JPS62235905A - Plane optical source - Google Patents
Plane optical sourceInfo
- Publication number
- JPS62235905A JPS62235905A JP61078180A JP7818086A JPS62235905A JP S62235905 A JPS62235905 A JP S62235905A JP 61078180 A JP61078180 A JP 61078180A JP 7818086 A JP7818086 A JP 7818086A JP S62235905 A JPS62235905 A JP S62235905A
- Authority
- JP
- Japan
- Prior art keywords
- light
- light source
- guiding part
- emitting panel
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title abstract description 4
- 239000011347 resin Substances 0.000 claims description 5
- 229920005989 resin Polymers 0.000 claims description 5
- 239000004973 liquid crystal related substance Substances 0.000 abstract description 18
- 238000000034 method Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 10
- 239000011521 glass Substances 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000009125 cardiac resynchronization therapy Methods 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 239000004925 Acrylic resin Substances 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011324 bead Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000009877 rendering Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 208000003464 asthenopia Diseases 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000005337 ground glass Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- QENHCSSJTJWZAL-UHFFFAOYSA-N magnesium sulfide Chemical compound [Mg+2].[S-2] QENHCSSJTJWZAL-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Light Guides In General And Applications Therefor (AREA)
- Liquid Crystal (AREA)
- Planar Illumination Modules (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は面光源に関し、更に詳しくは、各種ディスプレ
イの光源、特に液晶表示セルの裏面に背面光源として設
置するのに適し、出光効率の著しく改良された面光源に
関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a surface light source, and more specifically, it is suitable for being installed as a light source for various displays, especially as a back light source on the back side of a liquid crystal display cell, and has a remarkable light output efficiency. Relating to an improved surface light source.
(従来の技術)
近年、情報化社会の急激な進展とともに、各種情報を人
間に受渡しする端末機器が非常に多く利用されている。(Prior Art) In recent years, with the rapid development of the information society, terminal devices that transfer various types of information to humans have come into widespread use.
これらの端末ディスプレイの大部分はいわゆるCRTで
あるが、これらのCRTは、カラー表示機能、画像調整
機濠等に優れ、信号・ケーブルが少なくて済む等の多く
の利点を有するものの、高圧電源や肉厚ガラスからなる
表示管を惑星とするため、大きくて重く、且つスペース
をとるという欠点があることから、壁掛は型、可搬型、
携帯型等の用途を中心に平板状の7ラツトデイスプレイ
が種々提案されており、これらのうちで特に有望なもの
は、IC駆動可能で、カラー化が容易な液晶ディスプレ
イである。Most of these terminal displays are so-called CRTs, and although these CRTs have many advantages such as excellent color display functions, image adjustment functions, and fewer signals and cables, they do not require high-voltage power supplies or Since the display tube is made of thick glass, it is large, heavy, and takes up a lot of space.
Various types of flat 7-lat displays have been proposed mainly for use in portable devices, and among these, a particularly promising one is a liquid crystal display that can be driven by an IC and can be easily converted into color.
(発明が解決しようとしている問題点)従来の液晶ディ
スプレイは、裏面に光反射層を設け、前面からの外光を
利用して情報を表示する方式であり、格別の光源を必要
としないため、卓上計算機、電池駆動の計算機1時計等
のディスプレイとして広く使用されている。しかしなが
ら、このような液晶ディスプレイを端末機やテレビとし
て従来のCRTに代えて使用する場合には、明るさが不
足しているために、視野角、コントラスト、表示品質が
劣り、特に10〜12インチ程度以上のサイズにし、8
0字20〜25行程度の大容量表示用としては表示品質
上の問題が生じる。(Problems to be solved by the invention) Conventional liquid crystal displays have a light-reflecting layer on the back and display information using external light from the front, and do not require a special light source. It is widely used as a display for desktop calculators, battery-powered calculators, clocks, etc. However, when such liquid crystal displays are used in terminals or televisions instead of conventional CRTs, the viewing angle, contrast, and display quality are poor due to insufficient brightness, especially for 10- to 12-inch LCDs. Make the size larger than 8
When used for large-capacity display of about 20 to 25 lines of 0 characters, problems arise in terms of display quality.
また特別の光源を有さないので、外部の光環境条件の変
化によって表示品質が左右され、外光が存在しない場合
には2表示機能を全く失うという欠点がある。Furthermore, since it does not have a special light source, the display quality is affected by changes in external light environment conditions, and there is a drawback that the two-display function is completely lost in the absence of external light.
このような問題点を解決するために、最近では、液晶デ
ィスプレイの裏面に設置する背面光源の研究が多く為さ
れている。これらの背面光源としては有機分散型EL、
薄膜EL、発光ダイオードアレイを利用したもの、蛍光
灯やランプ等の光源と導光板とを組み合わせたもの、フ
ルネル型導光板、照明ボックス等種々のものが提案され
ているが、大型ディスプレイ用としては、均一性、光効
率、演色性等の点で満足できるものは知られていない。In order to solve these problems, there has recently been much research into backlight sources installed on the backside of liquid crystal displays. These backlight sources include organic dispersion type EL,
Various products have been proposed, such as thin-film EL, those using light emitting diode arrays, those that combine a light source such as a fluorescent lamp or lamp with a light guide plate, a Fournel type light guide plate, and a lighting box, but for large displays. However, there is no known material that is satisfactory in terms of uniformity, light efficiency, color rendering properties, etc.
これらの内で有望なものとしては、アクリル板等の透光
性パネルの側面に蛍光灯等の光源を設け、パネルの一方
の而から出光する方式が知られているが、この方式では
まず第一にパネルを蛍光灯の直径より薄くすると導光効
率が著しく低下するという問題があり、また第二に導入
光の大部分は出光面に平行な直進光であるために、出光
面からの出光効率が低いという問題があり、更に第三に
はこのパネルを大型にすればする程光源付近とパネルの
中央部分との照度に差が生じるという問題がある。Among these, a promising method is a method in which a light source such as a fluorescent lamp is installed on the side of a translucent panel such as an acrylic board, and light is emitted from one side of the panel. Firstly, if the panel is made thinner than the diameter of the fluorescent lamp, there is a problem that the light guide efficiency will be significantly reduced.Secondly, most of the introduced light is straight light parallel to the light emitting surface, so the light emitted from the light emitting surface is There is a problem of low efficiency, and a third problem is that the larger the panel is made, the more the difference in illuminance occurs between the vicinity of the light source and the center of the panel.
