reciprocating piston device, 9... Three-way switching valve, 10... Vacuum pump,
14a, 14b... Gas sample tube, 20... Differential pressure piston device, 25... Rubber gasket, 26...
filling.
Claims (1)
出装置において、試料である液体から溶存ガスを
分離せしめるための脱気容器と、上記脱気容器か
ら溶存ガスを抽出しそれをガス試料管に放出せし
める往復動式ピストン装置と、真空ポンプによる
真空と大気圧との差によつて往復動し、上記往復
動式ピストン装置を駆動する差圧ピストン装置
と、上記脱気容器および往復動式ピストン装置の
シリンダ室並びにガス試料管に切換弁を介して接
続され、ガス抽出作動開始前に上記脱気容器およ
びシリンダ室内等を所定真空状態とする真空ポン
プとからなり、前記往復動式ピストン装置はシリ
ンダ及びこのシリンダ内を摺動するピストンを有
し、このピストンの軸方向両端部外周面にそれぞ
れゴム状パツキンを設けると共にこれらゴム状パ
ツキン間の外周面に周方向の条溝を複数形成し、
この各条溝内に不乾性半固体状充填物を充填して
構成したことを特徴とするガス抽出装置。1. In a gas extraction device used for analysis of dissolved gas in liquid, etc., there is a degassing container for separating dissolved gas from the liquid sample, and a device that extracts dissolved gas from the degassing container and transfers it to a gas sample tube. a reciprocating piston device that causes discharge, a differential pressure piston device that reciprocates due to the difference between the vacuum generated by a vacuum pump and atmospheric pressure and drives the reciprocating piston device, the degassing container and the reciprocating piston. The reciprocating piston device comprises a vacuum pump that is connected to the cylinder chamber and gas sample tube of the device via a switching valve, and brings the degassing container and the cylinder chamber to a predetermined vacuum state before starting the gas extraction operation. It has a cylinder and a piston that slides inside the cylinder, rubber gaskets are provided on the outer circumferential surface of both axial ends of the piston, and a plurality of circumferential grooves are formed on the outer circumferential surface between these rubber gaskets,
A gas extraction device characterized in that each groove is filled with a non-drying semi-solid filler.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10924780A JPS5734427A (en) | 1980-08-11 | 1980-08-11 | Gas extractor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10924780A JPS5734427A (en) | 1980-08-11 | 1980-08-11 | Gas extractor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5734427A JPS5734427A (en) | 1982-02-24 |
JPS6223808B2 true JPS6223808B2 (en) | 1987-05-25 |
Family
ID=14505336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10924780A Granted JPS5734427A (en) | 1980-08-11 | 1980-08-11 | Gas extractor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5734427A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02245636A (en) * | 1989-03-20 | 1990-10-01 | Sanmi Kogyo Kk | Detector for gas in oil |
-
1980
- 1980-08-11 JP JP10924780A patent/JPS5734427A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5734427A (en) | 1982-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4409814A (en) | Gas extracting device | |
JP4475224B2 (en) | Airtight leak inspection device | |
EP0525933A2 (en) | Determining the volume of gases in transformer cooling oil | |
US11699581B2 (en) | Sample feed device | |
JPS6223808B2 (en) | ||
JPS637443B2 (en) | ||
JPS588737B2 (en) | gas extraction equipment | |
KR920015127A (en) | Groundwater Sampling and Inspection Apparatus and Method | |
JPS6223809B2 (en) | ||
JPS588736B2 (en) | gas extraction equipment | |
JPS588738B2 (en) | gas extraction equipment | |
US3379065A (en) | Pressure liquid sampling system and apparatus | |
JPH0152704B2 (en) | ||
CN220339580U (en) | Pipe end leakage detection device of large heat exchanger | |
JP3238242B2 (en) | Airtightness inspection method and device | |
KR100308877B1 (en) | Apparatus for Extraction Gas Collection Using Plunger | |
CN109270251B (en) | Online extraction type hydrocarbon generation and discharge thermal simulation experiment device and method | |
JP4016927B2 (en) | Airtight leak inspection method and apparatus | |
WO2019048899A1 (en) | Determination of properties of a hydrocarbon fluid | |
CN2038493U (en) | Vaccumatic leak testing type full automatic oiler | |
CN217980690U (en) | Device for reducing signal background of hydrogen-nitrogen mass spectrometer leak detector | |
US1023188A (en) | Means for analyzing flue-gases. | |
JPH0723715Y2 (en) | Double leak inspection device | |
CN215931217U (en) | Auxiliary leakage detection device | |
CN210923187U (en) | SF6 gas detection tube sampling device |