Nothing Special   »   [go: up one dir, main page]

JPS62216974A - Porous refractories - Google Patents

Porous refractories

Info

Publication number
JPS62216974A
JPS62216974A JP6153786A JP6153786A JPS62216974A JP S62216974 A JPS62216974 A JP S62216974A JP 6153786 A JP6153786 A JP 6153786A JP 6153786 A JP6153786 A JP 6153786A JP S62216974 A JPS62216974 A JP S62216974A
Authority
JP
Japan
Prior art keywords
zirconia
powder
weight
alumina
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6153786A
Other languages
Japanese (ja)
Inventor
淳 伊藤
長屋 邦男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP6153786A priority Critical patent/JPS62216974A/en
Publication of JPS62216974A publication Critical patent/JPS62216974A/en
Pending legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミックス、ガラス、各種金属酸化物等の
焼成において、炉の内張、棚板、匣鉢およびトレイ等と
して使用することのできる軽量で耐熱性のある多孔性耐
火物に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention can be used as a furnace lining, a shelf board, a sagger, a tray, etc. in the firing of ceramics, glass, various metal oxides, etc. The invention relates to a lightweight and heat-resistant porous refractory.

〔従来の技術〕[Conventional technology]

最近の情報、エレクトロニクス産業において、センサー
、コンデンサー、IC基板等の機能部品はセラミック化
へ移行している。中でもアルミナ質、窒化硅素質等のフ
ァインセラミックやチタン酸バリウム等の誘′71i素
子や、鉄、バリウム又はストロンチウム等の複合酸化物
の磁性体が有望視されている。これらのセラミ−2りお
よび、金属酸化物は、電気絶縁性、半導性、耐熱性、耐
摩耗性高強度、高磁力性の性質にすぐれ、今後ますます
、用途は拡大されつつある。これらの機能部品は原ネ4
混合後、押し出し成形法、射出成形法、鋳込成形法、プ
レス成形法等により各種形状に成形された後、断熱レン
ガで組んである炉で、棚板、匣鉢、焼成トレイに載せて
、製品化される。これら炉の内張、棚板、匣鉢、焼成ト
レイ等は、ムラ−(ト買、アルミナ質、ジルコニア質、
コージェライト質、炭化硅素質等およびシリカ質の耐火
物が使用されている。
In recent information, in the electronics industry, functional parts such as sensors, capacitors, and IC boards are transitioning to ceramics. Among these, fine ceramics such as alumina and silicon nitride, dielectric elements such as barium titanate, and magnetic materials made of composite oxides such as iron, barium, or strontium are considered promising. These ceramics and metal oxides have excellent properties such as electrical insulation, semiconductivity, heat resistance, wear resistance, high strength, and high magnetic force, and their uses will continue to expand in the future. These functional parts are raw material 4
After mixing, it is formed into various shapes by extrusion molding, injection molding, cast molding, press molding, etc., and then placed on shelves, saggers, and baking trays in a furnace made of insulating bricks. Commercialized. The lining, shelf boards, saggers, firing trays, etc. of these furnaces are uneven (gold, alumina, zirconia, etc.).
Cordierite, silicon carbide, and silica refractories are used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、前記セラミックス等の機能部品の焼成用トレイは
いずれも、プレス等の方法で成形され、ざらに高温で焼
成されたものである。これらのセラミックス等機俺部品
の単価の値下がりは著しく生産コストの低減が急務とな
ってきた。しかしながら、従来使用されている焼成炉中
に用いられている各部材は、カサ密度が高いため、その
もの自体を加熱するのに多量のエネルギーが必要であっ
た。また、匣鉢、トレイに関して言えば重いことから多
段に積んで焼成する場合、積み重ねるのに限界があった
。また炉内において上段と下段では温度分布を均一にす
ることが困難であった。さらに焼成スピードを上げると
か、冷熱サイクルを早くすると焼成用トレイが割れたり
して生産性が悪かった。さらに焼成ゾーンを小さくして
熱効率を高めるため、焼成用トレイの占める体積を小さ
くしようと思っても、従来の焼成用トレイではソリ等の
問題のため、ある一定の厚み以下では製造出来なかった
。これに対して、セラミックファイバー等のim耐熱無
機質繊維無機バインダー(例えばシリカゾル、粘土、セ
ビオライト等)を大量の水でスラリー状となし湿式抄造
法により成形した軽量な成形品が知られている。しかし
ながらこの成形品は表面の平滑性がないばかりか、無機
バインダーが耐熱無機質ta維の格子間に充填されてい
るにすぎないため、繊維自体の熱間軟化もしくは収縮に
より、そりを生じたり、強度的に弱かったり、ram自
体が脱落して粉化するため、精度のよい高純度のセラミ
ックスの焼成炉内部での使用は不適であった・ また、バリウム、ストロンチウムのチタン酸塩等のよう
に、アルミナやシリカあるいはチタニア等の金属酸化物
との高温における反応性が高いものは、ジルコニア粉末
を棚板、匣鉢もしくはトレイLに敷いたり、ジルコニア
板を置いて焼成されていた。さらに、敷粉や敷板の取替