また光源として蛍光灯を使用する場合には、蛍光灯の光
量は常に均一であるために、出光面の光量を任意に制御
することができず、液晶ディスプレイの使用者の個人差
や使用環境に対応することができない、また、光量すな
わち明暗のみではなく、ホワイトバランスや演色性、使
用者の眼精疲労を考慮すると、出光面からの波長を調節
して、適当な色相光とすることも望ましいが、光源が蛍
光灯である場合には白色光のみが出光されるので、電気
的に調節することは不可能であるという欠点が生じる。Furthermore, when using a fluorescent lamp as a light source, the amount of light from the fluorescent lamp is always uniform, so it is not possible to arbitrarily control the amount of light on the light emitting surface, and this is subject to individual differences among LCD display users and the usage environment. In addition, it is also desirable to adjust the wavelength from the light emitting surface to obtain light of an appropriate hue, considering not only the amount of light, that is, brightness, but also white balance, color rendering, and user eye strain. However, when the light source is a fluorescent lamp, only white light is emitted, which has the disadvantage that electrical adjustment is impossible.
従って、本発明の主たる目的は、CRTに代替できる程
度に大型であり、且つ出光パネルを蛍光灯等の光源のサ
イズに関係なく薄くでき、更に出光効率に優れた面光源
を提供することである。Therefore, the main object of the present invention is to provide a surface light source that is large enough to be substituted for a CRT, whose light output panel can be made thin regardless of the size of a light source such as a fluorescent lamp, and which has excellent light output efficiency. .
また、本発明の別の目的は、CRTに代替できる程度に
大型であり、且つ使用する光環境や使用者の個人差に応
じて容易に光量および/または波長を調節することがで
きる面光源を提供することである。Another object of the present invention is to provide a surface light source that is large enough to replace a CRT and whose light intensity and/or wavelength can be easily adjusted according to the light environment in which it is used and the individual differences of users. It is to provide.
このような本発明の目的は、以下の本発明によって達成
された。These objects of the present invention have been achieved by the following invention.
(問題点を解決するための手段)
すなわち、本発明は、光源および出光パネルからなり、
該出光パネルが、導光部、導光面、光収束部、光案内部
、光反射層および出光面からなる面光源において、光源
は導光部中に包設され、光収束部は導光部と光案内部と
を連結して光案内部に向って薄くなり、光案内部は導光
部より薄く。(Means for solving the problems) That is, the present invention consists of a light source and a light emitting panel,
In a surface light source in which the light emitting panel is composed of a light guiding section, a light guiding surface, a light converging section, a light guiding section, a light reflecting layer, and a light emitting surface, the light source is enclosed in the light guiding section, and the light converging section is a light guiding section. and the light guide part, and the light guide part becomes thinner toward the light guide part, and the light guide part is thinner than the light guide part.
光反射層は、光源光の大部分が光収束部で集光して光案
内部に導入され且つ反射光が出光面に対し方向づけられ
た角度を有する形状であることを特徴とする面光源であ
る。The light reflection layer is a surface light source characterized by having a shape in which most of the light from the light source is focused at the light converging part and introduced into the light guide part, and the reflected light is oriented at an angle with respect to the light output surface. be.
(好ましい実施態様)
次に本発明の面光源の好ましい実施態様を図解的に示す
添付図面を参照して本発明を更に詳細に”)
説明する。(Preferred Embodiments) The present invention will now be described in more detail with reference to the accompanying drawings that schematically show preferred embodiments of the surface light source of the present invention.
第1図は、本発明の面光源の1例の断面図を示し、第2
図はその平面図を示し、第3図は従来技術の面光源の断
面図を示すものである。FIG. 1 shows a cross-sectional view of one example of the surface light source of the present invention, and FIG.
The figure shows a plan view thereof, and FIG. 3 shows a cross-sectional view of a conventional surface light source.
従来のアクリル板等を使用した面光源は、第3図示の如
く、出光面3と導光面6を除いた部分に光反射層8を設
けた出光パネルBの導光部(導光面6)に、蛍光灯等の
光源Aを付設したものであり、蛍光灯Aの直径よりも出
光パネルBの厚みを薄くすると光源光1の導入効率が低
下するという欠点があった。また、光源Aを出光パネル
Bとは異なる平面上に設け、光源光を反射させて出光パ
ネルBに平行に導入するものも知られているが、上記と
同様に、出光パネルBを光源Aの直径より薄くすると、
光源Aから発生する光の導入効率が低いものである。A conventional surface light source using an acrylic plate or the like has a light guide section (light guide surface 6 ) is attached with a light source A such as a fluorescent lamp, and has the disadvantage that if the thickness of the light output panel B is made thinner than the diameter of the fluorescent lamp A, the introduction efficiency of the light source light 1 decreases. It is also known that the light source A is provided on a different plane from the light emitting panel B, and the light source light is reflected and introduced parallel to the light emitting panel B. If it is thinner than the diameter,
The introduction efficiency of light generated from light source A is low.
また、出光パネルBを厚くすれば導光効率は向上するが
、現在の薄型化および軽量化指向に合致しないものであ
る。また光源Aから導入される光は出光パネルB中を出
光面に平行に直進する光が多くの割合を占めるため、出
光面3からの出光効率が低いという問題があり、更に光
源A付近の出光面3の照度が高く、光源Aから離れる程
照度が低下し、出光面3全体において照度が不均一であ
った。Furthermore, although the light guiding efficiency can be improved by increasing the thickness of the light emitting panel B, this does not meet the current trend toward thinning and weight reduction. In addition, since a large proportion of the light introduced from light source A is light that travels straight through light output panel B parallel to the light output surface, there is a problem that the light output efficiency from light output surface 3 is low, and furthermore, the light output near light source A The illuminance of the surface 3 was high, and the further the distance from the light source A, the lower the illuminance, and the illuminance was non-uniform over the entire light emitting surface 3.
また、光源として蛍光灯を使用する場合には、蛍光灯の
光量は常に均一であるために、出光面の光量を任意に制
御することができず、液晶ディスプレイの使用者の個人
差や使用環境に対応することができない、また、光量す
なわち明暗のみではなく、ホワイトバランスや演色性、
使用者の眼精疲労を考慮すると、出光面からの波長を調
節して、適邑な色相光とすることも望ましいが、光源が
蛍光灯である場合には白色光のみが出光されるので、電
気的に調節することは不可能であるという問題がある。In addition, when using a fluorescent lamp as a light source, the amount of light from the fluorescent lamp is always uniform, so it is not possible to arbitrarily control the amount of light on the light emitting surface. In addition, it is not only possible to deal with the amount of light, that is, brightness, but also with white balance, color rendering,
Considering the user's eye strain, it is desirable to adjust the wavelength from the light emitting surface to obtain light of an appropriate hue, but if the light source is a fluorescent lamp, only white light is emitted. The problem is that it is not possible to adjust electrically.
