Nothing Special   »   [go: up one dir, main page]

JPS62212202A - Inorganic oxide spherical fine particle and production thereof - Google Patents

Inorganic oxide spherical fine particle and production thereof

Info

Publication number
JPS62212202A
JPS62212202A JP5362886A JP5362886A JPS62212202A JP S62212202 A JPS62212202 A JP S62212202A JP 5362886 A JP5362886 A JP 5362886A JP 5362886 A JP5362886 A JP 5362886A JP S62212202 A JPS62212202 A JP S62212202A
Authority
JP
Japan
Prior art keywords
heteropolyacid
cesium
fine particles
group
inorganic oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5362886A
Other languages
Japanese (ja)
Other versions
JPH0338202B2 (en
Inventor
Tadahiro Yoneda
忠弘 米田
Saburo Nakahara
中原 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP5362886A priority Critical patent/JPS62212202A/en
Publication of JPS62212202A publication Critical patent/JPS62212202A/en
Publication of JPH0338202B2 publication Critical patent/JPH0338202B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PURPOSE:Inorganic oxide monodispersed spherical fine particles, consisting of cesium salt of a heteropolyacid, having an almost spherical particle shape, specific average particle diameter and particle size distribution and smooth surface. CONSTITUTION:Inorganic oxide spherical fine particles which are monodispersed fine particles consisting of cesium salt of a heteropolyacid acid having the Keggin structure and smooth surface as well as the following morphological characteristics (a)-(c). (a) An almost spherical particle shape. (b) The average particle diameter is within the range of 0.01-0.3mum (not including 0.3mum). (c) The standard deviation value of the particle diameter is within the range of 1.0-2.0. The above-mentioned heteropolyacid is expressed by the formula (m is an integer of 3-7; n is a positive number determined by the constituent elements; X is at least one element selected from the group consisting of phosphorus, arsenic, silicon, germanium and boron; Z is at least one element which may contain vanadium to the range of 1/3 expressed in terms of atomic ratio and is selected from tungsten and molybdenum).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は新規な無機酸化物球状微粒子およびその製法に
関する。詳しくは、ヘテロポリ酸のセシウム塩からなる
微粒子であって(a )粒子形状がほぼ真球である、(
b )平均粒子径が0.01μm〜0.3μm(但し0
.3μmは含まず)の範囲である÷<C>粒子径の標準
偏差値が1.0〜2.0の範囲である、等の特徴を有す
る単分散した表面平滑な無機酸化物球状微粒子に関する
。更に本発明はその製造において、ヘテロポリ酸を生成
する元素群およびセシウムが共存する均一溶液をまずw
4製し、次いで該溶液のI)Hを0.1〜6.5の範囲
に調節することにより上記の特徴を有する無機酸化物球
状微粒子を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to novel inorganic oxide spherical fine particles and a method for producing the same. Specifically, fine particles made of a cesium salt of a heteropolyacid (a) have an almost perfect spherical shape; (
b) Average particle diameter is 0.01 μm to 0.3 μm (however, 0.01 μm to 0.3 μm
.. The present invention relates to monodispersed, smooth-surfaced inorganic oxide spherical fine particles having the following characteristics: ÷<C> standard deviation value of particle diameter is in the range of 1.0 to 2.0 (excluding 3 μm). Furthermore, in the production of the present invention, a homogeneous solution in which cesium and the element group that generates the heteropolyacid coexist is first heated with w.
The present invention relates to a method for producing inorganic oxide spherical fine particles having the above-mentioned characteristics by preparing a solution of 4 and then adjusting I)H of the solution to a range of 0.1 to 6.5.

近年、真球状の微粒子は電子、電機、塗料、繊維、プラ
スティック、研磨、医学等の各分野で要求されるように
なり、有機物、無繍質等種々の材質の微粒子が研究、開
発されてきているが、多様なニーズに十分対応しきれて
いないのが現状である。例えば主として有機高分子から
なる微粒子は一般に耐熱性、電気伝導性、熱伝導性が不
十分であり、一方硫酸カルシウム、シリカ、アルミナ等
無磯物からなる微粒子は一般に粒子径分布が広く凝集し
易い等の欠点がある。
In recent years, true spherical fine particles have become required in various fields such as electronics, electrical equipment, paints, textiles, plastics, polishing, and medicine, and fine particles made of various materials such as organic materials and non-embroidered materials have been researched and developed. However, the current situation is that they are not able to adequately respond to diverse needs. For example, fine particles mainly made of organic polymers generally have insufficient heat resistance, electrical conductivity, and thermal conductivity, while fine particles made of solid materials such as calcium sulfate, silica, and alumina generally have a wide particle size distribution and are prone to agglomeration. There are drawbacks such as.

本発明において開示する無機酸化物球状微粒子は上述し
た(a)、(b)および(c)の形状的な特徴の他に、
水、アルコール類等極性溶媒中への分散が良好である二
ポリエステル樹脂等に分散混合したような場合の耐薬品
性がある÷750℃程度までの耐熱性がある÷電気伝導
性が体積固有抵抗値で表わして103〜10TΩ・αの
範囲である、などの特徴を有すると共に、更にヘテロポ
リ酸構造から由来する種々の特異的な化学的、電気的等
の物性機能が期待され工業的に意義のあるものである。
In addition to the above-mentioned shape characteristics (a), (b), and (c), the inorganic oxide spherical fine particles disclosed in the present invention have
It has good dispersion in polar solvents such as water and alcohols.It has chemical resistance when dispersed and mixed in polyester resin, etc. ÷ It has heat resistance up to about 750℃ ÷ It has electrical conductivity and volume resistivity. It has characteristics such as a value in the range of 103 to 10 TΩ・α, and is also expected to have various specific physical properties such as chemical and electrical functions derived from the heteropolyacid structure, and is of industrial significance. It is something.