による作業の繁雑さや、コストの低減のためにジルコニ
アコーティングを施した耐火物性のトレイが考えられて
いる。しかしながら、従来のジルコニアコーティングは
、極めて緻密な構造となっており1コーテイング膜とト
レイの基材との熱膨張率の差によって膜にクラックが入
ったり剥離が生じたりして被焼成物がトレイに付着した
り、被焼成物にピンホールが生ずる等の問題があった。
Conventionally, all of the trays for firing functional parts such as ceramics are formed by a method such as pressing and fired at a roughly high temperature. The decline in unit prices of these ceramics and other machine parts has made it urgent to reduce production costs. However, each member used in a conventional firing furnace has a high bulk density, and therefore requires a large amount of energy to heat itself. Furthermore, since saggers and trays are heavy, there is a limit to how much they can be stacked when firing in multiple tiers. Furthermore, it was difficult to make the temperature distribution uniform between the upper and lower stages in the furnace. Furthermore, if the firing speed was increased or the cooling/heating cycle was accelerated, the firing tray would crack, resulting in poor productivity. Furthermore, even if attempts were made to reduce the volume occupied by the baking tray in order to increase thermal efficiency by making the baking zone smaller, conventional baking trays could not be manufactured with a thickness below a certain level due to problems such as warping. On the other hand, lightweight molded products are known in which heat-resistant inorganic fibers such as ceramic fibers and inorganic binders (for example, silica sol, clay, Seviolite, etc.) are made into a slurry with a large amount of water and molded by a wet papermaking method. However, this molded product not only does not have a smooth surface, but because the inorganic binder is simply filled between the interstitial spaces of the heat-resistant inorganic TA fibers, the fibers themselves soften or shrink during heating, causing warpage and strength. It was not suitable for use inside the firing furnace of highly precise ceramics because the ram itself was weak and the ram itself fell off and turned into powder. Products that are highly reactive with metal oxides such as alumina, silica, or titania at high temperatures are fired by placing zirconia powder on a shelf, sagger, or tray L, or placing a zirconia plate on top. Furthermore, refractory trays coated with zirconia are being considered in order to reduce the complexity of work required to replace bedding and bedding, and to reduce costs. However, conventional zirconia coatings have an extremely dense structure, and the difference in thermal expansion coefficient between the coating film and the base material of the tray can cause cracks or peeling of the film, causing the object to be fired to stick to the tray. There were problems such as adhesion and formation of pinholes in the object to be fired.

以上のように従来の耐火断熱レンガおよび棚板匣鉢、耐
熱トレイは、エネルギーコストや消耗品コストに対して
大きなウェイトを占め、また、耐火無機質繊維から成る
成型品は、強度が不足して粉化し、作業環境を悪化させ
、精密で高純度のセラミックスの焼成用として不適であ
り、ジルコニアコーティングも割れやすく被焼成物との
反応を防止するにはいたらなかった。
As mentioned above, conventional fire-resistant insulating bricks, shelf board saggers, and heat-resistant trays account for a large amount of energy costs and consumables costs, and molded products made of fire-resistant inorganic fibers lack strength and are powdery. The zirconia coating deteriorated the working environment, making it unsuitable for firing precision, high-purity ceramics, and the zirconia coating was also prone to cracking and did not prevent reactions with the fired object.