本発明の面光源は、上記の如き従来技術の問題点を解決
したものであり、第1図および第2図に図解的に示す如
く、光源Aおよび出光パネルBからなり、該出光パネル
Bが光源光lを導入する導光部2、導光面6、導入光1
を収束して光案内部4に導光する光収束部lO1導入光
lを出光面3に案内する光案内部4、光反射層8および
出光面3からなるものであり、光源Aは導光部中に包設
され、光収束部10は導光部と光案内部を連結して光案
内部4に向って薄くなり、光案内部4は導光部2より薄
く、好ましくは光源Aから離れる従って薄くなり、光反
射面8は、光源光lの大部分が直接光案内部4に導入さ
れず、光収束部10で収束されて反射光5として光案内
部4に導入され、且つ出光面3に対し方向づけられた角
度で反射する形状であることを特徴としているものであ
る。The surface light source of the present invention solves the problems of the prior art as described above, and as schematically shown in FIGS. 1 and 2, it consists of a light source A and a light emitting panel B. A light guide section 2 that introduces light source light l, a light guide surface 6, and introduced light 1
It consists of a light converging part lO1 that converges the light and guides it to the light guide part 4, a light guide part 4 that guides the introduced light l to a light output surface 3, a light reflection layer 8, and a light output surface 3, and the light source A is a light guide part 4. The light converging part 10 connects the light guide part and the light guide part, and becomes thinner toward the light guide part 4, and the light guide part 4 is thinner than the light guide part 2, preferably from the light source A. The light reflection surface 8 becomes thinner as the distance increases, and the light reflection surface 8 allows most of the light source light l not to be directly introduced into the light guide section 4, but to be converged by the light converging section 10 and introduced into the light guide section 4 as reflected light 5, and to emit light. It is characterized by a shape that reflects at an angle oriented with respect to the surface 3.
以上の如き構成とすることによって、出光パネルBの光
案内部4の厚さを光源である蛍光灯Aの直径より薄くし
ても、導入された光は、光収束部10で収束され、且つ
出光面3と対向する側の反射面8で反射(−次反射光)
され、出光面3に直接到達し、光源光lの導光効率を低
下させることがない、また図示の例の如く、導光部2の
みを厚くして蛍光灯Aを導光部z中に包含させ、厚い導
光部2と薄い光案内P14とを断時厚みを減じる光収束
部lOで連結させることによって、蛍光灯Aから出光す
る光1の大部分を、蛍光灯Aを包囲する導光部2の光反
射層8および光収束部工0により集光させて光案内部4
に導入することができるので、従来例(第3図示)に比
して光案内部4を薄くしても光源光lの導光効率を著し
く向上させることができ、更に好ましくは光案内部4を
光源から離れるに従って薄くすることにより、導入され
た光を出光面3全体に均一に分配させることができる。With the above configuration, even if the thickness of the light guide section 4 of the light output panel B is made thinner than the diameter of the fluorescent lamp A that is the light source, the introduced light is converged by the light converging section 10, and Reflected by the reflective surface 8 on the side opposite to the light emitting surface 3 (−th reflected light)
In addition, as shown in the example shown in the figure, only the light guide part 2 is made thicker so that the fluorescent lamp A can be placed in the light guide part z without reducing the light guide efficiency of the light source light l. By connecting the thick light guide part 2 and the thin light guide P14 with the light converging part 1O that reduces the thickness of the light guide, most of the light 1 emitted from the fluorescent lamp A is absorbed by the light guide surrounding the fluorescent lamp A. The light is condensed by the light reflection layer 8 and the light convergence part 0 of the light part 2, and the light guide part 4
Therefore, even if the light guide section 4 is made thinner than the conventional example (shown in the third figure), the light guide efficiency of the light source light l can be significantly improved.More preferably, the light guide section 4 By making the light thinner as it goes away from the light source, the introduced light can be uniformly distributed over the entire light exit surface 3.
また出光パネルBの出光面3に送られる光源光lは、第
3図示の例では、大部分が出光面3と平行な直進光であ
るため、出光面3に至る光の割合が少なく、また光源か
ら遠ざかるにつれて、反射をくり返した光(高次反射光
)の成分が殆どとなり、光効率が低下するため、出光面
3の照度が低く、また不均一であったのに対して、本発
明の面光源の場合には、光源光1の大部分は光源の周囲
および光収束部lOで集光され、出光パネルBの外面に
設けられ、且つ好ましくは傾斜を有する光反射層8によ
り反射されて出光面3に対して方向づけられた角度を有
して直接出光面3に至る一次反射光を利用するため、途
中の光損失が少なく、光案内部4に導入された光1の出
光効率が著しく向上し、また反射面を傾斜させたことに
よって出光面3全体にわたって均一な照度を与えること
ができるものである。A体的には、例えば、出光パネル
Bの両端に2個以上の光源を組み合せて均一な照度にす
ることが可能であり、また、光源が1木でも光源からの
遠近差なしに均一にすることも可能となるうえ、任意の
照度分布を与えることも可能である。このような作用効
果は、出光パネルBの出光面3および導光面6を除く外
面に光反射層8を設け、蛍光灯Aの周囲、特に下方の光
反射層の角度や形状を変化させ、例えば傾斜面や凹凸形
状、凹状あるいは凸状反射レンズ形状、フルネルレンズ
形状、マイクロレンズアレイ形状等の反射型レンズ状に
し、更に光案内部の光反射層8を傾斜させることにより
、光源Aからの出光面3に達する光量を自由に変化させ
ることができるので、出光面3に至る光量を均一化する
ことができる。Furthermore, in the example shown in the third figure, most of the light source light l sent to the light emitting surface 3 of the light emitting panel B is straight light that is parallel to the light emitting surface 3, so that the proportion of light that reaches the light emitting surface 3 is small. As the distance from the light source increases, the component of repeatedly reflected light (higher-order reflected light) becomes the majority, and the light efficiency decreases. In the case of a surface light source, most of the light source light 1 is collected around the light source and at the light converging part 10, and is reflected by the light reflection layer 8 provided on the outer surface of the light output panel B and preferably having an inclined surface. Since the primary reflected light that has an angle oriented with respect to the light output surface 3 and directly reaches the light output surface 3 is used, there is little optical loss on the way, and the light output efficiency of the light 1 introduced into the light guide section 4 is increased. Furthermore, by slanting the reflecting surface, uniform illuminance can be provided over the entire light emitting surface 3. For example, it is possible to make uniform illumination by combining two or more light sources at both ends of light emitting panel B, and even if there is only one light source, it can be made uniform without any distance difference from the light source. In addition, it is also possible to provide an arbitrary illuminance distribution. Such an effect is achieved by providing a light reflecting layer 8 on the outer surface of the light emitting panel B except for the light emitting surface 3 and the light guiding surface 6, and changing the angle and shape of the light reflecting layer around the fluorescent lamp A, especially below it. For example, by using a reflective lens shape such as an inclined surface, an uneven shape, a concave or convex reflective lens shape, a Fresnel lens shape, a microlens array shape, etc., and further slanting the light reflective layer 8 of the light guide part, the light source A can be Since the amount of light reaching the light emitting surface 3 can be freely changed, the amount of light reaching the light emitting surface 3 can be made uniform.