[従来の技術] 従来からケギン構造を有するヘテロポリ酸のセシウム塩
は公知である(化学と工業、第11巻、第4号、p32
2〜0328 (1958)など)。
[Prior Art] Cesium salts of heteropolyacids having a Keggin structure have been known (Kagaku to Kogyo, Vol. 11, No. 4, p. 32).
2-0328 (1958), etc.).

またへテロポリ酸の溶液(この溶液は強酸性を呈する)
とセシウムイオンを混合した場合へテロポリ酸のセシウ
ム塩からなる微粒子の沈澱が生成することも公知である
(日本化学会第49春季年会講演予稿集工、1  p3
7(1984)など)。しかし、今まで粒子の形状など
詳細にその性状について記載された文献は見当らない。
Also, a solution of heteropolyacid (this solution exhibits strong acidity)
It is also known that when cesium ions are mixed with cesium ions, fine particle precipitates consisting of cesium salts of heteropolyacids are formed (Proceedings of the 49th Spring Annual Meeting of the Chemical Society of Japan, 1 p.3
7 (1984), etc.). However, until now, no literature has been found that describes the properties of the particles in detail, such as their shape.

本発明者らが種々のへテロポリ酸のセシウム塩について
製法と微粒子の性状に関して詳細に検討したところ、ヘ
テロポリ酸の酸性溶液とセシウム化合物を単に混合する
従来公知の方法による微粒子の製法(以下セシウム直接
混合法と略す)では、粒子形状および粒径が不均一なも
のにしかならなかった。添付の第2図に従来公知の方法
により製造した粒子の電子顕微taIll影像の一例を
示す。但し第2図に示した粒子形状像は一例であって、
セシウム直接混合法での反応条件(例えば温度、温度、
添加時間など)またはへテロポリ酸の種類などにより、
その形状、粒径などは変化するが、いずれの場合にも本
発明に開示するような特性をもつ無機酸化物球状微粒子
をえることはできなかった。
The present inventors conducted a detailed study on the manufacturing method and the properties of fine particles for cesium salts of various heteropolyacids, and found that a fine particle manufacturing method using a conventionally known method (hereinafter referred to as cesium direct The mixing method (abbreviated as "mixing method") only resulted in non-uniform particle shapes and particle sizes. FIG. 2 attached hereto shows an example of an electron microscopic image of particles produced by a conventionally known method. However, the particle shape image shown in FIG. 2 is an example, and
Reaction conditions for the cesium direct mixing method (e.g. temperature,
depending on the addition time, etc.) or the type of heteropolyacid, etc.
Although the shape, particle size, etc. vary, it has not been possible to obtain inorganic oxide spherical fine particles having the characteristics disclosed in the present invention in any case.

[発明が解決しようとする問題点] 本発明の目的は上述したように従来公知の方法では成し
えないようなヘテロポリ酸のセシウム塩からなる微粒子
であり(a)粒子形状をほぼ真球とし、(b)特定され
た平均粒子径の範囲内で、(c)粒径分布を一定範囲内
におさめた新規な特性をもつ無機酸化物微粒子をえるこ
とであり、そして他の目的は上記した新規な特性をもつ
無機酸化物微粒子の新規な工業的製法を提供することで
ある。
[Problems to be Solved by the Invention] As mentioned above, the object of the present invention is to produce fine particles made of a cesium salt of a heteropolyacid, which cannot be achieved by conventionally known methods; , (b) within the specified average particle size range, and (c) to obtain inorganic oxide fine particles with novel characteristics in which the particle size distribution is kept within a certain range, and other purposes are as described above. The object of the present invention is to provide a new industrial method for producing inorganic oxide fine particles having new properties.

[問題点を解決するための手段] 本発明各らの知見によると、ヘテロポリ酸とセシウムイ
オンとの反応は非常に速く、従って、例えばヘテロポリ
酸の溶液中にセシウム含有溶液を添加した場合、添加と
同時に不溶性のへテロポリ酸セシウム塩が析出しセシウ
ムの添加Rと共にその析出のが増加しC3+ /ヘテロ
ポリ酸=3/1(モル比)の値までセシウムは反応する
。そして種々のセシウム添加量段階の析出物を分離しX
線回折分析をした結果、すべての段階の析出粒子は構造
的にヘテロポリ酸のセシウム塩であるが、電子顕微鏡観
察結果ではすべて粒子形状は不均一で粒子径分布も広い
ものであった。従って種々検討を重ねたところ不溶性塩
の析出機構として■核の生成、■核の成長、粒子化の2
段階に分離して考察した場合、セシウム直接混合法では
■および■の各反応速度のバランスが悪く並発的に進行
している結果粒子径分布の広い多分散した不均一な粒子
群しかえられないという結論に達した。
[Means for Solving the Problems] According to the findings of the present inventors, the reaction between heteropolyacid and cesium ions is very fast. Therefore, for example, when a cesium-containing solution is added to a solution of heteropolyacid, the addition At the same time, insoluble cesium heteropolyacid salt is precipitated, and as cesium is added, the amount of precipitation increases, and the cesium reacts until the value of C3+/heteropolyacid=3/1 (molar ratio). Then, the precipitates at various cesium addition levels are separated and
Linear diffraction analysis revealed that the precipitated particles at all stages were structurally cesium salts of heteropolyacids, but electron microscopic observation revealed that the particle shapes were nonuniform and the particle size distribution was wide. Therefore, after various studies, we found that the precipitation mechanisms of insoluble salts are: 1. Nucleation, 2. Nuclear growth, and 2. particle formation.
When considered separately in stages, in the cesium direct mixing method, the reaction rates of (1) and (2) are unbalanced and proceed concurrently, resulting in a polydisperse and non-uniform particle group with a wide particle size distribution. I came to the conclusion that no.