本発明はこれらの問題点を解決すべく、省エネルギータ
イプの軽量で強度があり、かつ熱変化に対して優れ、被
焼成物との反応の防止および作業環境を改善した精密で
高純度のセラミックス焼成用の多孔性耐火物を提供する
ことを目的とする。
In order to solve these problems, the present invention is an energy-saving, lightweight and strong ceramic firing method that is highly resistant to thermal changes, prevents reactions with objects to be fired, and improves the working environment. The purpose of the present invention is to provide a porous refractory for use.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明は、耐熱無機質繊維と耐火性粉末と無機結
合剤とから成り、多数の空隙を有する成形体の表面に、
粒子径10〜45μmのジルコニア粉末40〜60重量
%と粒子径0.5〜5.u、mのジルコニア粉末40〜
60重量%とからなり、その合計量が100重量%とな
る膜厚50〜500μmのジルコニアコーティングを施
した多孔性耐火物である。
That is, in the present invention, on the surface of a molded article made of heat-resistant inorganic fibers, fire-resistant powder, and an inorganic binder and having many voids,
40-60% by weight of zirconia powder with a particle size of 10-45 μm and a particle size of 0.5-5. u, m zirconia powder 40~
It is a porous refractory coated with zirconia with a thickness of 50 to 500 μm and a total amount of 100% by weight.

(作 用) 従って、本発明において1多孔性耐火物は、前記耐熱無
機質繊維を主成分とするため、成形体中に多数の空隙が
存在しその軽量化を実現することができる。又、多孔性
耐火物は、耐熱無機質繊維の繊維間に耐火粉末及び、ま
たは無機結合剤を充填し、これらの耐火性粉末及び、ま
たは無機結合剤を焼結せしめることにより、より強固な
構造物たる成形体を得ることができ、前述した如き従来
の耐火性のレンガ、棚板、匣鉢、トレイ等の問題点を解
決することができる。
(Function) Therefore, in the present invention, since the one-porous refractory has the heat-resistant inorganic fiber as a main component, a large number of voids exist in the molded product, and the weight of the molded product can be reduced. In addition, porous refractories can be made into stronger structures by filling refractory powder and/or inorganic binder between the fibers of heat-resistant inorganic fibers and sintering these refractory powders and/or inorganic binder. A barrel molded product can be obtained, and the problems of conventional fire-resistant bricks, shelves, saggers, trays, etc. as described above can be solved.

さらに、多孔性耐火物は、成形体の表面に粒子径10〜
45I1.mのジルコニア粉末40〜60重量%と粒子
径0.5〜5gmのジルコニア粉末40〜60重量%と
からなり、その合計量が100重量%となる膜厚50〜
500JLmのジルコニアコーティングを施すことによ
り被焼成物との反応を完全に防止することができる。
Furthermore, the porous refractory has a particle size of 10 to
45I1. The film is composed of 40 to 60% by weight of zirconia powder having a particle size of 0.5 to 5 gm, and 40 to 60% by weight of zirconia powder having a particle size of 0.5 to 5 gm, and the film thickness is 50 to 60% so that the total amount is 100% by weight.
By applying a zirconia coating of 500 JLm, reaction with the object to be fired can be completely prevented.

すなわち、多孔性耐火物は、粗いジルコニア粉末と細か
いジルコニア粉末とを混合せしめることにより、連続し
た空隙が形成され、この空隙により加熱・冷却時に生ず
る熱応力を緩和せしめコーティング層の剥離やクラ9り
の発生を防止し、結果として被焼成物との反応を防止で
きるものである。さらに、厚膜化が可能となるため耐久
性を飛y&的に向上できるものである。
In other words, in porous refractories, continuous voids are formed by mixing coarse zirconia powder and fine zirconia powder, and these voids alleviate thermal stress that occurs during heating and cooling, preventing peeling of the coating layer and cracking. It is possible to prevent the occurrence of , and as a result, to prevent reaction with the object to be fired. Furthermore, since the film can be made thicker, durability can be dramatically improved.