更に本発明の別の好ましい実施態様では、光源Aの周囲
に調光フィルター11を設ける。この調光フィルター1
1は光源Aからの光の強度および色相を自由に変えるこ
とができるものであり、光量フィルターおよび/または
波長フィルターとしての機能を有する。Furthermore, in another preferred embodiment of the present invention, a light control filter 11 is provided around the light source A. This dimmer filter 1
1 can freely change the intensity and hue of the light from the light source A, and has the function of a light amount filter and/or a wavelength filter.
まず最初に調光フィルター11が光量フィルターである
場合には、このような光量フィルターは、蛍光灯Aから
照射される光の量を調節できる構成である限りいずれの
構成でもよいものであり、いくつかの好ましい例を挙げ
れば次の通りである。First of all, when the light control filter 11 is a light intensity filter, such a light intensity filter may have any configuration as long as it can adjust the amount of light emitted from the fluorescent lamp A. Preferred examples are as follows.
(1)f?F光灯Aの周囲に蛍光灯の光をル制御できる
層を形成し、蛍光灯を回転可能にした態様。(1) f? A mode in which a layer that can control the light of the fluorescent lamp is formed around the F light lamp A, and the fluorescent lamp can be rotated.
この態様では、上記層が光量フィルターとなり、例えば
、黒色その他の色の如く、遮光または光を吸収し得る層
を形成する態様、白色、金属色等の如く光を反射できる
層を形成する方法等いずれでもよい。このよ、うな光量
制御層は適当なインキや塗料を調製し、これを蛍光灯A
の周囲に印刷したり、へヶ、ロール、スプレー、静電塗
装、焼付け、インキジェット法等の方法で塗布したり、
蒸着、CVD、スパッタ等の方法、また、予め染着層を
形成しておき、後に染色する方法で、直接光源に形成す
るか、予め他の透明基材に形成しておき、貼り合わせす
る等のいずれの方法で形成してもよい、勿論、このよう
な光量フィルターは、蛍光灯AのV壁に均一に形成する
のではなく、線状、縞状あるいは点状に適当に密度差や
濃度差をつけて形成するか、あるいは、透過濃度の異な
る遮光材層を段階的またはj!lX続的に形成する。こ
のような構成の光量フィルター11を形成し、適当な手
段(図示なし)により蛍光灯Aを回転させることによっ
て、出光面に至る光量を容易に制御することができる。In this embodiment, the above-mentioned layer becomes a light amount filter, and for example, a method of forming a layer capable of blocking or absorbing light such as black or other color, a method of forming a layer capable of reflecting light such as white or metallic color, etc. Either is fine. For such a light amount control layer, prepare a suitable ink or paint and apply it to the fluorescent lamp A.
Print around the area, or apply using methods such as rolling, spraying, electrostatic painting, baking, or inkjet methods.
Methods such as evaporation, CVD, sputtering, etc., or methods of forming a dyed layer in advance and dyeing it afterwards, forming it directly on a light source, or forming it on another transparent substrate in advance and bonding it together, etc. Of course, such a light intensity filter is not formed uniformly on the V wall of the fluorescent lamp A, but is formed in a linear, striped, or dot-like manner with appropriate density differences or concentration. Alternatively, light shielding material layers with different transmission densities may be formed stepwise or j! 1X is formed continuously. By forming the light amount filter 11 having such a configuration and rotating the fluorescent lamp A by appropriate means (not shown), the amount of light reaching the light output surface can be easily controlled.
(2)蛍光灯Aは固定し、その周囲に回転可能な光量フ
ィルター11を設ける態様。(2) A mode in which the fluorescent lamp A is fixed and a rotatable light amount filter 11 is provided around it.
この例の原理も上記(1)の場合と全く回−であり、例
えば、透明なガラスやプラスチックからなる管状フィル
ター11を形成し、その表面に上記(1)における如き
、密度差や濃度差を有する光吸収層あるいは光反射層を
形成する方法でよい、更に上記管状体を設けた後にその
表面に上記の如き光場調f!f141!1能を有するフ
ィルム等を巻き付けたものでもよい、また、フレキシブ
ルな筒状シートにして、2軸で回転して送る方法も可能
である。このような構成の光量フィルター11を設け、
このフィルター11をギヤやベルト等の適当な手段(図
示なし)で回転させることによって。The principle of this example is also the same as the case (1) above. For example, a tubular filter 11 made of transparent glass or plastic is formed, and the density difference or concentration difference as in (1) above is formed on the surface of the tubular filter 11. A method may be used in which a light absorbing layer or a light reflecting layer is formed with the above-mentioned light field adjustment f! It may be wrapped with a film having f141!1 function, or it may be made into a flexible cylindrical sheet and fed by rotating on two axes. A light amount filter 11 having such a configuration is provided,
By rotating this filter 11 with a suitable means (not shown) such as a gear or a belt.
出光面に至る光量を任意に制御することができる0以上
は、説明容易性のために、管状のフィルターを例示して
説明したが、フィルターはこれらの例に限定されず、い
ずれの形状および可動機構でもよい。The amount of light reaching the light emitting surface can be arbitrarily controlled.For ease of explanation, a tubular filter has been used as an example, but the filter is not limited to these examples, and can be any shape and movable filter. It can also be a mechanism.