本発明は従来技術の=E記問題点に鑑みて鋭意検討した
結果見い出されたものである。その具体的方策は■ヘテ
ロポリ酸を構成しうる元素群およびセシウムが共存する
均一溶液をまず調製し、■上記均一溶液をヘテロポリ酸
化反応(以下、ヘテロ化反応と略ず)が進行する酸性領
域のpl−1に調節することにより、ヘテロポリ酸の生
成と共にセシウム塩を生成させることからなる。上述し
た製法により初めて添付の第1図に例示するような本発
明に開示する新規な特性をもつ子分散性無機酸化物球状
微粒子がえられたのである。
The present invention was discovered as a result of intensive studies in view of the problems in the prior art described in E. The specific strategy is: 1) First prepare a homogeneous solution in which cesium and the elements that can constitute a heteropolyacid coexist; By adjusting to pl-1, a cesium salt is produced together with a heteropolyacid. By the above-mentioned manufacturing method, for the first time, child-dispersible inorganic oxide spherical fine particles having the novel characteristics disclosed in the present invention as illustrated in the attached FIG. 1 were obtained.

[作 用] 以下本発明について詳細を具体的に説明する。[Work] The present invention will be specifically explained in detail below.

本発明が特定する無機酸化物微粒子をより具体的に示ず
と下記の一般式(I) HmXZt  2O+a−nH2O(I)(但し式(I
)中mは3〜7の整数、nは構成元素によって決まる正
の数、Xはリン、ヒ素、ケイ素、ゲルマニウム、硼素よ
りなる群から選ばれた少なくとも一種の元素、2はバナ
ジウムを原子比で1/3の範囲まで含有してもよいタン
グステンおよびモリブデンよりなる群から選ばれた少な
くとも一種の元素をそれぞれ表わす) で示されるケギン構造を有するヘテロポリ酸のセシウム
塩からなるものであり、該セシークム塩は、一般的には
下記の一般式(I[)で表わされる。
The inorganic oxide fine particles specified by the present invention have the following general formula (I) HmXZt 2O+a−nH2O(I) (where the formula (I
) where m is an integer from 3 to 7, n is a positive number determined by the constituent elements, X is at least one element selected from the group consisting of phosphorus, arsenic, silicon, germanium, and boron, and 2 is vanadium in atomic ratio. A cesium salt of a heteropolyacid having a Keggin structure, each representing at least one element selected from the group consisting of tungsten and molybdenum, which may be contained up to 1/3 of the cesium salt. is generally represented by the following general formula (I[).

H,LC8,、XZ12o14・CH2O(■)(但し
式<I[)中、X、zは式(I)におけるのと同じ、b
は2〜3でa +b =ta  (m ハ式(I)にお
けると同じ)、CはOまたは正数をそれぞれ表わす) 一般式(II)で示される具体的な物質としては、例え
ば12−タングストリン酸セシウム、12−タングスト
ヒmt−シウム、121ングストケイ酸セシウム、12
−タングストゲルマン酸セシウム、12−タングストl
酸セシウム、12−モリブドリン酸セシウム、12−モ
リブド硼酸セシウム、12− T::リブドケイ酸セシ
ウム、12−モリブドゲルマン酸セシウム、12−モリ
ブド硼酸セシウム、およびH3PMOxWt 2−X0
411  ・n +12O.Hs Si MoxWt 
2−XO40・nl−12Q、Hs BMOxWt 2
−X04Q  ・n H2O(以上×は1〜11の整数
)、H4PMOI s Vt 040 −n H2O゜
Hs  PMO9V3 04 o  on  H2O゜
1−1s PWt a V2O4 a  ・n H2O
などの複合配位ヘテロポリ酸のセシウム塩などが掲げら
れるが、これらは単に例示しただけであって上記物質に
制限されるものではない。粒子を形成する際、上記へテ
ロポリ酸のセシウム塩の混合物からなることも当然可能
であり、上記一般式(I[)は粒子中の平均組成を示す
ものである。
H, LC8,,
is 2 to 3, a + b = ta (m is the same as in formula (I), and C represents O or a positive number, respectively) As a specific substance represented by general formula (II), for example, 12-tung cesium sulfate, 12-tungstohim mt-sium, 121 cesium silicate, 12
-tungst cesium germanate, 12-tungst l
Cesium acid, cesium 12-molybdophosphate, cesium 12-molybdoborate, 12-T::cesium ribdosilicate, cesium 12-molybdogermanate, cesium 12-molybdoborate, and H3PMOxWt 2-X0
411 ・n +12O. HsSi MoxWt
2-XO40・nl-12Q, Hs BMOxWt 2
-X04Q ・n H2O (x is an integer from 1 to 11), H4PMOI s Vt 040 -n H2O゜Hs PMO9V3 04 o on H2O゜1-1s PWt a V2O4 a ・n H2O
Examples include cesium salts of complex coordination heteropolyacids such as, but these are merely examples and are not limited to the above substances. When forming particles, it is naturally possible to form them from a mixture of cesium salts of the above-mentioned heteropolyacids, and the above general formula (I[) indicates the average composition in the particles.

本発明に開示する“表面平滑“とは10万倍の電子顕微
鏡観察の結果、表面に凹凸がな(均一な表面であること
を意味する。また、′単分散した“とは粒子の粒径分布
が狭く、凝集体でない状態を意味する。また“粒子形状
がほぼ真球である”とは粒子の電子顕微鏡観察像におけ
る任意の視野内の粒子群100個について個々の粒子の
長径および短径を測定し、長径と短径の比が半数以上の
粒子について1.10以下であることを意味する。
"Smooth surface" as disclosed in the present invention means that the surface has no irregularities (uniform surface) as a result of electron microscope observation at 100,000 times magnification.Furthermore, "monodispersed" means that the particle size It means that the distribution is narrow and there are no aggregates.Also, "the particle shape is almost perfectly spherical" means that the major axis and minor axis of each particle of 100 particle groups within an arbitrary field of view in an electron microscope observation image of particles. This means that the ratio of the major axis to the minor axis is 1.10 or less for more than half of the particles.

次に本発明方法の具体的態様について説明する。Next, specific embodiments of the method of the present invention will be explained.