前記ジルコニア粉末は、粗い方が粒子10〜45ルmが
好適であり、20〜40μmが最適である0粒子径が1
0島m未満だと連続した空隙を形成できず、また45J
Lmを越えると粒子間の結合が不充分となって好ましく
ない、さらに、配合量は40〜60重量%が好適であり
、45〜55重量%が最適である。40重量%未満だと
、空隙が少なくなってクラックを防止することができず
、60%重量を越えると粒子間の結合が不充分となって
コーティング層を形成することができなくなる。
The coarser particles of the zirconia powder are preferably 10 to 45 μm, and the optimal particle size is 20 to 40 μm.
If it is less than 0 m, continuous voids cannot be formed, and 45 J
If Lm is exceeded, the bond between the particles becomes insufficient, which is undesirable.Furthermore, the blending amount is preferably 40 to 60% by weight, and optimally 45 to 55% by weight. If it is less than 40% by weight, cracks cannot be prevented due to fewer voids, and if it exceeds 60% by weight, bonding between particles becomes insufficient and a coating layer cannot be formed.

また、細かい方のジルコニア粉末は粒子径0.5〜5μ
mが好適であり、1〜3pmが最適である、粒子径が0
.51Lm未満だと焼結性が向上して空隙を埋める作用
が強くなってクラックが生成しやすくなり、5ルmを越
えると粒子間結合力が不充分となって好ましくない、ま
た、配合量は40〜60重隆%が好適であり45〜55
重量%が最適である。
In addition, the finer zirconia powder has a particle size of 0.5 to 5μ.
m is suitable, 1 to 3 pm is optimal, particle size is 0
.. If it is less than 51 Lm, the sinterability will improve and the effect of filling voids will become stronger, making it easier to generate cracks, and if it exceeds 5 Lm, the bonding force between particles will be insufficient, which is undesirable. 40-60% heavy elevation is suitable and 45-55%
% by weight is optimal.

40重量%未満だと粒子間結合力が弱くなってコーティ
ング層を形成することができず、60重量%を越えると
焼結性が向上して、クラックが生成しゃすくなって好ま
しくない、これらジルコニア粉末は、汎用されている部
分安定化ジルコニアや、安定化ジルコニア、あるいは安
定化されていないジルコニア等の各種粉末や、塩基性塩
化ジルコニウム、塩基性酢酸ジルコニウム、あるいは塩
基性蟻酸ジルコニウム等の様に水溶液または水性ゾルあ
るいは各種アルコレートの形で利用され、加熱後ジルコ
ニア粒子へと変化するものも使用することができる。
If it is less than 40% by weight, the bonding force between the particles becomes weak and a coating layer cannot be formed, and if it exceeds 60% by weight, the sinterability will improve and cracks will easily form, which is undesirable. Powders include various powders such as partially stabilized zirconia, stabilized zirconia, and unstabilized zirconia, which are widely used, and aqueous solutions such as basic zirconium chloride, basic zirconium acetate, and basic zirconium formate. Alternatively, it is also possible to use those that are used in the form of an aqueous sol or various alcoholates and that convert into zirconia particles after heating.

また、前記ジルコニアコーティング層の厚みは50〜5
001Lmが好適であり 100〜300pmが最適で
ある。膜厚が50gm未満だと、被焼成物との反応を防
止することが充分にできず、500/j、mを越えると
不経済となって好ましくない。
Moreover, the thickness of the zirconia coating layer is 50 to 5
001 Lm is suitable and 100-300 pm is optimal. If the film thickness is less than 50 gm, reaction with the object to be fired cannot be sufficiently prevented, and if it exceeds 500 gm, it becomes uneconomical and undesirable.