また、調光フィルター11が波長フィルターで1)
ある場合には、上記(1)および(2)の態
様における光吸収層を特定の波長の光を吸収する色に着
色することによって本発明の目的が達成できる。すなわ
ち、調光フィルター11をイエロー、オレンジ、レッド
、ブルー、グリーン、バイオレットあるいはそれらの中
間色で任意の順序に着色すればよく、このような構成の
調光フィルター11を使用者の好みに応じて回転あるい
はスライドさせることによって、光源から出光面に至る
光の波長を任意に制御することができる。また、テレビ
用途においては、必須である色相調整が最も簡単にでき
る方法として有効である。In addition, the dimmer filter 11 is a wavelength filter 1)
In some cases, the object of the present invention can be achieved by coloring the light absorption layer in the embodiments (1) and (2) above in a color that absorbs light of a specific wavelength. That is, the light control filter 11 may be colored with yellow, orange, red, blue, green, violet, or an intermediate color thereof in any order, and the light control filter 11 having such a configuration may be rotated according to the user's preference. Alternatively, by sliding it, the wavelength of light from the light source to the light output surface can be arbitrarily controlled. Furthermore, in television applications, this method is effective as the simplest way to perform hue adjustment, which is essential.
更に本発明で使用する調光フィルターtiは、上記の光
量フィルターと波長フィルターとを同時に兼ねることが
できる0例えば、同一のフィルター上に光量wAliと
色調調節の両機能を持たせる方法と、前記第2の構成例
では、複数のフィルターに分けて相互に重ね合わせ、独
立に制御する方法とがあり、後者の方が、光量1色調、
色調の濃淡等多くの調整が可能であり、より精密な調整
に適している。Furthermore, the light control filter ti used in the present invention can serve as the above-mentioned light amount filter and wavelength filter at the same time. In the configuration example 2, there is a method in which multiple filters are separated and stacked on top of each other and controlled independently.
Many adjustments can be made, such as the shade of color, making it suitable for more precise adjustments.
以上の如き本発明の作用効果を奏する出光パネルBは、
いずれかの透光性に優れf材料、例えばガラス材料等か
ら形成できるが、成形容易性や透光性等の点からは、ア
クリル樹脂、アクリロニトリル−スチレン共重合樹脂、
セルロースアセトブチレート樹脂、セルロースプロピオ
ネ−)11脂。The light emitting panel B that exhibits the effects of the present invention as described above is:
It can be formed from any material with excellent translucency, such as glass material, but in terms of ease of molding and translucency, acrylic resin, acrylonitrile-styrene copolymer resin,
Cellulose acetobutyrate resin, cellulose propionone) 11 fat.
ポリメチルペンテン樹脂、ポリカーボネート樹脂、ポリ
スチレン樹脂、ポリエステル樹脂等の透光性プラスチッ
ク材料・あるいはこれらの複合材料若しくは共重合材料
から形成するのが好ましい。It is preferable to use a translucent plastic material such as polymethylpentene resin, polycarbonate resin, polystyrene resin, or polyester resin, or a composite material or copolymer material thereof.
また、反応固化型のエポキシ系樹脂、アクリル系樹脂、
メタクリル系樹脂、ウレタン系樹脂等も使用可部である
。成形方法としては、射出成形、コンプレッション成形
、注型成形、切削、研磨等公知の方法がいずれも適用で
きる。In addition, reaction-curing epoxy resins, acrylic resins,
Methacrylic resin, urethane resin, etc. can also be used. As the molding method, any known method such as injection molding, compression molding, cast molding, cutting, polishing, etc. can be applied.
このようにして得られる出光パネルBの光反射層8は、
第1図および第2図に示す如く、出光面3および導光部
2の導光面6を除く他の部分にニッケル、アルミニウム
、銀、金等の光反射性全屈を蒸着、スパッタ、メッキ、
銀鏡反応等により形成するか、反射性の金属入り塗料を
塗布したり、あるいはアルミニウムシート等の光反射性
材料を貼り合せすることにより形成し、光源光1がパネ
ルB外に漏洩するのを防止することが、一部の漏洩光を
再度内部に反射する効果を含めて有効である。また、不
要な部分は設計されない外光入射を防止するための遮光
剤や光吸収剤で層を形成することも手段として有効であ
る。これらの反射面は、光学設計を乱さない範囲で、散
乱性に処理するか、ガラスピーズ等の再帰反射材料を利
用することも可能であり、また、凹凸面を利用して拡散
反射させることも可能である。The light reflecting layer 8 of the light emitting panel B obtained in this way is
As shown in FIGS. 1 and 2, a light-reflecting material such as nickel, aluminum, silver, or gold is vapor-deposited, sputtered, or plated on the light-emitting surface 3 and other parts of the light-guiding part 2 except for the light-guiding surface 6. ,
It is formed by a silver mirror reaction, or by applying a reflective metal-containing paint, or by bonding a light-reflecting material such as an aluminum sheet to prevent the light source light 1 from leaking to the outside of the panel B. This is effective, including the effect of reflecting some of the leaked light back into the interior. Furthermore, it is also effective to form a layer with a light shielding agent or a light absorbing agent in unnecessary portions to prevent undesigned external light from entering. These reflective surfaces can be treated with scattering properties or use retroreflective materials such as glass beads, as long as they do not disturb the optical design, or they can also be diffusely reflected using uneven surfaces. It is possible.
また、その出光面3には、光拡散層9を形成するのが好
ましく、例えば、出光面を出光パネルの成形時または成
形後に、サンドペーパー研磨、サンドブラスト、ホーン
ニング、パフ研磨、ヘアライン加工、エンボス加工、プ
レス加工等で粗面化したり、シリカ、アルミナ、酸化チ
タン、酸化亜鉛、硫酸バリウム、S化マグネシウム等の
白色顔料や特定径を有するガラスピーズ等の光拡散性材
料を含む透明樹脂層を、浸漬、ロールコート、ブレード
コート、スプレコート等の塗布法により形成したり、あ
るいはこれらの層を接着することにより、出光面3に至
った光を乱反射あるいは拡散させ、出光面3からの照度
を均一化するとともに視角を広げることができる。また
このような光拡散層は、スリガラス板、光拡散性ガラス
板、光拡散性プラスチックシート等を別に用意し、成形
時に同時に一体化するか、または使用時に液晶セルフと
出光面3との間に載置あるいは貼り合わせてもよい、ま
た、光源の導光部と反対側には光反射性の集光鏡や放熱
板を配置することも効率向上やfJS設計上右利である
。Further, it is preferable to form a light diffusion layer 9 on the light emitting surface 3. For example, the light emitting surface may be sandpaper polished, sandblasted, honed, puffed, hairline processed, embossed, etc. during or after molding of the light emitting panel. The transparent resin layer may be roughened by processing or press processing, or may contain a light-diffusing material such as white pigments such as silica, alumina, titanium oxide, zinc oxide, barium sulfate, or magnesium sulfide, or glass beads with a specific diameter. , by coating methods such as dipping, roll coating, blade coating, and spray coating, or by adhering these layers, the light reaching the light emitting surface 3 is diffusely reflected or diffused, and the illuminance from the light emitting surface 3 is reduced. It is possible to make the image uniform and widen the viewing angle. In addition, such a light diffusing layer can be formed by preparing a ground glass plate, a light diffusing glass plate, a light diffusing plastic sheet, etc. separately and integrating them at the same time during molding, or by placing them between the liquid crystal self and the light emitting surface 3 during use. They may be mounted or bonded together, and it is also advantageous in terms of efficiency improvement and fJS design to arrange a light-reflecting condensing mirror or heat sink on the opposite side of the light guide section of the light source.