まず本発明に開示する球状微粒子を製造する第1段階の
へテロポリ酸を構成しうる元素群(該元素群をA群(リ
ン、ヒ素、ケイ素、ゲルマニウム、硼素より選ばれた少
なくとも一種以上の元素)およびB群(タングステン、
モリブデンより選ばれた少なくとも一種以上の元素でい
ずれもバナジウムが原子比で1/3の範囲まで含有して
もよい)に便宜上分割する)およびセシウムが共存する
均一溶液の調製は、例えば12−タングストリン酸セシ
ウムからなる粒子を製造する場合、A群としてリンを含
有する化合物、例えばリン酸、リン酸アンモニウム、リ
ン酸ナトリウムなどの無機リン化合物またはリン酸トリ
エチルなどの有機リン化合物、B RYとしてタングス
テン酸アンモニウム、タングステン酸ナトリウム、酸化
タングステンなどのタングステン含有化合物、セシウム
の化合物として硝酸セシウム、炭酸セシウム、塩化セシ
ウム、硫酸セシウムなどの無機セシウム化合物または酢
酸セシウムなどの有機化合物を溶媒に均一に溶解させる
ことからなる。この場合例えばリンタングスデン酸ア善
モニウムなど両群を共有する化合物を用いることも当然
含まれる。リン、タングステン以外のA群、B群の化合
物についても同様である。この場合の溶媒は水、エタノ
ール、アセトン、エチレングリコールなど上記元素群を
含有する化合物を溶解するものであれば良いが溶解し難
い場合はpH,温度、溶媒の選択など適当な手段で均一
溶液としてもよい。この場合好ましくは液 水を溶媒として用いる。この場合の均−溶嘩とはほとん
どの化合物が溶解していることを意味し、部分的に不活
性物質が共存している場合も含めうるちのである。
First, a group of elements (group A) (at least one element selected from phosphorus, arsenic, silicon, germanium, and boron) that can constitute the heteropolyacid in the first step of producing spherical fine particles disclosed in the present invention ) and group B (tungsten,
To prepare a homogeneous solution in which molybdenum is coexisting with at least one element selected from molybdenum (which may contain up to 1/3 of vanadium in atomic ratio) and cesium, for example, 12-tung When producing particles made of cesium strinate, a compound containing phosphorus as Group A, such as an inorganic phosphorus compound such as phosphoric acid, ammonium phosphate, or sodium phosphate, or an organic phosphorus compound such as triethyl phosphate, and tungsten as BRY. Uniformly dissolving tungsten-containing compounds such as ammonium acid, sodium tungstate, and tungsten oxide, inorganic cesium compounds such as cesium nitrate, cesium carbonate, cesium chloride, and cesium sulfate, or organic compounds such as cesium acetate as cesium compounds. Consisting of In this case, it is naturally possible to use compounds that share both groups, such as ammonium phosphotungstate. The same applies to compounds of group A and group B other than phosphorus and tungsten. In this case, the solvent may be water, ethanol, acetone, ethylene glycol, etc., as long as it dissolves the compound containing the above element group, but if it is difficult to dissolve, use appropriate means such as pH, temperature, and solvent selection to create a homogeneous solution. Good too. In this case, preferably liquid water is used as the solvent. In this case, homogeneous dissolution means that most of the compounds are dissolved, including the case where some inert substances coexist.

A群、B群およびセシウムの添加割合は特に規定はしな
いが、粒子生成上の歩留りを考慮して原子比でA群二B
群:セシウム=1〜6:12:0.3〜5の範囲にする
のが好ましい。
The addition ratio of group A, group B, and cesium is not particularly stipulated, but considering the yield of particle generation, the atomic ratio of group A, group B, and cesium is
Group: Cesium is preferably in the range of 1 to 6:12:0.3 to 5.

また上述した第1段階の特殊な場合として、予め準備し
たヘテロポリ酸の溶液をカセイソーダなど塩基性物質を
添加してpl−1を1貸させることによりヘテロポリ酸
を分解し、iセシウム化合物を添加して均一溶液を調製
する方法なども当然含まれる。
In addition, as a special case of the first step described above, the heteropolyacid is decomposed by adding a basic substance such as caustic soda to the solution of the heteropolyacid prepared in advance to make pl-1 1, and then the i-cesium compound is added. Naturally, methods for preparing a homogeneous solution are also included.

また粒子径を1[する目的で第1段階の調製途中または
調製後に、別にケイ酸ゾルなどの微粒子またはへテロポ
リ酸のセシウム塩などを少量1結晶核物質として添加ま
たは共存させることもできる。この場合、溶液は上記結
晶核物質により僅かに濁ることがある。
Further, for the purpose of reducing the particle size to 1, a small amount of fine particles such as silicic acid sol or a cesium salt of a heteropolyacid may be added or allowed to coexist as a single crystal nucleus material during or after the first stage preparation. In this case, the solution may become slightly cloudy due to the crystal nucleus material.

次に第2段階として、上述した均一溶液のl)Hを調節
しヘテロポリ酸を構成しうる元素群をヘテロ化すると共
にセシウム塩として析出させる。この場合の好ましいp
Hの範囲は構成元素により、また温度などの反応条件に
より変化す°るものであるがpH=0.1〜6.5の範
囲で更に好ましくは0.5〜5.0の範囲とする。pH
を下げ過ぎると粒子生成の歩留りが悪く、pHが高いと
ヘテロ化に要する時間が長く好ましくない。この場合の
pH調節材としては種々のものが用いつるが、塩酸、硝
酸、硫酸、リン酸などの鉱酸または酢酸、シュウ酸など
の有機酸または分解して酸性物質を生成するような物質
が好ましく、それらは気体、固体、液体のいずれの状態
でも用いつる。またpHm節材中の元素が上記A群また
はB群に含まれる場合、pH調節材の添加をA群または
B群の一部または全部の添加と兼ねさせることもできる
Next, in the second step, the l)H of the above-mentioned homogeneous solution is adjusted to heterogenize the element group that can constitute the heteropolyacid, and to precipitate it as a cesium salt. Preferred p in this case
The range of H varies depending on the constituent elements and reaction conditions such as temperature, but the pH is in the range of 0.1 to 6.5, more preferably in the range of 0.5 to 5.0. pH
If the pH is too low, the yield of particles will be poor, and if the pH is high, the time required for heterogenization will be long, which is undesirable. Various pH adjusting materials can be used in this case, including mineral acids such as hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid; organic acids such as acetic acid and oxalic acid; and substances that decompose to produce acidic substances. Preferably, they are used in either gaseous, solid or liquid state. Further, when the elements in the pH moderation material are included in the above group A or group B, the addition of the pH adjusting material can also serve as the addition of part or all of group A or group B.