本発明における耐熱無機Wffl維は、非晶質のシリカ
−アルミナ繊維、アルミナ結晶質繊維の少なくとも一種
が有効である。前記シリカ・アルミナ繊維は通常A文、
0.が4θ〜60%It%、Sin、が40〜BOwt
%とから成るものであり300℃付近でムライトの結晶
が、 120(1℃付近でクリストバライトの結晶が析
出して粒成長が生じ、耐火性粉末および、または無機結
合剤との焼結を促進させるので本発明においては特に好
ましいものである。また、前記アルミナ結晶質m維はA
ll、Jが70〜99wt%、5i02が1〜30wt
%とから成るものであり、η−9γ−1δ−2θ−形の
遷移状のアルミナやα−形の安定なアルミナあるいはム
ライトで構成されている。前記遷移状のアルミナは14
00°C付近の焼成によりα−形へと転移して粒成長を
生じ、またα−型アルミナやムライトも粒成長を生ずる
ので、前記シリカ・アルミナ繊維と同様に焼結促進剤と
しての働きが期待でき好ましいものである。ただし、こ
れらの耐熱無機質繊維中の非繊維状物は成形体表面の平
滑性をなくすばかりでなく重量的に重くなるため、20
重量%以下にする必要がある。
As the heat-resistant inorganic Wffl fiber in the present invention, at least one of amorphous silica-alumina fiber and alumina crystalline fiber is effective. The silica/alumina fibers are usually A,
0. is 4θ~60%It%, Sin is 40~BOwt
%, mullite crystals precipitate at around 300°C, and cristobalite crystals precipitate at around 120°C, causing grain growth and promoting sintering with the refractory powder and/or inorganic binder. Therefore, it is particularly preferable in the present invention.Furthermore, the alumina crystalline m fibers are A
ll, J is 70-99wt%, 5i02 is 1-30wt
%, and is composed of η-9γ-1δ-2θ-form transitional alumina, α-form stable alumina, or mullite. The transitional alumina is 14
When fired at around 00°C, it transforms into α-form and causes grain growth, and α-type alumina and mullite also cause grain growth, so they act as a sintering accelerator in the same way as the silica/alumina fibers mentioned above. This is promising and desirable. However, the non-fibrous substances in these heat-resistant inorganic fibers not only eliminate the smoothness of the surface of the molded product but also increase its weight.
Must be less than % by weight.

前記の耐火性粉末は、アルミナ質、アルミナ・シリカ質
、ジルコニア質、マグネシア質、チタニア質とから選ば
れるいずれか1種又は2種以上が耐火温度が高く好適で
ある。具体的には、アルミナ、ムライト、カオリナイト
、木節粘±、蛙目粘±、シリマナイト、ステアタイト、
フォルステライト、ジルコニア、マグネシア、スピネル
、チタニア等が好ましい。
As the refractory powder, one or more selected from alumina, alumina/silica, zirconia, magnesia, and titania have a high refractory temperature and are suitable. Specifically, alumina, mullite, kaolinite, kibushi viscous, frog's eye viscosity, sillimanite, steatite,
Forsterite, zirconia, magnesia, spinel, titania, etc. are preferred.

さらに、前記の無機結合剤はシリカ・ソーダ系ホウ酸カ
ルシウム系、シリカ系のフリットから選ばれるいずれか
1種又は2種以上が好適である。たとえば、長石、マイ
カ粉末、ホウ酸、石灰石、ベタライト、ガラス粉末、砕
石等が好ましい。
Furthermore, the above-mentioned inorganic binder is preferably one or more selected from silica-soda-based calcium borate-based and silica-based frits. For example, feldspar, mica powder, boric acid, limestone, betalite, glass powder, crushed stone, etc. are preferred.

これらの耐火性粉末及び無機結合剤はあらかじめ所定の
温度で焼結する配合に混合された後、ボールミル等の粉
砕機でおよそ50pm以下にまで粉砕して使用する。特
に無機結合剤は微粉にした方が好ましく1周以下が最適
である。
These refractory powders and inorganic binders are mixed in advance into a composition for sintering at a predetermined temperature, and then ground to approximately 50 pm or less using a grinder such as a ball mill before use. In particular, it is preferable that the inorganic binder be made into fine powder, and the optimum amount is one turn or less.

また、前記耐熱無機質繊維と前記耐火性粉末及び、また
は前記無機結合剤とを所定量配合後、混練あるいは水中
に分散させてから成形し、その後焼成するか、またはコ
ーティングを施してから焼成することにより本発明の多
孔性耐火物を形成することができる。
Alternatively, after blending a predetermined amount of the heat-resistant inorganic fiber, the fire-resistant powder, and/or the inorganic binder, the mixture is kneaded or dispersed in water, then molded, and then fired, or coated and then fired. The porous refractory of the present invention can be formed by this method.