以上の如き出光パネルBは、第1図示の如く出光面3、
導光部2および光収束部10が凹部を形成しており、こ
の凹部に液晶ディスプレイ7を載置することによって、
液晶ディスプレイ7の背面を照明し、液晶ディスプレイ
7を環境によらず明瞭に見えるようにすることができる
。また1本発明の出光パネルをこのような形状とするこ
とによって、背面光源を含むディスプレイ全体の厚みを
薄くすることができ、全体の軽量化が達成できる。The light emitting panel B as described above has a light emitting surface 3,
The light guiding part 2 and the light converging part 10 form a recess, and by placing the liquid crystal display 7 in this recess,
The back surface of the liquid crystal display 7 can be illuminated to make the liquid crystal display 7 clearly visible regardless of the environment. Further, by forming the light emitting panel of the present invention into such a shape, the thickness of the entire display including the back light source can be reduced, and the overall weight can be reduced.
以上未発明の好ましい実施態様を例示して本発明を説明
したが、光源Aからの光の大部分を反射光とし、光収束
部10で集光し、且つ出光面に対して角度を有する光と
して光案内部4に導入できる構成である限り、未発I+
の面光源は図示の形状に限定されず、いずれの形状でも
よいものである0例えば、出光パネルBの導光部2(光
源A)は図示の2箇所に限定されず、1箇所でも、3箇
所でも4箇所でもよく、また出光パネルBの形状は、矩
形に限定されず1円盤状、楕円板状、多角形状、コーナ
部が丸みを有する矩形状等任意の形状でよく、従って、
光源の形状も棒状蛍光灯Aに限定されず、出光パネルB
の形状に応じて、環状等任意の形状でよい。Although the present invention has been described above by exemplifying the uninvented preferred embodiments, most of the light from the light source A is reflected light, the light is condensed by the light converging section 10, and the light has an angle with respect to the light output surface. As long as the configuration is such that it can be introduced into the light guide section 4 as
The surface light source is not limited to the shape shown in the figure, and may have any shape. The light emitting panel B may be formed in one place or in four places, and the shape of the light emitting panel B is not limited to a rectangle, but may be any shape such as a disk shape, an elliptical plate shape, a polygonal shape, a rectangular shape with rounded corners, etc.
The shape of the light source is not limited to the rod-shaped fluorescent lamp A, but also the light output panel B.
It may be of any shape, such as annular, depending on the shape of.
(作用・効果)
以上の如き本発明の面光源は、光源からの光が光案内部
に平行に入射されるのではなく、方向性を有する反射光
として入射されるため、入射光の大部分は、出光面に対
して方向づけられた角度のある光とすることができ、光
源からの光を効率良く出光面に案内することができる。(Function/Effect) In the surface light source of the present invention as described above, the light from the light source is not incident on the light guide section in parallel, but as reflected light having directionality, so that most of the incident light is The light can be directed at an angle with respect to the light emitting surface, and the light from the light source can be efficiently guided to the light emitting surface.
また本発明の好ましい実施態様では、光源としての蛍光
灯の太さに拘らず、光案内部を薄くすることができるの
で、ディスプレイの薄層化および軽l化という要求を満
足させることができる。Further, in a preferred embodiment of the present invention, the light guide portion can be made thin regardless of the thickness of the fluorescent lamp used as the light source, so that the demand for thinner and lighter displays can be satisfied.
また、同様の理由から、導光部を蛍光灯の直径より厚く
して、そのなかに蛍光灯の半分以上をはめ込み、この導
光部を光収束部!光案内部と連結することにより、光案
内部は蛍光灯の直径より薄くすることができるので、蛍
光灯から照射される光の大部分を集光して光案内部に導
入できる。Also, for the same reason, the light guide part is made thicker than the diameter of the fluorescent lamp, more than half of the fluorescent lamp is fitted into it, and this light guide part is used as a light converging part! By connecting with the light guide part, the light guide part can be made thinner than the diameter of the fluorescent lamp, so that most of the light emitted from the fluorescent lamp can be collected and introduced into the light guide part.
従って、光案内部が蛍光灯の直径よりも薄くとも、光源
光の利用効率を著しく高めることができる。Therefore, even if the light guide section is thinner than the diameter of the fluorescent lamp, the efficiency of using the light from the light source can be significantly increased.
また、出光面等の一部を除く出光パネルの外面に光反射
層を形成し、それらの光源に対する角度や形状を通出に
コントロールすることにより、光源からの光を出光面全
体に均一に分配することができるので出光面の照度を一
層均一化することができる。In addition, by forming a light reflective layer on the outer surface of the light emitting panel except for a part of the light emitting surface, and controlling the angle and shape of those light sources, the light from the light source is distributed uniformly over the entire light emitting surface. Therefore, the illuminance on the light exit surface can be made even more uniform.
更に本発明の好ましい例では、光源の周囲に調光フィル
ターを付設することによって、使用者によって出光面に
至る光の光量および/または波長が簡便に任意に制御で
きるので、使用者の個人差に十分対応でき、使用者毎に
最適の光量(明暗)および/または最適の波長光(色相
)をもって液晶ディスプレイ等のディスプレイを使用す
ることができる。Furthermore, in a preferred embodiment of the present invention, by attaching a dimmer filter around the light source, the amount and/or wavelength of the light reaching the light emitting surface can be easily and arbitrarily controlled by the user. It is possible to use a display such as a liquid crystal display with the optimum amount of light (brightness/darkness) and/or optimum wavelength light (hue) for each user.