反応温度は特に制限はないが一10℃〜150℃の範囲
が好ましく、温度が低い程平均粒子径は小さい方に移行
する傾向がある。
Although the reaction temperature is not particularly limited, it is preferably in the range of 10°C to 150°C, and the lower the temperature, the smaller the average particle diameter tends to be.

上記した製法により粒子径分布は標準偏差値で表わして
 1.0〜2.0の範囲になり、より好ましい条件を適
用することにより1.0〜1.5の範囲にすることがで
きた。
By the above-described production method, the particle size distribution, expressed as standard deviation value, was in the range of 1.0 to 2.0, and by applying more preferable conditions, it was possible to make it in the range of 1.0 to 1.5.

次に所望なら第2段階後、下記の工程を包含させること
ができる。叩も、該粒子を懸濁液としてえる場合には溶
液中のイオン性不純物をアニオン交換性樹脂及び/又は
カチオン交換性樹脂などのイオン交換体を用いて除去す
ること、及び該粒子を粉体として得る場合には生成した
ヘテロポリ酸宰 のセシウム塩からなる粒子を遠心分離、濾過溶媒溜表等
通常の方法で分離した後、場合により粒子を洗浄して乾
燥する。また該粒子の無水物をえる場合には750℃ま
での温度で焼成することができる。本発明方法によりえ
たすべての粒子について無水化物としても、結晶構造お
よび粒子形状、分布などに変化は認められなかった。従
って本発明に開示する無機酸化物球状微粒子はへテロポ
リ酸セシウムの融点である750℃近くまでの耐熱性を
有することが確認された。
The following steps can then be included after the second step if desired. In addition, when the particles are obtained as a suspension, ionic impurities in the solution are removed using an ion exchanger such as an anion exchange resin and/or a cation exchange resin, and the particles are prepared as a powder. When obtained as a cesium salt, the particles formed of the cesium salt containing a heteropolyacid are separated by a conventional method such as centrifugation, filtration, and solvent distillation, and then the particles are optionally washed and dried. Further, when obtaining an anhydride of the particles, it can be calcined at a temperature of up to 750°C. No change was observed in the crystal structure, particle shape, distribution, etc. of any of the particles obtained by the method of the present invention, even when they were anhydrated. Therefore, it was confirmed that the inorganic oxide spherical fine particles disclosed in the present invention have heat resistance up to nearly 750° C., which is the melting point of cesium heteropolyacid.

以下実施例を掲げて本発明を更に詳しく説明する。The present invention will be explained in more detail below with reference to Examples.

但し、平均粒子径は電子顕微1m影像の任意の粒子10
0個の粒子径を測定して求め標準偏差値は下記の式によ
り求めた。
However, the average particle diameter is 10% of any particle in a 1m electron microscope image.
The diameter of 0 particles was measured and the standard deviation value was determined using the following formula.

(但しXiはi個目の粒子径を示しn=100である) 実施例1 攪拌器、温度計、還流冷却器、pH測定電極および滴下
ロートの付いた1Jlのガラス製丸底フラスコに水70
0d、タングステン酸ナトリウム(Na 2 WO4・
2H2O)1400 、メタケイ酸ナトリウム(Na 
2 Si 03 ・9)−Iz O) 15.1gを攪
拌下均−に溶解した後、硝酸セシウム(c3NO3) 
27.hを添加させ、Si  :W:C3=1.5:1
2:4(原子比)を含有する均一溶液をI製した。次い
でフラスコをマントルヒータにて溶媒が還流する温度(
104℃)まで昇温した後該溶液中に濃塩酸を添加し溶
液のptlを1.8とした。その温度で3時間溶液の攪
拌(1,ooOrpi)を続はヘテロ化反応を行ない懸
濁液をえた。その間溶液のpHは塩酸を添加して調「し
た。反応後室温まで冷却し、遠心分離して析出物を分離
した。該析出粒子に対し2回水洗、遠心分離をくり返し
た後アセトンでフラッシングし、風乾して粒子粉末90
g (試料Aとする)をえた。
(However, Xi indicates the i-th particle size and n = 100.) Example 1 70 mL of water was placed in a 1 Jl glass round-bottomed flask equipped with a stirrer, thermometer, reflux condenser, pH measuring electrode, and dropping funnel.
0d, sodium tungstate (Na 2 WO4.
2H2O) 1400, sodium metasilicate (Na
After dissolving 15.1 g of 2 Si 03 ・9)-Iz O) in a uniform solution under stirring, cesium nitrate (c3NO3) was dissolved.
27. h, Si:W:C3=1.5:1
A homogeneous solution containing 2:4 (atomic ratio) was prepared. Next, the flask is heated to a temperature at which the solvent refluxes (
After the temperature was raised to 104°C), concentrated hydrochloric acid was added to the solution to adjust the PTL of the solution to 1.8. The solution was stirred at that temperature for 3 hours (1, ooOrpi), followed by a heteroization reaction to obtain a suspension. During that time, the pH of the solution was adjusted by adding hydrochloric acid. After the reaction, it was cooled to room temperature and centrifuged to separate the precipitate. The precipitated particles were washed with water twice, centrifuged twice, and then flushed with acetone. , air-dried to powder particles of 90%
g (referred to as sample A) was obtained.

また試料A、(7)一部を空気雰囲気下700℃で焼成
して試料Bをえた。
In addition, Sample B was obtained by firing a portion of Sample A and (7) at 700° C. in an air atmosphere.