前記多孔性耐火物へのコーティングは、以下のような種
々の方法に従って得られる。(1)粒子径10〜45ル
mのジルコニア粉末と粒子径0.5〜5ルmのジルコニ
ア粉末を所定の割合で、メチルセルロース、酢ビ等の有
機バインダー中に十分に分散させ、その溶液を塗布、ス
プレー、浸漬等の方法により、前記多孔性耐火物表面に
接着せしめ、乾燥後、1200〜1600℃で焼成する
ことにより得られる。(2)所謂、ジルコニアゾルと呼
ばれるZr(OAc)や溶液、Zr(OH)x (C1
)Y等の溶液中に粒子径10〜45JLmのジルコニア
粉末を分散せしめ、また必要に応じてメチルセルロース
、酢ビ、ラテックス等の有機バインダーを混合し、その
溶液を塗布、スプレー等の方法により前記多孔性耐火物
表面に接着せしめ、乾燥後、1200〜1600℃で焼
成することにより得られる。(3)不活性雰囲気中にて
粒子径10〜45gmのジルコニア粉末とフルキルジル
コネートとの混合液を前記多孔性耐火物表面にスプレー
、浸漬等の方法にて塗布せしめたのち、水蒸気もしくは
霧状の水を用いてアルキルジルコネートの加水分解を生
ぜしめたのち焼成することによって得られる。この場合
、加水分解の工程を省いて前記アルキルジルコネートの
熱分解による方法を用いることもできる。前記(2) 
(3)においては、加水分解の温度、速度や乾燥、焼成
のスピード等の制御により粒度の調整をすることができ
る。
The coating on the porous refractory can be obtained according to various methods as follows. (1) Sufficiently disperse zirconia powder with a particle size of 10 to 45 lm and zirconia powder with a particle size of 0.5 to 5 lm in a predetermined ratio in an organic binder such as methylcellulose or vinyl acetate, and add the solution. It is obtained by adhering to the surface of the porous refractory material by coating, spraying, dipping, etc., drying, and then firing at 1200 to 1600°C. (2) So-called zirconia sol, Zr(OAc) and solution, Zr(OH)x (C1
) Disperse zirconia powder with a particle size of 10 to 45 JLm in a solution such as It is obtained by adhering it to the surface of a refractory material, drying it, and then firing it at 1200 to 1600°C. (3) A mixed solution of zirconia powder with a particle size of 10 to 45 gm and furkyl zirconate is applied to the surface of the porous refractory by spraying, dipping, etc. in an inert atmosphere, and then water vapor or mist is applied. It can be obtained by hydrolyzing alkyl zirconate using water and then calcination. In this case, it is also possible to omit the hydrolysis step and use a method based on thermal decomposition of the alkyl zirconate. Said (2)
In (3), the particle size can be adjusted by controlling the temperature and speed of hydrolysis and the speed of drying and calcination.

以下本発明の実施例について比較例と合せて説明する。Examples of the present invention will be described below along with comparative examples.

〔実施例〕〔Example〕

耐熱無機質繊維として非晶質のシリカ・アルミナflI
雄を、耐火性粉末としてアルミナおよび末節粘土を、さ
らに無機結合剤としてホウ酸カルシウムを配合後焼結さ
せて得たかさ密度1.0g/crn”の平板状の成形体
表面に、本発明のジルコニアコーティングと本発明によ
らない場合のジルコニアコーティングをそれぞれ施し、
 1400℃で24時間空気中で焼成してコーティング
層の変化を観察した。観察結果を第1表に記した。
Amorphous silica/alumina flI as heat-resistant inorganic fiber
The present invention was applied to the surface of a flat molded body with a bulk density of 1.0 g/crn" obtained by compounding alumina and clay as a refractory powder and calcium borate as an inorganic binder and then sintering the male. Applying a zirconia coating and a zirconia coating not according to the present invention, respectively,
The coating layer was baked in air at 1400° C. for 24 hours and changes in the coating layer were observed. The observation results are shown in Table 1.

第1表において、比較例1〜8は本発明によらない場合
のジルコニアコーティングに関するもので、比較例1と
2はジルコニア粉末の配合量が不適切であり、比較例3
と4は細かい方のジルコニア粉末の粒子径が好適でなく
、さらに比較例5と6は粗い方の粒子径が不適当であり
、比較例7と8はコーティング厚みが好適でなかったも
のである。
In Table 1, Comparative Examples 1 to 8 relate to zirconia coatings not according to the present invention, Comparative Examples 1 and 2 have an inappropriate amount of zirconia powder, and Comparative Example 3
In cases 4 and 4, the particle size of the finer zirconia powder was not suitable, and in Comparative Examples 5 and 6, the coarser particle size was inappropriate, and in comparative examples 7 and 8, the coating thickness was not suitable. .