(実施例)
実施例1
ポリメチルメタクリレート樹脂(パラベットHR1協和
ガス化学製)を使用して第1図および第2図に示す如き
形状でサイズ200腸量X 1201Im、光案内部の
中心厚み4mm、周辺厚み10m組導光部の厚み25票
層の出光パネルを射出成形方法で成形し、出光面および
導光面を除く外面にアルミニウムを真空蒸着して光反射
層を形成した。また上記のアクリル樹4旧にガラスピー
ズ(東芝バロティーニ製)を10重量%の割合で混練し
て2mm厚のシートを作成し、これを出光面に貼合した
。光源としては15Wの蛍光灯を2本使用し、導光部に
形成した凹部にか合し、上面をアルミニウムシートで封
止して本発明の面光源とした。(Example) Example 1 Using polymethyl methacrylate resin (Paravet HR1 manufactured by Kyowa Gas Chemical Co., Ltd.), the shape was as shown in FIGS. 1 and 2, the size was 200 mm x 1201 mm, the center thickness of the light guide part was 4 mm, A light emitting panel with a peripheral thickness of 10 m and a light guide part having a thickness of 25 layers was molded by an injection molding method, and aluminum was vacuum deposited on the outer surface except for the light emitting surface and the light guiding surface to form a light reflecting layer. Further, 10% by weight of glass beads (manufactured by Toshiba Ballotini) were kneaded with the above-mentioned acrylic resin 4 to prepare a 2 mm thick sheet, which was bonded to the light emitting surface. Two 15W fluorescent lamps were used as light sources, and they were fitted into the recesses formed in the light guide, and the upper surface was sealed with an aluminum sheet to provide a surface light source of the present invention.
この面光源の出光面に液晶ディスプレイを載置し、面光
源を点灯したところ、液晶ディスプレーの視野角、コン
トラストが優れ全体が均一な高い表示機能を示した。When a liquid crystal display was placed on the light emitting surface of this surface light source and the surface light source was turned on, the liquid crystal display showed excellent viewing angles and contrast, and exhibited a high display function that was uniform throughout.
実施例2
上記実施例1の上記アクリル樹脂からその一端に回転用
とってを設けた管状体を形成し、その表面に黒色のドツ
トが印刷され、ド−/ )数が連続的に変化しているポ
リ塩化ビニルシートを貼り合わせ、2木の調光フィルタ
ーを用意した。この中に15Wの蛍光灯を夫々装着し、
実施例1の出光パネルの導光部の凹部に騒合し、上面を
アルミニウムシートで封止し、外部から上記の調光フィ
ル、、 ターが自在に回転できるようにし
て本発明の面光源とした。Example 2 A tubular body with a rotation handle provided at one end was formed from the acrylic resin of Example 1, black dots were printed on the surface, and the number of dots (dots/) was continuously changed. We prepared two dimmer filters by pasting together polyvinyl chloride sheets. A 15W fluorescent light is installed in each of these,
The surface light source of the present invention is constructed by fitting the light output panel into the concave part of the light guide part of the light output panel of Example 1, sealing the upper surface with an aluminum sheet, and allowing the above-mentioned light control filter to rotate freely from the outside. did.
この面光源の出光面に液晶ディスプレイをa置し、面光
源を点灯したところ、液晶ディスプレーは発光型となり
、視野角、コントラストが優れ。When a liquid crystal display was placed on the light emitting surface of this surface light source and the surface light source was turned on, the liquid crystal display became a light-emitting type, with excellent viewing angles and contrast.
全体が均一な高い表示機能を示した。また、調光フィル
ターを徐々に回転させることによって、液晶ディスプレ
イの明暗が変化し、個人差および外光に対応して表示面
の調光が可能であった。The entire display showed uniform and high display function. In addition, by gradually rotating the light control filter, the brightness and darkness of the liquid crystal display changed, making it possible to adjust the brightness of the display surface in response to individual differences and external light.
実施例3
実施例2におけるドツト印刷シートに代えて、蛍光灯の
問囲長さに等しい巾で、縦に連続的に透明性の高い虹の
7色を配色したシートを使用し。Example 3 In place of the dot-printed sheet in Example 2, a sheet with a width equal to the circumferential length of a fluorescent lamp and having seven highly transparent rainbow colors arranged vertically and continuously was used.
他は実施例2と同様にして本発明の面光源を得た。この
面光源を実施例1と同様に使用してみたところ、表示面
の光の色相を種々の色相に変化させることができた。The other aspects were the same as in Example 2 to obtain a surface light source of the present invention. When this surface light source was used in the same manner as in Example 1, it was possible to change the hue of light on the display surface to various hues.
以上の通り、本発明の面光源は、液晶ディスプレイ等の
各種のディスプレイの背面光源として非常に有用である
。As described above, the surface light source of the present invention is very useful as a back light source for various displays such as liquid crystal displays.
第1図は本発明の面光源の1例の断面を図解的に示す図
であり、第2図は第1図の平面図に相当し、且つ第3図
は従来技術の面光源の断面を図解的に示す図である。
A;光源
B;出光パネル
エ;光源光
2;導光部
3;出光面
4;光案内部
5;反射光
6;導光面
7;液晶ディスプレイ
8;光反射層
9;光拡散層
10:光収束部
11;調光フィルター
第1図
第2図FIG. 1 is a diagram schematically showing a cross section of an example of a surface light source of the present invention, FIG. 2 corresponds to the plan view of FIG. 1, and FIG. 3 shows a cross section of a conventional surface light source. It is a figure shown diagrammatically. A; light source B; light output panel e; light source light 2; light guide section 3; light output surface 4; light guide section 5; reflected light 6; light guide surface 7; liquid crystal display 8; light reflection layer 9; light diffusion layer 10: light Convergence part 11; dimmer filter Fig. 1 Fig. 2
Claims (10)
、導光部、導光面、光収束部、光案内部、光反射層およ
び出光面からなる面光源において、光源は導光部中に包
設され、光収束部は導光部と光案内部とを連結して光案
内部に向って薄くなり、光案内部は導光部より薄く、光
反射層は、光源光の大部分が光収束部で集光して光案内
部に導入され且つ反射光が出光面に対し方向づけられた
角度を有する形状であることを特徴とする面光源。(1) In a surface light source consisting of a light source and a light emitting panel, where the light emitting panel consists of a light guiding part, a light guiding surface, a light converging part, a light guiding part, a light reflecting layer, and a light emitting surface, the light source is in the light guiding part. The light converging part connects the light guiding part and the light guiding part and becomes thinner toward the light guiding part, the light guiding part is thinner than the light guiding part, and the light reflecting layer is such that most of the light from the light source is A surface light source characterized in that the light is condensed by a light converging part and introduced into a light guide part, and has a shape having an angle such that reflected light is oriented with respect to a light output surface.
いる特許請求の範囲第(1)項に記載の面光源。(2) The surface light source according to claim (1), wherein the light guide portion becomes thinner as the distance from the light source increases.
され、光源光が反射光として光収束部に導入される特許
請求の範囲第(1)項に記載の面光源。(3) The surface light source according to claim (1), wherein the periphery or part of the light guide section is provided with an uneven shape, and the light source light is introduced into the light converging section as reflected light.