これらの粒子のX線回折、元素分析結果による構造式、
倍率10万倍による電子顕微IJlilJ察結果による
粒子の表面状態、粒子形状、平均粒子径および粒子径の
標準偏差値などの測定結果を表−1に示す。
Structural formula based on X-ray diffraction and elemental analysis results of these particles,
Table 1 shows the measurement results of the particle surface condition, particle shape, average particle diameter, standard deviation value of particle diameter, etc., as measured by electron microscope IJlilJ observation at a magnification of 100,000 times.

また第1図に試FIBの電子顕微鏡撮影像(10万倍、
目盛単位1.0μm)を示す。
Figure 1 also shows an electron microscope image of the sample FIB (100,000x,
The scale unit is 1.0 μm).

比較例1 12−タングストケイ酸セシウム粒 の−゛告実施例1
と同装置を用い、同じ重厖割合で行った他は下記の製法
で粒子を製造した。
Comparative Example 1 12-Tungstocesium silicate grains - Reporting Example 1
Particles were manufactured using the same equipment as in Example 1 and the following manufacturing method except that the same weight ratio was used.

タングステン酸ナトリウムおよびメタケイ酸ナトリウム
のみからなる水溶液を濃塩酸でpHを1.8に調整して
加熱還流を3時間続はヘテロ化反応を行なった。この時
殆んどの原料化合物が12−タングストケイ酸(H4S
i t Wt 2O4G  ・nH2O)のへテロポリ
酸に転化していることを赤外分析により確認した。次い
で上記へテロポリ酸含有溶液を攪拌下(1,OOOrp
g+)硝酸セシウム水溶液を添加して懸濁液をえた。そ
の後は実施例1と同様に行い風乾試料01700℃焼成
処理粒子試料りをえた。その結果を表−1に示す。
The pH of an aqueous solution consisting only of sodium tungstate and sodium metasilicate was adjusted to 1.8 with concentrated hydrochloric acid, and the solution was heated under reflux for 3 hours to carry out the heterogenization reaction. At this time, most of the raw material compounds are 12-tungstosilicic acid (H4S
It was confirmed by infrared analysis that it had been converted into a heteropolyacid (i t Wt 2O4G .nH2O). Next, the above heteropolyacid-containing solution was mixed with stirring (1,OOOrp
g+) An aqueous cesium nitrate solution was added to obtain a suspension. Thereafter, the same procedure as in Example 1 was carried out to obtain an air-dried sample and a sample of the fired particles at 01700°C. The results are shown in Table-1.

また第2図に試料りの電子顕微鏡1fil影像(10万
倍、目盛単位1.0μ■)を示す。
Furthermore, FIG. 2 shows a 1-filtration image of the sample under an electron microscope (100,000 times, scale unit: 1.0 μι).

実施例2 実施例1においてタングステン酸アンモニウlいを予じ
め水酸化ナトリウム水溶液に溶解し炭酸セ、シウムを添
加して均一溶液をえた後へテロ化反応を室温で行った以
外は実施例1と同様に行った。
Example 2 Example 1 except that ammonium tungstate was previously dissolved in an aqueous sodium hydroxide solution, and cerium carbonate and sium were added to obtain a homogeneous solution, and then the heteroization reaction was performed at room temperature. I did the same thing.

この時均一溶液中の組成はP:W:C5=1:12:3
(原子比)であった。500”Cで焼成処理した後の粒
子の測定結果を表−1に示す。
At this time, the composition in the homogeneous solution is P:W:C5=1:12:3
(atomic ratio). Table 1 shows the measurement results of the particles after firing at 500''C.

比較例2 12− ン ストリン酸セシウム粒子の製造実施例1と
同じ装置を用いヘテロポリ酸であるリンタングステン酸
(+−+3 PI Wt 2O4 rr  ・24+−
12O)を水に溶解し室温で攪拌下脚酸セシウム水溶液
を滴下して懸濁液をえた。この時の最終的な原料添加組
成はP:W:Cs−1:12:3(原子比)であった。
Comparative Example 2 Production of cesium phosphoric acid particles using the same equipment as in Example 1.
12O) was dissolved in water, and a stirring aqueous solution of cesium legate was added dropwise at room temperature to obtain a suspension. The final raw material addition composition at this time was P:W:Cs-1:12:3 (atomic ratio).

500℃で焼成処理した後の粒子の測定結果を表−1に
示す。
Table 1 shows the measurement results of the particles after firing at 500°C.

実施例3 12−モリブデン酸セシ ム・    の実施例1と同
じ装置を用いリンモリブデン酸(H3Pt MOt 2
O4 a  −n H2O,nは約4.1:日本無機化
学工業類)を添加し次いで水酸化ナトリウム水溶液でp
Hを4.5に調節した後、硝酸セシウムを添加して均一
水溶液をえた。その後フラスコを氷冷して液温を5℃に
維持し攪拌下、硝酸水溶液を添加してpHを1.8とし
た。反応を1時間続【ノて懸濁液をえた後は実施例1と
同様に行ない500℃処理焼成粒子粉末を製造した。結
果を表−1に示す。
Example 3 Phosphormolybdic acid (H3Pt MOt2
O4 a -n H2O,n is approximately 4.1: Nippon Inorganic Chemical Industries) was added, and then pated with aqueous sodium hydroxide solution.
After adjusting H to 4.5, cesium nitrate was added to obtain a homogeneous aqueous solution. Thereafter, the flask was ice-cooled to maintain the liquid temperature at 5° C., and while stirring, a nitric acid aqueous solution was added to adjust the pH to 1.8. After the reaction was continued for 1 hour to obtain a suspension, the same procedure as in Example 1 was carried out to produce calcined powder particles treated at 500°C. The results are shown in Table-1.