このように、第1表の結果から本発明のジルコニアコー
ティングによれば、非常に安定な膜が形成されることが
わかる。
Thus, from the results in Table 1, it can be seen that the zirconia coating of the present invention forms a very stable film.

以下に第1表を示す、(以下余白) 次にチタン酸バリウムを主成分とする7[子用セラミッ
ク部品との反応性を評価した。
Table 1 is shown below (margins below).Next, the reactivity with a ceramic part for use with a 7 ceramic component containing barium titanate as a main component was evaluated.

見立1」 非晶質のシリカ争アルミナFIi維40θg、焼成アル
ミナ微粉300g、末節粘土240g、ホウ酸カルシウ
ム60gおよびカチオン化でんぷん(20%溶液) 1
00+s文とを30文の水中へ添加し攪拌した。続いて
ポリアクリルアミド系凝集剤(0,5%溶液)を添加し
て、スラリー混合液となし、吸引成形後プレスして、か
さ密度1.0g/am”の平板状の成形体を得た。
Mitate 1 40g of amorphous silica-alumina FIi fiber, 300g of calcined alumina fine powder, 240g of clay, 60g of calcium borate, and cationized starch (20% solution) 1
00+s sentence was added to 30 sentences of water and stirred. Subsequently, a polyacrylamide flocculant (0.5% solution) was added to form a slurry mixture, which was suction molded and then pressed to obtain a plate-shaped molded product with a bulk density of 1.0 g/am''.

この成形体に、平均粒子径25gmのジルコニア粉末5
5重量%と平均粒子径1.OJLmのジルコニア粉末4
5重量%を1%メチルセルロース溶液へ分散後塗布し、
続いて1400℃で5時間焼成して膜厚250pmのジ
ルコニアコーティング層を有する軽量耐熱トレイを得た
Zirconia powder with an average particle size of 25 gm was added to this molded body.
5% by weight and average particle size 1. OJLm zirconia powder 4
Disperse 5% by weight in a 1% methylcellulose solution and apply.
Subsequently, it was fired at 1400° C. for 5 hours to obtain a lightweight heat-resistant tray having a zirconia coating layer with a thickness of 250 pm.

この軽量耐熱トレイの表面にチタン酸バリウムを主成分
とし若干の有機バインダーを添加して成形された電子用
セラミック部品を1350℃の温度で10時間焼成した
An electronic ceramic component made of barium titanate as a main component and a small amount of organic binder added to the surface of this lightweight heat-resistant tray was fired at a temperature of 1350° C. for 10 hours.

焼成後の結果は良好であり、コーティング層の割れや剥
離、およびチタン酸バリウムの付着、ピンホール等不良
の発生も皆無であった。
The results after firing were good, with no defects such as cracking or peeling of the coating layer, adhesion of barium titanate, or pinholes.

塩較1」 実施例11と同様にしてかさ密度1.0g/cm″の平
板状の成形体を得た。この成形体にジルコニアコーティ
ングを施さずに直接チタン酸バリウムを主成分とし若干
の有機バインダーを添加して成形された電子用セラミッ
ク部品を載せ1350℃の温度で10時間焼成した。
"Salt Comparison 1" A plate-shaped molded body with a bulk density of 1.0 g/cm'' was obtained in the same manner as in Example 11.This molded body was directly coated with barium titanate as the main component and some organic matter without being coated with zirconia. An electronic ceramic component formed by adding a binder was placed thereon and fired at a temperature of 1350° C. for 10 hours.

焼成後、チタン酸バリウムと前記成形体とが融着してお
り、チタン酸バリウム成形体を回収することができなか
った。
After firing, the barium titanate and the molded body were fused together, and the barium titanate molded body could not be recovered.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明のジルコニアコーティングによれば
強固で安定な膜が形成されるので以下の如き効果が現わ
れる。
As described above, the zirconia coating of the present invention forms a strong and stable film, resulting in the following effects.

■ セラミックス焼成時の作業が簡略化でき。■ Work when firing ceramics can be simplified.

焼成コストを低減できる。Firing costs can be reduced.