板の少なくとも一端に設けられた導光部の中心が、光案
内部の中心より上方に形成されている特許請求の範囲第
(1)項に記載の面光源。(4) The light emitting panel is made of a single light-transmitting plate, and the center of the light guide provided at at least one end of the light-transmitting plate is formed above the center of the light guide. A surface light source according to scope item (1).
反射性となっている特許請求の範囲第(1)項に記載の
面光源。(5) The surface light source according to claim (1), wherein the surface of the light-emitting panel excluding the light-emitting surface and the light-guiding surface is light-reflective.
(1)項に記載の面光源。(6) The surface light source according to claim (1), wherein the light emitting surface is light diffusive.
光源が設けられている特許請求の範囲第(1)項に記載
の面光源。(7) The surface light source according to claim (1), wherein the light emitting panel is rectangular and a light source is provided at at least one end thereof.
が設けられている特許請求の範囲第(1)項に記載の面
光源。(8) The surface light source according to claim (1), wherein the light emitting panel is disc-shaped and an annular light source is provided around the disc-shaped light emitting panel.
ている特許請求の範囲第(1)項に記載の面光源。(9) The surface light source according to claim (1), wherein the light emitting panel is integrally molded from a translucent resin.
が付設されている特許請求の範囲第(1)項に記載の面
光源。(10) The surface light source according to claim (1), wherein a dimmer filter is attached to the periphery or a part of the light source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61078180A JP2652009B2 (en) | 1986-04-07 | 1986-04-07 | Surface light source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61078180A JP2652009B2 (en) | 1986-04-07 | 1986-04-07 | Surface light source |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62235905A true JPS62235905A (en) | 1987-10-16 |
JP2652009B2 JP2652009B2 (en) | 1997-09-10 |
Family
ID=13654766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61078180A Expired - Lifetime JP2652009B2 (en) | 1986-04-07 | 1986-04-07 | Surface light source |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2652009B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63293506A (en) * | 1987-05-26 | 1988-11-30 | Teikoku Tsushin Kogyo Kk | Illuminating device for liquid crystal display element |
JPH01108525U (en) * | 1988-01-14 | 1989-07-21 | ||
JPH0217719U (en) * | 1988-07-21 | 1990-02-06 | ||
JPH02102525U (en) * | 1989-02-01 | 1990-08-15 | ||
JPH0485328U (en) * | 1990-11-28 | 1992-07-24 | ||
US5899552A (en) * | 1993-11-11 | 1999-05-04 | Enplas Corporation | Surface light source device |
US6322225B1 (en) | 1993-12-17 | 2001-11-27 | Enplas Corporation | Light scattering guiding light source device and liquid crystal display |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3464133A (en) * | 1965-04-30 | 1969-09-02 | Marcel C K De Poray | Display apparatus |
JPS51116027A (en) * | 1975-04-03 | 1976-10-13 | Akira Yashiro | Constructing method |
JPS5264510A (en) * | 1975-11-22 | 1977-05-28 | Nissan Motor Co Ltd | Internal combustion engine |
JPS5337594U (en) * | 1976-09-07 | 1978-04-01 | ||
JPS59210411A (en) * | 1983-05-13 | 1984-11-29 | Seiko Epson Corp | Plane light source |
-
1986
- 1986-04-07 JP JP61078180A patent/JP2652009B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3464133A (en) * | 1965-04-30 | 1969-09-02 | Marcel C K De Poray | Display apparatus |
JPS51116027A (en) * | 1975-04-03 | 1976-10-13 | Akira Yashiro | Constructing method |
JPS5264510A (en) * | 1975-11-22 | 1977-05-28 | Nissan Motor Co Ltd | Internal combustion engine |
JPS5337594U (en) * | 1976-09-07 | 1978-04-01 | ||
JPS59210411A (en) * | 1983-05-13 | 1984-11-29 | Seiko Epson Corp | Plane light source |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63293506A (en) * | 1987-05-26 | 1988-11-30 | Teikoku Tsushin Kogyo Kk | Illuminating device for liquid crystal display element |
JPH0621884B2 (en) * | 1987-05-26 | 1994-03-23 | 帝国通信工業株式会社 | Liquid crystal display lighting device |
JPH01108525U (en) * | 1988-01-14 | 1989-07-21 | ||
JPH0217719U (en) * | 1988-07-21 | 1990-02-06 | ||
JPH02102525U (en) * | 1989-02-01 | 1990-08-15 | ||
JPH0485328U (en) * | 1990-11-28 | 1992-07-24 | ||
US6290364B1 (en) | 1993-04-05 | 2001-09-18 | Enplas Corporation | Surface light source device |
US5899552A (en) * | 1993-11-11 | 1999-05-04 | Enplas Corporation | Surface light source device |
US6152570A (en) * | 1993-11-11 | 2000-11-28 | Enplas Corporation | Surface light source device |
US6322225B1 (en) | 1993-12-17 | 2001-11-27 | Enplas Corporation | Light scattering guiding light source device and liquid crystal display |
Also Published As
Publication number | Publication date |
---|---|
JP2652009B2 (en) | 1997-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2173336C (en) | Light source for backlighting | |
US5684354A (en) | Backlighting apparatus for uniformly illuminating a display panel | |
US5782995A (en) | Solar battery device and method of fabricating the same | |
US7021811B2 (en) | Light distribution hub | |
US20010008436A1 (en) | Light source utilizing reflective cavity having sloped side surfaces | |
US20020172039A1 (en) | Ultra-thin backlight | |
US20120250350A1 (en) | Display apparatus | |
US5136479A (en) | Device and method for creating an areal light source | |
TW201907119A (en) | Ultra-thin straight-type backlight optical lens | |
JP2732492B2 (en) | Surface light source | |
WO2020258768A1 (en) | Color conversion assembly and display panel | |
JPS62235905A (en) | Plane optical source | |
CN210573093U (en) | Light modulation diaphragm, backlight module and display device | |
JP2974400B2 (en) | Surface emitting device and method of manufacturing the same | |
TW202232795A (en) | Light-emitting module and display device | |
JPS63124004A (en) | Surface light source | |
JPS62169192A (en) | Surface light source | |
JPH039306A (en) | Backlight device | |
JPS6363083A (en) | Surface light source | |
JPS62278506A (en) | Plane light source | |
JPS6363084A (en) | Surface light source | |
JPS62278504A (en) | Plane light source | |
JPS62278503A (en) | Plane light source | |
JPS62169105A (en) | Planar light source | |
JPH10115714A (en) | Light emission panel for surface light source |