比較例3 12−モリプリン酸セシウム微粒子の製゛′1実施例3
において、リン、モリブデンおよびセシウムを含有する
均一水溶液を調製するかわりに、リンモリブデン酸水溶
液(14mfM%、pH1,1)を5℃に維持し、攪拌
下Iir!酸セシウム10重a%水溶液を滴下して懸濁
液をえた。その後は実施例1と同様に行ない500℃処
理焼成粉末をえた。
Comparative Example 3 Production of cesium 12-molyphosphate fine particles Example 3
In , instead of preparing a homogeneous aqueous solution containing phosphorus, molybdenum and cesium, an aqueous phosphomolybdic acid solution (14 mfM%, pH 1,1) was maintained at 5° C. and stirred in Iir! A 10% by weight aqueous solution of cesium acid was added dropwise to obtain a suspension. Thereafter, the same procedure as in Example 1 was carried out to obtain a fired powder treated at 500°C.

結果を表−1に示す。The results are shown in Table-1.

実施例4 12−モリ °ケイ セシ ム     の実施例1に
おいてタングステン酸ナトリウムに変えてモリブデン酸
(H2MO04・H2O>を用いた以外は実施例1と同
様に行ない500℃焼成粉末をえた。結果は表−1に示
す。
Example 4 A powder calcined at 500°C was obtained in the same manner as in Example 1 except that molybdic acid (H2MO04.H2O) was used in place of sodium tungstate in Example 1 of 12-Molyc. -1.

比較例4 12−モリブケイ セシ ム微粒−の一゛告比較例1に
おいてタングステン酸ナトリウムに替えてモリブデン酸
を用いた以外は比較例1と同様に行ない下記の表−1の
結果をえた。
Comparative Example 4 12-Molybdenum Caesium Fine Particles-1 Comparative Example 1 was carried out in the same manner as in Comparative Example 1, except that molybdic acid was used instead of sodium tungstate, and the results shown in Table 1 below were obtained.

実施例5 モリブバナ:1ン セぐ ム     の。Example 5 Moribana: 1st part.

実施例1と同じ装置を用い、三酸化モリブデン72、O
g、五酸化バナジウム12.1g、リン酸(85f[%
)  4.8(l c15tよび濃硝酸10dを水80
0dに添加し攪拌しながら加熱還流を24時間続け、濃
赤色の溶液をえた。該溶液中の不溶分を濾過して除き溶
液を再び同じ反応器に戻した。次に室温下10重6%の
水酸化ナトリウム水溶液を添加してpHを4.5に調節
した後硝酸セシ6ム32.1tJを添加して均一溶液を
WA製した。上記溶液に2O%Wii!を酸を滴下して
溶液のpHを1.8としてヘテロ化反応せしめBrr4
液をえた。その後実施例1と同様に行ない下記の表−1
の結果をえた。
Using the same equipment as in Example 1, molybdenum trioxide 72, O
g, vanadium pentoxide 12.1 g, phosphoric acid (85f [%
) 4.8 (l c15t and concentrated nitric acid 10d to water 80
The mixture was added to 0 d and heated under reflux with stirring for 24 hours to obtain a deep red solution. Insoluble matter in the solution was removed by filtration, and the solution was returned to the same reactor. Next, a 10% by weight aqueous sodium hydroxide solution was added at room temperature to adjust the pH to 4.5, and 32.1 tJ of cesium nitrate was added to prepare a homogeneous solution in WA. Add 20% Wii! to the above solution. Acid was added dropwise to adjust the pH of the solution to 1.8, causing a heteroization reaction.Brr4
I got some liquid. After that, the same procedure as in Example 1 was carried out, and the following table-1
I got the result.

比較例5 モリブドバナトリン酸セシ ム微粒子の 。Comparative example 5 Molybdovanatriate cesium fine particles.

実施例5においてpHを4.5に調節するところをpH
1,8に調節し硫酸セシウムを10重量%水溶液として
添加せしめて直接懸濁液をえた他は同様に行ない下記の
表−1の結果をた。
In Example 5, the pH was adjusted to 4.5.
The procedure was repeated in the same manner, except that cesium sulfate was adjusted to 1.8 and cesium sulfate was added as a 10% by weight aqueous solution to obtain a direct suspension.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1の方法によってえられた試料Bの粒子
構造を示す電子顕微#A躍形影像10万倍、目盛単位1
.0μm)であり、第2図は比較例1の方法によってえ
られた試料りの粒子構造を示す電子顕微鏡層影像(10
万倍、目盛単位1.0μ■)である。
Figure 1 is an electron microscope #A leap image showing the particle structure of sample B obtained by the method of Example 1, magnified 100,000 times, scale unit 1.
.. 0 μm), and FIG. 2 shows an electron microscope layer image (10 μm) showing the particle structure of the sample obtained by the method of Comparative Example 1.
10,000 times, scale unit 1.0μ■).

Claims (5)