(Φ 被焼成物との反応が防止され、製品収率が向上す
る。
(Φ Reaction with the material to be fired is prevented and the product yield is improved.

■ 棚板−匣鉢・トレイ等のライフが延長され、消耗品
コストを低減できる。
■ Shelves - The lifespan of saggers, trays, etc. is extended, and consumables costs can be reduced.

■ 棚板Φ匣鉢拳トレイ等の粉化を防ぎ、作業環境の改
善および高純度・高精度セラミックスを焼成できる。
■ Prevents pulverization of shelf boards, Φ sagger trays, etc., improves the working environment, and allows firing of high-purity, high-precision ceramics.

Claims (1)

【特許請求の範囲】[Claims] 耐熱無機質繊維と耐火性粉末と無機結合剤とから成り、
多数の空隙を有する成形体の表面に、粒子径10〜45
μmのジルコニア粉末40〜60重量%と粒子径0.5
〜5μmのジルコニア粉末40〜60重量%とからなり
、その合計量が100重量%とからなる膜厚50〜50
0μmのジルコニアコーティングを施した多孔性耐火物
Consisting of heat-resistant inorganic fiber, fire-resistant powder, and inorganic binder,
Particles with a diameter of 10 to 45
μm zirconia powder 40-60% by weight and particle size 0.5
A film with a thickness of 50 to 50% consisting of 40 to 60% by weight of zirconia powder of ~5 μm and a total amount of 100% by weight.
Porous refractory with 0μm zirconia coating.
JP6153786A 1986-03-19 1986-03-19 Porous refractories Pending JPS62216974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6153786A JPS62216974A (en) 1986-03-19 1986-03-19 Porous refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6153786A JPS62216974A (en) 1986-03-19 1986-03-19 Porous refractories

Publications (1)

Publication Number Publication Date
JPS62216974A true JPS62216974A (en) 1987-09-24

Family

ID=13173956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6153786A Pending JPS62216974A (en) 1986-03-19 1986-03-19 Porous refractories

Country Status (1)

Country Link
JP (1) JPS62216974A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264075A (en) * 1987-10-22 1990-03-05 Asahi Optical Co Ltd Porous ceramics and production thereof
JPH03177383A (en) * 1989-12-05 1991-08-01 Ngk Insulators Ltd Refractory having zirconia coated layer
US9784403B2 (en) 2014-07-02 2017-10-10 Coorstek Kk Heat insulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264075A (en) * 1987-10-22 1990-03-05 Asahi Optical Co Ltd Porous ceramics and production thereof
JPH03177383A (en) * 1989-12-05 1991-08-01 Ngk Insulators Ltd Refractory having zirconia coated layer
US9784403B2 (en) 2014-07-02 2017-10-10 Coorstek Kk Heat insulator

Similar Documents

Publication Publication Date Title
CN106145976B (en) Andalusite-mullite-silicon carbide brick for cement kiln and preparation method thereof
JPS63206367A (en) Lightweight refractories and manufacture
JPS63224937A (en) Double layer structure heat-resistant plate
JP3579155B2 (en) Tools for firing
JPH0572341B2 (en)
JPS62216974A (en) Porous refractories
JPS62283885A (en) Porous refractory formed body for burning functional parts
JP4298236B2 (en) Manufacturing method for ceramic electronic component firing setter
EP0363911B1 (en) Refractories for use in firing ceramics
JPS61201679A (en) Lightweight heat resistant tray and manufacture
JP2002316877A (en) Burning tool for electronic parts
JP2593663B2 (en) Jig for firing electronic components
JPS62191485A (en) Porous refractories
JP2818945B2 (en) Fibrous molded body for jig for ceramics production
JPH0319194B2 (en)
JPS629181A (en) Light-weight heat-resistant tray for baking ceramics and manufacture thereof
US5244727A (en) Refractories for use in firing ceramics
JP4116593B2 (en) Baking tool material
JP3055331B2 (en) Furnace material for ceramic firing furnace and method for producing the same
JP2000159569A (en) Multi-layered structure refractory for sintering ceramic
JPS62275078A (en) Porous refractories for burning functional parts
JPH0269381A (en) Jig for calcining electronic parts
JPH02289473A (en) High heat resistant lightweight tray and production thereof
JP3429551B2 (en) Setter
JPH01317173A (en) Refractory material for calcining ceramic