【特許請求の範囲】[Claims] (1)ケギン構造を有するヘテロポリ酸のセシウム塩か
らなる微粒子であつて下記(a)、(b)および(c)
を満足することを特徴とする単分散した表面平滑な無機
酸化物球状微粒子。 (a)粒子形状がほぼ真球である。 (b)平均粒子径が0.01μm〜0.3μm(但し0
.3μmは含まず)の範囲である。 (c)粒子径の標準偏差値が1.0〜2.0の範囲であ
る。
(1) Fine particles consisting of a cesium salt of a heteropolyacid having a Keggin structure, which are as follows (a), (b) and (c)
Monodispersed inorganic oxide spherical fine particles with a smooth surface that satisfy the following. (a) The particle shape is almost perfectly spherical. (b) Average particle diameter of 0.01 μm to 0.3 μm (however, 0.01 μm to 0.3 μm
.. (excluding 3 μm). (c) The standard deviation value of particle diameter is in the range of 1.0 to 2.0.
(2)ヘテロポリ酸が下記の一般式( I ) HmXZ_1_2O_4_0・nH_2O( I )(但
し、一般式( I )中mは3〜7の整数、nは構成元素
によつて決まる正の数、Xはリン、ヒ素、ケイ素、ゲル
マニウム、硼素よりなる群から選ばれた少なくとも一種
の元素、Zはバナジウムを原子比で1/3の範囲まで含
有してもよいタングステンおよびモリブデンよりなる群
から選ばれた少なくとも一種の元素をそれぞれ表わす)
で示されてなることを特徴とする特許請求の範囲(1)
記載の無機酸化物球状微粒子。
(2) The heteropolyacid has the following general formula (I) HmXZ_1_2O_4_0・nH_2O(I) (However, in the general formula (I), m is an integer from 3 to 7, n is a positive number determined by the constituent elements, and X is At least one element selected from the group consisting of phosphorus, arsenic, silicon, germanium, and boron; Z is at least one element selected from the group consisting of tungsten and molybdenum, which may contain vanadium up to 1/3 in atomic ratio; each represents a kind of element)
Claim (1) characterized by:
The inorganic oxide spherical fine particles described above.
(3)ケギン構造を有するヘテロポリ酸のセシウム塩か
らなる無機酸化物球状微粒子の製造において、ヘテロポ
リ酸を生成しうる元素群およびセシウムが共存する均一
溶液のpHを0.1〜6.5の範囲に調節することによ
り、ヘテロポリ酸のセシウム塩を析出させることを特徴
とする単分散した表面平滑な無機酸化物球状微粒子の製
法。
(3) In the production of inorganic oxide spherical fine particles made of a cesium salt of a heteropolyacid having a Keggin structure, the pH of a homogeneous solution in which cesium and a group of elements capable of forming a heteropolyacid coexist is adjusted to a range of 0.1 to 6.5. 1. A method for producing monodispersed spherical inorganic oxide particles with a smooth surface, characterized by precipitating a cesium salt of a heteropolyacid by adjusting the conditions.
(4)ヘテロポリ酸を生成する元素群がA群(リン、ヒ
素、ケイ素、ゲルマニウム、硼素より選ばれた少なくと
も一種の元素)およびB群(バナジウムを含有してもよ
い、タングステンおよびモリブデンよりなる群から選ば
れた少なくとも一種の元素)からなることを特徴とする
特許請求の範囲(3)記載の方法。
(4) The element groups that generate heteropolyacids are Group A (at least one element selected from phosphorus, arsenic, silicon, germanium, and boron) and Group B (a group consisting of tungsten and molybdenum, which may contain vanadium). The method according to claim (3), characterized in that the method comprises at least one element selected from the following.
(5)均一溶液のpHを0.5〜5の範囲に調節するこ
とを特徴とする特許請求の範囲(3)または(4)記載
の方法。
(5) The method according to claim (3) or (4), characterized in that the pH of the homogeneous solution is adjusted to a range of 0.5 to 5.
JP5362886A 1986-03-13 1986-03-13 Inorganic oxide spherical fine particle and production thereof Granted JPS62212202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5362886A JPS62212202A (en) 1986-03-13 1986-03-13 Inorganic oxide spherical fine particle and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5362886A JPS62212202A (en) 1986-03-13 1986-03-13 Inorganic oxide spherical fine particle and production thereof

Publications (2)

Publication Number Publication Date
JPS62212202A true JPS62212202A (en) 1987-09-18
JPH0338202B2 JPH0338202B2 (en) 1991-06-10

Family

ID=12948172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5362886A Granted JPS62212202A (en) 1986-03-13 1986-03-13 Inorganic oxide spherical fine particle and production thereof

Country Status (1)

Country Link
JP (1) JPS62212202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020050867A (en) * 2018-09-21 2020-04-02 キーリング アンド ウォーカー リミテッド Compositions, and methods and uses relating thereto

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183609A (en) * 1984-09-28 1986-04-28 Nippon Shokubai Kagaku Kogyo Co Ltd Spherical fine particle of inorganic oxide and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183609A (en) * 1984-09-28 1986-04-28 Nippon Shokubai Kagaku Kogyo Co Ltd Spherical fine particle of inorganic oxide and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020050867A (en) * 2018-09-21 2020-04-02 キーリング アンド ウォーカー リミテッド Compositions, and methods and uses relating thereto

Also Published As

Publication number Publication date
JPH0338202B2 (en) 1991-06-10

Similar Documents

Publication Publication Date Title
JP3417944B2 (en) Nanometer-sized molecular sieve crystals or aggregates and methods for producing them
JP3090455B2 (en) Zeolite and method for producing the same
JP4478766B2 (en) Spherical silica porous particles and method for producing the same
US3031418A (en) Chemically modified alumina monohydrate, dispersions thereof and processes for their preparation
CN104822628A (en) Synthesis of zsm-58 crystals with improved morphology
EP0207707B1 (en) Inorganic anion exchangers and preparation thereof
JPS62223019A (en) Crystalline tin-antimony oxide sol and production thereof
JPWO2006115043A1 (en) Acid zirconia sol and method for producing the same
JPH0327488B2 (en)
EP0105128B1 (en) Amorphous zirconium phosphosilicate and a process for preparing the same
KR20180072680A (en) A highly homogeneous zeolite precursor
JPH0653566B2 (en) Method for producing crystalline zirconium phosphate
JP7137157B2 (en) Method for producing silica sol having elongated particle shape
JPS62212202A (en) Inorganic oxide spherical fine particle and production thereof
JP3384412B2 (en) Method for producing crystalline zirconium phosphate
US3397153A (en) Process for manufacturing sintered silica gel of lowered bulk density and catalyst containing same
US3993499A (en) Process for producing a particulate mullite fibril containing composition
JPH0357041B2 (en)
JPS62212203A (en) Inorganic oxide spherical fine particle and production thereof
JP4484193B2 (en) Spherical micropore silica porous particles and method for producing the same
JPH0338203B2 (en)
CN114620698A (en) Large-particle zirconium phosphate and preparation method thereof
JP2766990B2 (en) New molybdic acid solution
CN108855203B (en) Method for preparing Ti-SBA-15 mesoporous molecular sieve
JPH05294612A (en) Silica sol and its production